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Preface 

This text is a major revision of An Introduction to Thermodynamics, Kinetic Theory, 
and Statistical Mechanics by Francis W. Sears. The general approach has been 
unaltered and the level remains much the same, perhaps being increased somewhat 
by greater coverage. The text is still considered useful for advanced undergraduatCJ 
in physics and engineering who have some famil iarity with calculus. 

The first eight chapters are devoted to a presentation of classical thermo­
dynamics without recourse to either kinetic theory or statistical mechanics. We 
feel it is important for the student to understand that if certain macroscopic 
properties of a system are determined experimentally, all the properties of the 
system can be specified without knowing anything about the microscopic properties 
of the system. In the later chapters we show how the microscopic properties of the 
system can be determined by using the methods of kinetic theory and statistical 
mechanics to calculate the dependence of the macroscopic properties of a system on 
thermodynamic variables. 

The presentation of many topics differs from the earlier text. Non·PVT 
systems are introduced in the second chapter and are discussed throughout the 
text. The first la)V is developed as a definition of the difference in the internal energy 
of a system between two equilibrium states as the work in an adiabatic process 
between the states and in which the kinetic and potential energy of the system do 
not change. The heat flow is then the difference between the work in any process 
between two equilibrium states and the work in an ad iabatic process between the 
same states. Care is taken to explain the effects of changes in kinetic and potential 
energy as well. After the discussion of the fi rst law, various examples are presented 
to show which properties of the system can be determined on the basis of this law 
alone. 

The statement that " in every process taking place in an isolated system the 
entropy of the system either increases or remains constant" is used as the second 
law. It is made plausible by a series of examples and shown to be equivalent to the 
"engine" statements and the Caratneodory treatment. Thermodynamic potentials 
are presented in greater detail than in the earlier text. A new potential F" is 
introduced to make consistent the thermodynamic and statistical treatments of 
processes in which the potential energy of a system changes. The discussion of 
open systems, added in Chapter 8, is necessary for the new derivation of statistics. 

Ill 
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Kinetic theory of gases is treated in Chapters 9 and 10. Although the coverage 
appears to be reduced from the previous edition, the remaining material is dis­
cussed from the point of view of statistics in Chapter 12. 

The derivation of the distribution fu nctions for the various types of statistics 
is completely different from previous editions. Discrete energy levels are assumed 
from the outset. The number o f microstates belonging to each macrostate is 
calculated in the conventional manner for Bose-Einstein, Fermi-Dirac and Ma.well- . 
Boltzmann statistics. The entropy is shown to be proportional to the natural 
logari thm of the total number of microstates available to the system and not to t he 
number of microstates in the most probable macrostate. The distribution of 
particles among energy levels is determined without the use of Lagrange multiplier> 
and Stirling's approximation, by calculating the change in the total number ol 
microstates when a particle in a particular energy level is removed from the system. 
The logarithm of this change is proportional to the change of entropy of the system. 

Only the single-particle partition function is introduced and it is used to derive 
the thermodynamic properties of systems. The coverage is much the same as the 
earlier text except that it is based entirely on discrete levels. The chapter on/ 
fluctuations has l)een omitted. 

The number of problems at the end of each chapter has been expanded. Some 
of the problems would become tedious if one did not have access to a small calcu­
lator. The International System (SI) bas been adopted throughout. Thus the units 
are those of the MKS system and are written, for example, as 1 kilomoJe- • K- • for 
specific heat capacity. 

The section on classical thermodynamics can be used for a course last ing one 
quarter. For a one-semester course it can be used with either the chapters on 
kinetic theory or statistical thermodynamics, but probably not both, unless only 
classical statistics are discussed, which can be done by using the development given 
in the sections on Bose-Einstein statistics and taking the limit that g1 » N1• 

We appreciate the he I pf ul comments oft he reviewers of the manuscript, especially 
L . S. Lerner and C. F. Hooper, who also gave part of the manuscript a field test. 
One of us (GLS) wishes to thank his colleagues at Rensselaer for many helpful 
discussions. J. Aitken worked all the problems and checked the answers. Phyllis 
Kallenburg patiently retyped many parts of the manuscript with great accuracy 
and good humor. The encouragement of our wives and tolerance of our children 
helped considerably in this undertaking. Criticisms from teachers and students will 
be welcomed. 

Norwich, Vermont 
Troy, New York 
October 1974 

F .W.S. 
G.L.S. 
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2 FUNDAMENTAL CONCEPTS 1- 1 

1-1 SCQPE OF THERMODYNAMICS 

Thermodynamics is an experimental science based on a small number of principles 
that are generalizations made from experience. It is concerned only with macro· 
scopic or large-scale properties of matter and it makes no hypotheses about the 
small-scale or microscopic structure of matter. From the principles of thermo­
dynamics one can derive general relations between such quantities as coefficients 
of expansion, compressibilities, specifi" heat capacities, heats of transformation, 
and magnetic and dielectric coefficients·, especially as these are affected by tem· 
perature. The principles of thermodynamics also tell us which few of these rela­
tions must be determined experimentally in order to completely specify all the 
properties of the system. 

The actual magnitudes of quantities like those above can be calculated only 
on the basis of a molecular model. The kinetic theory of matter applies the Jaws 
of mechanics to the individual molecules of a system and enables one to calculate, 
for example, the numerical value of the specific heat capacity of a gas and to 
understand the properties of gases in terms of the law of force between individual 
molecules. 

The approach of statistical thermodynamics ignores the detailed consideration 
of molecules as individuals and applies statistical considerations to find the distri­
bution of the very large number of molecules that ll)ake up a macroscopic piece of 
matter over the energy states of the system. For those systems whose energy states 
can be calculated by the methods of either quantum or classical physics, both the 
magnitudes of the quantities mentioned above.and the relations between them can 
be determined by quite general means. The methods of statistics also give further 
insight into the concepts of entropy and the principle of the increase of entropy. 

Thermodynamics is complementary to kinetic theory and statistical thermo­
dynamics. Thermodynamics provides relationships between physical properties 
of any system once certain measurements are made. Kinetic theory and statistical 
thermodynamics enable one to calculate the magnitudes of these properties for 
those systems whose energy states can be determined. 

The science of thermodynamics had its start in the early part of the nineteenth 
century, primarily as a result of attempts to improve the efficiencies of steam engines, 
devices into which there is an input in the form of heat, and whose output is 
mechanical work. Thus as the name implies, thermodynamics was concerned with 
both thermal and mechanical, or dynamical, concepts. As the subject developed 
and its basic laws were more fully understood, its scope became broader. The 
principles of thermodynamics are now used by engineers in the design of internal 
combustion engines, conventional and nuclear power stations, refrigeration and 
air-conditioning systems, and propulsion systems for rockets, missiles, aircraft, 
ships, and land vehifles. The sciences of physical chemistry and chemical physics 
consist in large part of the applications of thermodynamics to chemistry and 
chemical equilibria. The production of extremely low temperatures, in the neigh­
borhood of absolute zero, involves the application of thermodynamic principles 0 
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to systems of molecular and nuclear magnets. Communications, information 
theory, and even certain biological processes are examples of the broad areas in 
which the thermodynamic mode of reasoning is applicable. 

In this book we shall first develop the principles of thermodynamics and show 
how they apply to a system of any nature. The methods of kinetic theory and 
statistics are then discussed and correlate<! with those of thermodynamics. 

1- 2 THERMODYNAMIC SYSTEMS 

The term system, as used in thermodynamics, refers ·to a certain portion of the 
Universe within some closed surface called the boundary of the system. The 
boundary may enclose a solid, liquid, or gas, or a collection of magnetic dipoles, 
or even a batch of radiant energy or photons in a vacuum. The boundary may be a 
real one, like the inner surface of a tank containing a compressed gas, or it may 
be imaginary, like the surface bounding a certain mass of fluid !lowing along a 
pipe line and followed in imagination as· it progresses. The boundary is not 
necessarily fixed in either shape or volume. Thus when a fluid expands against a 
piston, the volume enclosed by the boundary increases. 

Many problems in thermodynamics involve interchanges of energy between 
a given system and other systems. Any systems which can interchange energy with 
a given system are called the surroundings of that system. A system and it,s sur-
roundings together are said to constitute a universe. I 

If conditions are such that no energy interchange with the surroundings can 
take place, the system is said to be Isolated. If no matter crosses the boundary, 
the system is said to be closed. l f there is an interchange of matter between system 
and surroundings, the system is open. 

1-3 STATE OF A SYSTEM. PROPERTIES 

The state of a thermodynamic system is specified by the values of certain e"peri­
mentally measurable quantities called state variables o r properties. E"amples of 
properties are the temperature of a system, the pressure exerted by it, and the 
volume it occupies. Other properties of interest are the magnetization of a mag­
netized body, the polarization of a dielectric, and the surface area of a liquid. 

Thermodynamics deals also with quantities that are not properties of any 
system. Thus when there is an interchange o f energy between a system and its 
surroundings, the energy transferred is not a property of either t he system o r its 
surroundings. 

Those properties of a system in a given state that are proport ional to the mass 
of a system are called extensive. Examples are the total volume and the total energy 
of a system. Properties that are independent of the mass arc called intensive. 
Temperature, pressure, and density are examples of intensive properties. 

The specific value of an extensive property is defined as the ratio of the value 
of the property to the mass of the system, or as its value per unit mass. We shall 
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use capitallett~rs to designate an extensive p roperty and lower case letters for the 
corresponding specific value of the property. Thus the total volume of a system 
is represented by V and the specific volume by v, and 

v 
o=-. 

m 
The specific volume is evidently the reciprocal of the density p, defined as the 

mass per unit volume: 
m 1 

p= v =;· 
Since any extensive property is proportional to the mass, the corresponding 

specific value is independent of the mass and is an intensive property. 
The ratio of the value of an extensive property to the number of moles of a 

system is called the molal specific value of that property. We shall use lower case 
letters also to represent molal specific values. Thus if n represents the number of 
moles of a system, the molal specific volum~ is 

v 
v-= -. 

n 

Note that in the MKS system, the term "mole" implies kilogram-mole o r 
kilomole, that is, a mass in kilograms numerically equal to the molecular weight. 
Thus one kilomole o f 0, means 32 kilograms of 0 1• 

No confusion arises from the usc of the same letter to represent both the 
volume per uni t mass, say, and the volume per mole. In nearly every equation 
in which such a quantity O<X:urs there will be some other quantity which indicates 
which specific volume is meant, or, if there is no such quantity, the equation will 
hold equally well for either. 

In many instances, it is more convenient to write thermodynamic equations 
in termsJ of specific values of extensive p roperties, since the equations are then 
indepen ent of the mass of any particular system. 

1-4 PRESSURE 

The stress in a continuous medium is said to be a hydrostatic pressure if the force 
per unit area exerted on an element of area, either within the medium or at its 
surface, is (a) normal to the element and (b) independent of the orientation of the 
element. T he stress in a fluid (liquid or gas) at rest in a closed container is a hydro­
static pressure. A solid can be subjected to a hydrostatic pressure by immersing 
it in a liquid in which it is insoluble and exert ing a pressure on the liquid. The 
pressure P is defined as the magnitude of the force per unit area and the unit of 
pressure in the MKS system is I newton• per square meter (I N m- '). A pressure of 

• Sir Isaac Newton, English mathematician (1642- 1727). 
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exactly 10' N m- • (= 10' dyne em-•) is called I bar, and a pressure of to-• N m-• 
(- I dyne em-') is I microbar ( I /l bar). 

A pressure of I standard atmospheu (atm) is defined as the pressure produoed 
by a vertical column of mercury exactly 76 em in height, of density p ~ 13.5951 g 
em-•, at a point where g has its standard value of 980.665 em s-•. From the equa­
tion P = pgh, we find 

I standard atmosphere = 1.01325 x 10' dyne em-• • 1.01325 x 105 N m-•. 

Hence I standard atmosphere is very nearly equal to I bar, and I /l bar is very 
nearly to-• atm. 

A unit of pressure commonly used in experimental work at low pressures 
is 1 Torr (named after Torricelli•) and defined as the pressure produced by a 
mercury column exactly I millimeter in height, under the conditions above; 
therefore I Torr = 133.3 N m-•. 

1-5 THERMAL EOUIUBRIUM AND TEMPERATURE. 
THE ZEROTH LAW 

The concept of temperature, like that of force, originated in man's sense per· 
ceptions. Just as a force is something we can correlate with muscular effort and 
describe as a push or a pull, so temperature can be correlated with the sensations of 
relative hotness or coldness. But man's temperature sense, like his force sense, is 
unreliable and restricted in range. Out of the primitive concepts of relative hotness 
and coldness there has developed an objective science of thermometry, just as ao 
objective method of defining and measuring forces has grown out of the naive 
concept of a force as a push or a pull. 

The first step toward attaining an objective measure of the temperature sense 
is to set up a criterion of equality of temperature. Consider two metal blocks A 
and B, of the same material, and suppose that our temperature sense tells us t hat A 
is warmer than B. If we bring A and B into contact and surround them by a thick 
layer of felt or glass wool, we lind that after a sufficiently long time has elapsed 
the two feel equally warm. Measurements of various properties of the bodies, 
such as their volumes, electrical resistivities, or elastic moduli, would show that 
these properties changed when the two bodies were first brought into contact but 
that eventually they became constant also. 

Now suppose that two bodies of difltrtn t materials, such as a block of metal 
and a block of wood, are brought into contact. We again observe that after a 
sufficiently long time the measurable properties of these bodies, such as their 
volumes, cease to change. However, the bodies will not feel equally warm to the 
t ouch, as evidenced by the familiar fact that a block of metal and a block of wood, 

• Evangelista Torricelli, I talian physicist (1608- 1647). 
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both of which have been in the same room for a long time, do not feel equally 
warm. This effect results from a difference in thermal conductivities and is an 
example of the unreliability of our temperature sense. 

The feature that is common in both instances, whether the bodies are of the 
same material or not, is that an end state is eventually reached in which there are 
no further observable changes in the ·measurable properties of ihe bodies. This 
state ts then defined as one of thermal equilibrium. 

Observations such as those described above lead us to infer that all ordinary 
objects have a physical property that determines whether or not they will be in 
thermal equilibrium when placed in contact with other objects. This property is 
called temperature. If two bodies are in thermal equilibrium when placed in contact, 
then by definition their temperatures are equal. Conversely, if the temperatures 
of two bodies are equal, they will be in thermal equilibrium when placed in contact. 
A state of thermal equilibrium can be described as one in which the temperature 
of the system is the same at all points. 

Suppose that body A, say a metal block, is in thermal equilibrium with body 
B, also a metal block. The temperature of B is then equal to the temperature of A. 
Suppose, furthermore, that body A is also separately in thermal equilibrium with 
body C, a wooden block, so that the temperatures of C and A are equal. It follows 
that the temperatures of Band Care equal; but the question arises, and it can only 
be answered by experiment, what will actually happen when B and Care brought 
in contact 7 Will they be in thermal equilibrium 7 We find by experiment that 
they are, so that the definition of equality of temperature in terms of thermal 
equilibrium is self-consistent. 

It is not immediately obvious that because B and Care both in thermal equilibrium 
with A, that they arc necessarily in thermal equilibrium with each other. When a zinc 
rod and a copper rod are dipped in a solution of zinc sulfate, both rods come to 
electrical equilibrium with the solution. If they arc connected by a wire, however, it 
is found that they are not in electrical equilibrium with each other, as evidenced by 
an electric current in the wire. 

The experimental results above can be stated as follows: 

When any two bodies are each separately in thermal equilibrium with a third, they 
are also in thermal equilibrium with each other. 

This statement is known as the zeroth law of thermodynamics, and its correct­
ness is tacitly assumed in every measurement of temperature. Thus if we want to 
know when two beakers of water are at the same temperature, it is unnecessary to 
bring them into contact and see whether their properties change with time. We 
insert a thermometer (body A) in one beaker of water (body B) and wait until some 
property of the thermometer, such as the length of the mercury column in a glass 
capillary, becomes constant. Then by definition the thermometer has the same 
temperature as the water in this beaker. We next repeat the procedure with the 
other beaker of water (body C). If the lengths of the mercury columns are the same, 

f• 
II 
II 

f( 



1-6 EMPIRICAL. AND THERMODYNAMIC TEMPERATURE 7 

the temperatures of B and C are equal, and experiment shows that if the 
two beakers a re brought into contact, no changes in their properties take 
place. 

Note that the thermometer used in this test requires no calibration-it is only 
necessary that the mercury column stand at the sarpe point in the capillary. Such 
an instrument can be described as a thermoscope. I t will indicate equality of tem­
perature without determining a numerical value of temperature. 

Although a system will eventually come to thermal equilibrium with its sur­
ro undings if these are kept at constant temperature, the rote at which equilibrium 
is approached depends on the nature of the boundary of the system . If the boundary 
consists of a thick layer of a thermal insulator such as glass wool, the temperature 
of the system will change very slowly, and it is useful to imagine an ideal boundary 
for which the temperature would not change at a ll. A boundary that has this 
p roperty is called adiabatic, and a system enclosed in an adiabatic boundary can 
remain permanently at a temperature different from that or its surroundings 
wi thout ever coming to thermal equilibrium with them. The ideal adiabatic 
boundary plays somewhat the same role in thermodynamics as the ideal friction­
less surface docs in mechanics. Although neither actually exists, both are helpful 
in simplifying physical arguments and both are justified by the correctness of con­
clusions drawn from arguments making use of them. 

Although we have not as yet defined the concept of Mat, it may be said at this 
point that an ideal adiabatic boundary is one across which the flow of heat is zero, 
even when there is a difference in temperature between opposite surfaces of the 
boundary. 

At the opposite extreme from an adiabatic boundary is a diathermol boundary, 
composed of a material which is a good thermal conductor such as a thin sheet of 
copper. The temperature of a system enclosed in a diathermal bounda~ very 
quickly approaches that of its surroundings. 

1- 6 EMPIRICAL AND THERMODYNAMIC TEMPERATURE 

To assign a numerical value to the temperature of a system, we first select some 
one system, called a thermomtttr , that has a thermometric property which changes 
with temperature and is readily measured. An example is the volume V of a liquid, 
as in the familiar liquid-in-glass thermometer. The thermometers used most 
widely in precise experimental work, however, are the resistance thermometer and 
the tltermocoup/e. 

The thermometric property of the resistance thermometer is its resistance R. 
For good sensitivity, the change in the thermometric property of a thermometer, 
for a given change in temperature, should be as large as possible. At temperatures 
that are not too low, a resistance thermometer consisting of a fine platinum wire 
wound on an insula ting frame is suitable. At extremely low temperatures, the 
resistivity of platinum changes only slightly with changes in temperature, but it 
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has been found that arsenic-doped germanium makes a satisfactory resistance 
thermometer down to very low temperatures. 

The thermocouple consists of an electrical circuit shown in iu simplest form in 
Fig. 1-1 (a). When wires of any two unlike metals or alloys are joined so as to form 
a complete circuit, it is found that an enif t! exists in the circuit whenever the 
j unctions A and B are at different temperatures, and this emf is the thermometric 
property of the couple. To measure the emf, a galvanometer or potentiometer must 
be inserted in the circuit, and this introduces a pair of junctions at the points where 
the instrument leads are connected. If these leads are of the same material, usually 
copper, and if both of these junctions are at the same temperature, called the 
reference temperature, the emf is the same as in a simple circuit, one o( whose 
junctions is at the reference temperature. Figure 1-1 (b) shows a typical thermo­
couple circuit. Junctions Band Care kept at some known reference temperature, 
for example by inserting them in a Dewar Hask • containing ice and water. Junction 
A, the test junction, is placed in contact with the body whose temperature is to be 
determined. 

Junction A Ju ft(lioa 8 

Melall 

Reference junction 

Metal2 

(a) (b) 

Fig. 1-1 Thermocouple. circuits: (a) simple circuit and (b) practical circuit showing the 
test junction and the reference junction. 

• A Dewar flask is a double-walled container. The space between the walls is evacuated to 
keep heat from entering or leaving the contents of the container. It was invented by Sir 
James Dewar, British chemist (1848-1923). 
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Another important type of thermometer, although it is not suitable for routine 
laboratory measurements, is the constant volume gas thermometer, illustrated 
schematically in Fig. 1-2. The gas is contained in bulb C and the pressure exerted 
by it can be measured with the open tube mercury manometer. As the temperature 
of the gas increases, the gas expands, forcing the mercury down in tube Band up in 
tube A. Tubes A and B communicate through a rubber tube D with a mercury 
reservoir R. By raising R, the mercury level in B may be brought back to a reference 
mark E. The gas is thus kept at constant volume. Gas thermometers are used 
mainly in bureaus of standards and in some university research laboratories. T he 
materials, construction, and dimensions differ in various laboratories and depend 
on the nature of the gas and the temperature range to be covered. 

R 

Fig. 1-2 The constant-volume gas thermometer. 

Let X represent the value of any thermometric property such as the emf tf of a 
thermocouple, the resistance R of a resistance thermometer, or the pressure P of a 
fixed mass of gas kept at constant volume, and 8 the empirical temperature of the 
thermometer or of any system with which it is in thermal equilibrium. The ratio 
of two empirical temperatures 01 and 0., as determined by a particular thermom­
eter , is defined as equal to the corresponding ratio of the values of X: 

o, x, 
0. = x.· 
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The next step is to arbitrarily assign a numerical value to some one temperature 
called the standard fixed point. By international agreement, this is chosen to be the 
triple point of water, the temperature at which ice, liquid water, and water vapor 
coexist in equilibrium. We shall see in Section 8-2 that the three states of any 
substance can coexist at only one temperature. 

To achieve the triple point, water of the highest purity which has substantially 
the isotopic composition of ocean water is distilled into a vessel like that shown 
schematically in Fig. 1-3. When all air has been removed, the vessel is sealed off. 
With the aid of a freezing mixture in the inner well, a lnyer of ice is formed around 
the well. When the freezing mixture is removed and replaced with a thermometer, 
a thin layer of ice is melted nearby. So long as the solid, liquid, and·vapor coexist 
in equilibrium, the system is at the triple point. 

Thermometer 
bulb 

Wactr 
Ia )Or 

Ia: 

Fig. 1-3 Triple-point cell with a thermometer 
in the well, which melts a thin layer of 
ice nearby. 

If we now assign some arbitrary value Os to the triple point temperature, and let 
X0 represent the corresponding value of the thermometric property of a thermom­
eter, the empirical temperature 0 when the value of the thermometric property is 
X, is given by 

or 

o = o.l!... x. (1-1) 

I 

i 
i 

I 
I 
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Table 1-llists the values of the thermometric properties of each off our different 
thermometers at a number of temperatures, and the ratio of the property at each 
temperature to its value at the triple point. The first thermometer is a copper­
constantan thermocouple, the second is a platinum resistance thermometer, the tbird 
is a constant volume hydrogen thermometer tilled to a pressure of 6.80 atm at the 
triple point, and the fourth is also a constant volume hydrogen thermometer but 
fi lled to a lower pressure of 1.00 atm at the triple point. Values of the thermo­
metric properties are given at the normal boiling point (NBP) of nitrogen, the 
normal boiling point of oxygen, the normal sublimation point (NSP) of carbon 
dioxide, the triple point of water, the normal boiling point of water, and the normal 
boiling point of tin. 

Table 1-1 Comparison of tbermometers 

(Cu-constantao) 
I 

(Pt) 
.!! 

(H, p (H, p 
System I, I, R, 

R, 
Vcoost) P, Vcoost) P, mV ohms• P, atm P, atm 

N, (NBP) 0 .73 0 .12 1.96 0.20 1.82 0.27 0.29 0.29 
o, (NBP) 0.95 0.15 2.SO 0.25 2.13 0.31 0.33 0.33 
CO, (NSP) 3.S2 0.56 6.65 0.68 4.80 0.71 o.n o.n 
H,O (TP) I , - 6.26 1.00 R,- 9.83 1.00 P1 - 6.80 1.00 P1 - 1.00 1.00 
H,O (NBP) 10.05 1.51 13.65 1.39 9.30 1.37 1.37 1.37 
So (NMP) 17.SO 2.79 18.56 1.89 12.70 1.87 1.85 1.85 

We see that a complication arises. The ratio of the thermometric properties, 
at each temperature, is different for all four thermometers, so that for a given 
value of 0, the empirical temperature 0 is different for all four. The agreement is 
closest, however, for the two hydrogen thermometers and it is found experimentally 
that constant volume gas thermometers using different gases agree more and more 
closely with each other, the lower the pressure P 1 at the triple point. This is illus­
trated in Fig. 1-4, which shows graphs of the ratio P JP, for four different constant 
volume gas thermometers plotted as function of the pressure P,. The pressure P, 
JS that at the normal boiling point of water (the steam point). Experifllental 
measurements cannot, of course, be made all the way down to zero pressure, P1 , 

but the extrapolated curves all intersect the vertical axis at a common point at 
which P,/P1 - 1.3660. At any other temperature, the extrapolated graphs also 
intersect at a (different) common point, so that all constant volume gas thermom­
eters agree when their readings are extrapolated to zero pressure P,. We therefore 
define the empirical gas temperature 0, as 

~-~x~(~. 0~ 
P,~o P)rr 

• Georg S. Ohm, German physicist (1787-1854). 
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the subscript Vindicating that the pressures are measured at constant volume. 
Temperatures defined in this way are therefore independent of the properties of any 
particular gas, although they do depend on the characteristic behavior of gases as a 
whole and are thus not entirely independent of the properties of a particular 
material. 

There remains the question of assigning a numerical value to the triple-point 
temperature 81 • Before 1954, gas temperatures were defined in terms of two fixed 
points: the normal boiling point of pure water (the steam point) and the equilibrium 
temperature of pure ice and air-saturated water at a pressure of I atmosphere (tho 
fee point). (The triple-point and ice-point temperatures are not exactly the same 
because the pressure at the triple point is no t I atm, but is the vapor pressure of 
water, 4.58 Torr, and the ice is in equilibrium with pure water, not air-saturated 
'Yater. This is discussed further in Section 7-6.) 

., ·-[ o, 

1.3610 

... ~ 
;_.. I.Jil'l Air 

N, 

1.~ 

••• 
1.36l00 

:lXI lOO 7l0 1000 
P, (Torr) 

Fi&. 1-4 Readings of a conslant-volume ~as 
thermometer for the temperature of condensmg 
steam, when different gases are used at various 
values of P1• 

If the subscripts s and f designate values at the steam and ice points, the gas 
temperatures 0, and 01 were defined by the equations 

~ ~ {~ \ , 8, - 8, = 100 degrees. 
81 P/~ 

(The pressure ratio is understood to be the limiting value extrapolated to zero 
pressure.) When these equations are solved for 8., we have · 

81 - lOOP, - 100 • 
P, - P1 (P,/PJ - I 

(1-3) 

The best experimental value of the ratio P JP, was found to be 1.3661. (This 
differs slightly from the limiting value of the ratio P,/Ps of 1.3660 in Fig. 1-4 
because the temperature of the triple point is slightly larger than that of the ice 
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point.) Hence from Eq. (1-3), 

8, -
100 = 273.15 degrees, 

1.3661 - I 
and from the defining equations for 8, and 8, 

8, = 373.15 degrees. 

The triple point temperature 8, is found by experiment to be 0.01 degree above 
the icc point, so .the best experimental value of 8, is 

81 - 273.16 degrees. 

In order that temperatures based on a single fixed point, the triple point of 
water, shall agree with those based on two fixed points, the ice and steam points, 
the triple point temperature is assigned the value 

Hence 
e • .. 273.16 degrees (exactly). 

8, = 273.16 x lim(~\ . 
P,~o P./JT 

(1-4) 

It will be shown in Section 5-2 that, following a suggestion made by Lord 
Kelvin •, one can define the ratio of two temperatures on the basis of the second 
law of thermodynamics in a way that is completely independent of the properties 
of any particular material. Temperatures defined in this way are called absoluu 
or thermodynamic temperatures and are represented by the letter T. We shall show 
later that thermodynamic temperatures are equal to gas temperatures as defined 
above. Since all thermodynamic equations are best expressed in terms of thermo­
dynamic temperature, we shall use, from now on, the symbol T for temperature, 
understanding that it can be measured experimentally with a gas thermometer. 

It has been customary for many years to speak of a thermodynamic tempera­
ture as so many "degrees kelvin,'' abbreviated deg K or •K. The word "degree" 
and the degree symbol have now been dropped. The unit of temperature is called 
I kelvin (I K), just as the unit of energy is called I joule (I J)t, and we say, for 
example, that the triple point temperature is 273.16 kelvins (273.16 K). The unit 
of temperature is thus treated in the same way as the unit of any other physical 
quantity. Thus we can write finally, accepting for the present that T- 8,, 

T - 273.16 K X lim (~\ . (1-5) 
P,~o p)y 

Celsiust temperature t (formerly known as centigrade temperature) is defined 
by the equation 

t=T-T,, 

• William Thomson, Lord Kelvin, Scottish physicist (1824-1907). 
t James P. Joule, British physicist (1818-1889). 
*Anders Celsius, Swedish astronomer (1701-1744). 

(I~ 
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where T, is the thermodynamic temperature of the ice point, equal to 273.15 K. 
The unit employed to express Celsius temperature is the degree Celsius ("C), 
which is equal to the kelvin. Thus at the ice point, where T = T,, 1 = 0°C; at the 
triple point of water, where T = 273.16 K, 1 = O.Ol°C; and at the steam point, 
1 = I00°C. A difference. in temperature is expressed in kelvins; it may also be 
expressed in degrees Celsius ( deg C). 

The Rankine• and Fahrenheitf scales, commonly used in engineering measure­
ments in the United States, are related in the same way as the Kelvin and Celsius 
scales. Originally these scales were defined in terms of two fixed points, with the 
difference between the steam point and ice point temperatures taken as 180 degrees 
instead of 100 degrees. Now they are defined in terms of the Kelvin scale through 
the relation 

5 
1 R = 9 K (exactly). 

Thus the thermodynamic temperature of the ice point is 

7j ~ ~! X 273.15 K = 491.67 R. 
5K 

Fahrenheit temperature I is defined .by the equation 

t = T - 459.67R, 

(1-7) 

(1-8) 
where T is the thermodynamic temperature expressed in rankines. The unit of 
Fahrenheit temperature is the degree Fahrenheit (°F), which is equal to the rankine. 
Thus at the ice point, where T- T, = 491.67 R, 1 ~ 32.00°F and at the steam 

K c R F 
Sturn poinl 37JK ---,--

100 kel vins 

IOO'C 672 R ---r--
180 rankines 

212' F 

100 dea C 110 d.a F 
Icc point 17J K 

___ .!. __ 
o·c 492 R __l_ __ 

32'F 

NSP CO, 19S K -78'C 331R - 109' F 

NBPoxy,en 90K - 183'C 162 R - 297' F 

Absoluae uro - 273'C 0 -460' F 

Flg. I-S Comparison of Kelvin, Celsius, Rankine, and Fahrenheit temper­
atures. Temperatures have been rounded off to the nearest degree. 

*William J. M. Rankine, Scottish enginccr.(1820-1872). 
t Gabriel D. Fahrenheit, German physicist (1686-1736). 
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point 1 -= 212.00°F. A temperature difference is expressed in rankines; it may also 
be expressed in degrees Fahrenheit (deg f). These scales are no longer used in 
scientific measurements. Some-Kelvin, Celsius, Rankine, and Fahrenheit tem­
peratures are compared in Fig. 1- S. 

1-7 THE INTERNATIONAL PRACTICAL TEMPERATURE SCALE 

To overcome the practical difficulties of direct determination of thermodynamic 
temperature by gas thermometry and to unify existing national temperature 
scales, an International Temperature Scale was adopted in 1927 by the Seventh 
General Conference on Weights and Measures. Its purpose was to provide a 
practical scale of temperature which was easily and accurately reproducible and 
which gave is nearly as possible thermodynamic temperatures. The International 
Temperature Scale was revised in 1948, in 1960, and most recently in 1968. It is 
now known as the International Practical Temperature Scale of"l968 (1~8). 

International Practical Kelvin Temperature is represented by the symbol T.,, 
and International Practical Celsius Temperature by the symbolt.,. The relation 
between T 18 and , .. is 

111 = T01 - 273.1S K. 

The units of T11 and t., are the kelvin (K) and the degree Celsius ("q, as in the 
case of the thermodynamic temperature T and the Celsius temperature 1. 

The IPTs-68 is based o n assigned values to the temperatures of a number of 
reproducible equilibrium states (fixed points) and on standard instruments cali­
brated at those temperatures. Within the limits of experimental accuracy, the 
temperatures assigned to the fixed points are equal to the best experimental values 
in 1968 of the thermodynamic temperatures of the fixed points. Interpolation 
between the fixed-point temperatures is provided by fo rmulas used to establish the 
relation between indications of the standard instruments and values of International 
Practical Temperature. Some of these equilibrium states, and values of the Inter­
national Practical Temperatures assigned to them, are given in Table 1- 2. 

Table 1- 2 Assigned temperatures or some or the fixed points 
used In defining the International Praclical Temperalure 
Scale or 1968 (IPTS-68) 

Fixed point r .. <K> t.,("q 

Triple point or hydrogen 13.81 -2S9.34 
Boiling point or neon 27.102 -246.048 
Triple poinl or oxygen S4.361 -218.789 
Triple point or waler 273.16 0.01 
Boiling point or water 373.1S 100 
Freezing point or zinc 692.73 419.S8 
Freezing point or silver 123S.08 961.93 
Freezing poinl or gold 1337.S8 1064.43 
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The standard instrument used from 13.81 K to 630.74°C is a platinum resis­
tance thermometer. Specified formulas are used for calculating International 
Practical Temperature from measured values of the thermometer resistance over 
temperature ranges in this interval, the constants in these formulas being deter­
mined by measuring the resistance at specified fixed points between the triple 
point of hydrogen and the freezing point of zinc. 

In the range from 630.74°C to 1064.43°C, the standard instrument is a thermo­
couple of platinum and an alloy of platinum and 10% rhodium. The thermo­
couple is calibrated by measuring its emf at a temperature pf 630.74°C as deter­
mined by a platinum resistance thermometer, and at the normal freezing points 
of silve~ and of gold. 

At lemperatures above the freezing point of gold, (1337.58 K or 1064.43°C} 
International Practical Temperature is determined by measuring the spectral 
concentration of the radiance of a black body and calculating temperature from 
the Planck• law of radiation (see Section 13-2). The freezing point of gold, 
1337.58 K is used as a reference temperature, together with the best experimental 
value of the constant c, in the Planck law of radiation given by 

c, = 0.014388 m K. 

For a complete description of the procedures to be followed in determining 
IPTS-68 temperatures, see the article in M etrologia, Vol. S, No. 2 (April 1969). 
The IPTS-68 is not defined below a temperature of 13.8 K. A description of experi­
mental procedures in this range can be found in "Heat and Thermodynamics," 
5th ed., by Mark W. Zemansky (McGraw-Hill). 

1-8 THERMODYNAMIC EQUILIBRIUM 

When an arbitrary system is isolated and left to itself, its properties will in 
general change with time. If initially there are temperature differences between 
parts of the system, after a sufficiently long time the temperature will become the 
same at all points and then the system is in thermal equilibrium. 

If there are variations in pressure or elastic stress within the system, parts of the 
system may move, or expand or contract. Eventually t hese motions, expansions, or 
contractions will cease, and when this has happened we say that the system is in 
mechanical equilibrium. This does not necessarily mean that the pressure is the 
same at all points. Consider a vertical column of fluid in the earth's gravita tional 
field . The pressure in the flu id decreases wi th increasing elevation, but each element 
of the fluid is in mechanical equilibrium under the influence of its own weight and 
an equal upward force arising from the pressure difference between its upper and 
lower surfaces. 

Finally, suppose that a system contains substances that can react chemically. 
After a sufficiently long time has elapsed, all possible chemical reactions will have 
taken place, and the system is then said to be in chemical equilibrium. 

• Max K. E. L. Planck, German physicist (1858-1947). 
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A system which is in thermal, mechanical, and chemical equilibrium is said to 
be in thermodynamic equilibrium. For the most part, we shall consider systems that 
are in thermodynamic equilibrium, or those in which the departure from thermo· 
dynamic equilibrium is negligibly small. Unless otherwise specified, the "state" 
of a system implies an equilibrium state. In this discussion it is assumed that the 
system is not divided into portions such that the pressure, for example, might be 
different in different portions, even though the pressure in each portion would 
approach a constant value. 

1- 9 PROCESSES 

When any of the properties of a system change, the state of the system changes and 
the system is said to undergo a process. If a process is carried out in such a way 
that at every instant the system departs only infinitesimally from an equilibrium 
state, the p rocess is called quasistatic (i.e., almost static). Thus a quasistatic 
process closely approximates a succession of equilibrium stales. If there are finite 
departures from equilibrium, the process is nonquasistatic. 

Consider a gas in a cylinder provided with a movable piston. Let the cylinder 
walls and the piston be adiabatic boundaries and neglect any effect of the earth's 
gravitational field. With the piston at rest, the gas eventually comes to an equi­
librium state in which its temperature, pressure, and density are the same at all 
points. If the piston is then suddenly pushed down, the pressure, temperature, and 
density immediately below the piston will be increased by a finite amount above 
their equilibrium values, and the process is not quasistatic. To compress the gas 
quasistatically, the piston must be pushed down very slowly in order that the pro­
cesses of wave propagation, viscous damping, and thermal conduction may bring 
about at all instants a state which is essentially one of both mechanical and thermal 
equilibrium. 

Suppose we wish to increase the temperature of a system from an initial value 
T1 to a final value T,. The temperature could be increased by enclosing the system 
in a diathermal boundary and maintaining the surroundings of the system at the 
temperature T,. The process would not be quasistatic, however, because the tem­
perature of the system near its boundary would increase more rapidly than that at 
internal points, and the system would not pass through a succession of states of 
thermal equilibrium. To increase the temperature quasistatically, we must s tar t 
with the surroundings at the initial temperature T1 and then increase this tempera­
ture s•Jfficiently slowly so that at all times it is only infinitesimally greater than that 
of the system. 

All actual processes are nonquasistatic because they take place with finite 
differences of pressure, temperature, etc., between parts of a system. Nevertheless, 
the concept of a quasistatic process is a useful and important one in thermo­
dynamics. 

Many processes are characterized by the fact that some property of a system 
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remains constant during the process. A process in which the volume of a system 
is constant is called isoDOiumic or isochoric. lf the pressure is constant, the process 
is called isobaric or lsopiestic. A process at constant temperature is called Iso­
thermal. 

A process carried out by a system enclosed by an adiabatic boundary is an 
adiabatic process. As stated earlier, such a process can also be described as one in 
which there is no ftow of heat across the boundary. Many actual processes, such as 
a single stroke of the piston of an internal combustion engine, are very nearly 
adiabatic simply because the process takes place in such a short time that the Oow 
of beat into or out of the system is extremely small. A process can also be made 
adiabatic by adjusting the temperature of the surroundings as the process proceeds 
so that this temperature is always equal to that of the system. 

A reversible process can be defined as one whose "direction" can be reversed 
by an infinitesimal change in some property of the system. Thus if the temperature 
of a system within a diathermal boundary is always slightly lower than that of its 
surroundings, there will be a ftow of heat from the surroundings into the system; 
whereas if the temperature of the system is slightly greater than that of the sur­
roundings, there will be a flow of heat in the opposite direction. Such a process is 
therefore reversible as well as quaslstatlc. 

ifthere is a finiie temperature difference between system and surroundings, the 
direction of the heat Oow cannot be reversed by an infinitesimal change in tempera­
ture of the system, and the process is irreversible as well as nonquasistatic. Suppose, 
however , that the boundary of the system is nearly, but not completely adiabatic, 
so that the heat Oow ·is very small even with a finite difference in temperature. 
The system is then very nearly in thermal equilibrium at all times and the process 
is quasistatic although it is not r~versible. 

The slow compreuion or expansion of a gas in a cylinder provided with a piston 
is quasistatic, but if there is a force of sliding friction, f, between piston and cylinder 
when the piston is in motion, the process is not reversible. The force exerted on the 
piston by the gas when the gas is expanding differs by 2/ from its value when the 
gas is being compressed. Therefore the direction of motion of the piston can be 
reversed only by a finite change in gas pressure. All reversible processes are neces­
sarily quasistatic, but a quasistatic process is not necessarily reversible. The terms 
reversible and irreversible have a deeper significance also, which can only be brought 
out after a discussion of the second Jaw of thermodynamics. 

PRO BLEMS 

1-1 Stat~ whether or not classical thermodynamic reasoning alone can be used to I 
detcrminel(a) the average velocity of the molecules of a gas; (b) the relation between the 
pressure dependence of the specific beat capacity of a solid and the temperature dependence 
of its volume; (c) the magnitude of the magnetic moment of a gas; (d) the relation between 

I 
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the pressure and temperature of electromagnetic radiation in a cavity; (e) the magnitude 
of the specific heat capacity of a solid. BrieHy justify your answers. 

l-2 Which of the following quantities are extensive and which are intensive? (a) The 
magnetic moment of a gas. (b) The electric field E in a solid. (c) The length of a wire. 
(d) The surface tension of an oil film. 

1-3 The density of water in cgs units is I g em-•. Compute (a) the density in MKS units; 
(b) the specific volume in m1 kg-1 ; (c) the MKS molal specific volume. (d) Make the same 
computations for air whose density is 0.00129 g em-•. The mean molecular weight of air 
is 29; that is, the mass of I kilomole of air is 29 kg. 

1-4 Estimate the pressure you exert on the flonr when standing. Express the answer ln 
atmospheres and in Torr 

l-5 One standard atmosphere is defined as the pressure produced by a column of mercury 
exactly 76 em high, at a temperature or o•c, and at a point where g - 980.665 em s-•. 
(a) Why do the temperature and the acceleration of gravity have to be specified in this 
definition 7 (b) Compute the pressure in N m-• produced by a column of mercury of 
density 13.6 g em-•, 76 em in height at a point where g - 980 em s- •. 

1~ Two conlainers of gas are connected by a long, thin, thermally insulated tube. 
Container A is surrounded by an adiabatic boundary, but the temperature of container 
8 can be varied by bringing it into contact with a body Cat a different temperature. In 
Fig. 1-6, these systems are shown with a variety of boundaries. Which figure represents 
(a) an open system enclosed by an adiabatic boundary; (b) an open system enclosed by a 
diathermal boundary; (c) a closed system enclosed by a diathermal boundary; (d) a 
closed system enclosed by an adiabatic boundary. 
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0.999910 

0.999920 

0.999900 

Tempeuture (-c) 

Flgurel-7 

l-7 A water-in-glass thermoscope is to be used to determine if two separated systems are 
in thermal equil ibrium. The density of water, shown in Fig. 1-7, is the thermometric 
parameter. Suppose that when the thermoscope is inserted into each system, the water 
rises to the same height, corresponding to a densily of0.99994S g cm-ll. (a) Are the systems 
necessarily in thermal equilibrium? (b) Could the height or the water in the thermoscope 
change if the systems arc brought into thermal contact? (c) If there is a change in part (b), 
would the height increase or decrease? 

1-8 Using the data of Table 1-1, find the empirical temperature of the normal subli­
mation point or CO, as measured by the thermocouple, the platinum thermometer, the 
hydrogen thermometer at high pressure, and the hydrogen thermometer at low pressure. 

1-9 The length or the mercury column in a certain mercury-in-glass thermometer is 
5.00 em when the thermometer is in contact with water at Its triple point. Consider the 
length of the mercury column as the thermometric property X and Jet 0 be the empirical 
temperature determined by this thermometer. (a) Calculate the empirical temperature, 
measured when the length or the mercury column is 6.00 em. (b) Calculate the length or 
the mercury column at the steam point. (c) If X can be measured with a precision of 0.01 
em, can this thermometer be used to distinguish between the icc point and the triple 
point? 

1-10 A temperature t • is defined by the equation 

t• • aO" + b, 

where a and b arc constants, and Bis the empirical temperature determined by the mercury­
in-glass thermometer or the previous problem. (a) Find the numerical values or a and b, 
irr• • 0 a t the icc point and t• • 100 at the steam point. (b) Find the value of t• when 
the length or the mercury column X • 7.00 em. (c) Find the length or the mercury 
column when t • - SO. (d) Sketch t• versus X. 

1-ll Suppose a numerical value or 100 is assigned to the steam point temperature, and 
that the •atlo or two temperatures is defined as the limiting ratio, as P1 - 0, of the 
corresponding pressures of a gas kept at constant volume. Find (a) the best experimental 
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value of the ice point temperature on this scale, and (b) the temperature interval betweeo 
the ice and steam points. 

1-12 Suppose that a numerical value of exactly 492 is assigned to the icc point tempera­
ture, and that the ratio of two temperatures is defined as the limiting rat io, as P1 - ,0, of 
the corresponding pressures of a gas kept at constant volume. Find (a) the best cxperi· 
mental value of the steam point temperature on this scale, and (b) the temperature interval 
between the ice and steam points. 

1-13 The pressure of an ideal gas kept at constant volume is given by the equation 

P =AT 

where Tis the thermodynamic temperature and A is a constant. Let a temperature T 0 

be defined by 
T* •BlnCT 

where B and C a rc constants. The pressure Pis 0.1 atm at the triple point of water. The 
temperature r• is 0 atthe triple point and r• is 100 atthesteam point. (a) Find the values 
of A, B, and C. (b) Find the value of!" when P • O.lS atm. (c) Find the value of P 
when r• is SO. (d) What is the value of r• at absolute :uro? (e) Sketch a graPh of r• 
versus the Celsius temperature t for -2oo•c < t < 200°C. 

1-14 When one junction of a thermocouple iJ kept a t the ice point, and the other junction 
is at a Celsius temperature t, the emf 1 of the thermocouple is given by a quadratic 
function or t: 

1- . , +{Jt'. 

If I is in millivolts, the numerical values of" and {J for a certain thermocouple are found 
to be 

« -.so, {J • -J X Jo-1• 

(a) Compute the emf when t - -I00°C, 2WC, 400•c, and soo•c, and sketch a graph 
of 1 versus t . (b) Suppose the emf is taken as a thermometric property and that a tem­
perature scale t• is defined by the linear equation 

t* ~ al +b. 

Lett• = 0 at the ice point, and t• - 100 at the steam point. Find the numerical values 
of a and band sketch a graph of 1 versus t•. (c) Find the values of t• when t - -IWC, 
200°C, 400°C, a nd SOttC, and sketch a graph of t• versus t over this range. (d) Is the t• 
scale a Celsius scale? Does it have any advantage or disadvantages compared with the 
IPTS scale? 

1-15 The thermodynamic temperature o f the normal boiling point of nitrogen is 71.35 K . 
Calculate the corresponding value of (a) the Celsius, (b) the Rankine, and (c) the Fahren· 
heit temperature. 

1-16 The thermodynamic temperature of the triple point of nitrogen is 63.15 K. Using 
the data of the preceding problem, what is the temperature difference between the boiling 
point and the triple point of nitrogen on (a) the Kelvin, (b) the Celsius, (c) the Rankine, 
and (d) the Fahrenheit scales? Include the proper unit in each answer. 

1-17 A mixture of hydrogen and oxygen is isolated and allowed to reach a state of 
constant temperature and pressure. The mixture Is exploded with a spark of negligible 
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energy and again allowed to come to a state of constant temperature and pressure. {a) Is 
the initial state an equilibrium state? Explain. (b) Is the final state an equilibrium state? 
Explain. 

1-18 (a) Deseribe how a system containing two gases can be in mechanical but not in 
thermal or cbemical equilibrium. (b) Describe bow a system containing two gases can be 
in thermal but not in mechanical or ehemical equilibriurrt. (c) Describe how a system con· 
taining two gases can be in thermal and mechanical equilibrium but not in chemical 
equilibrium. 

1- 19 On a graph of volume versus temperature draw and label lines indicating the 
following processes, each prooceding from the same initial state T1 , V0 : (a) an isothermal 
expansion; (b) an isothermal compression; (c) an isochoric increase in temperature. 

1-20 Give an example of (a) a reversible isocboric process; (b) a quasistatic, adiabatic, 
isobaric process; (c) an irreversible isothermal process. Be careful to specify the system in 
each ease. 

1-21 Using the nomenclature similar to that in the previous problem, characterize the 
following processes. (a) The temperature of a gas, enclosed in a cylinder provided with a 
frictionless piston, is slowly increased. The pressure remains constant. (b) A gas, enclosed 
in a cylinder provided with a piston, is slowly expanded. The temperature remains constant. 
There is a force of friction between the cylinder wall and the piston. (c) A gas enclosed in 
a cylinder provided with a frictionless piston is quicldy compressed. (d) A piece of hot 
metal is thrown into cold water. (Assume tha t the system is the metal which neither 
contracts nor expands.) (e) A pendulum with a frictionless support swings back and forth. 
(f) A bullet is stopped in a target. 

p 

IF· 
~---------------v 

(a) 

Figure1-8 

1- 22 A gas is enclosed in a cylinder provided with a piston of area A, as in Fig. J-8(a). 
The relation between the pressure and volume of the gas, at a constant temperature T, 
is shown in Fig. 1-B(b). On a similar figure sketch graphs oft he ratio oft he external foroe 
Fto the area A , F/A, as a function of V, as the gas is (a) slowly compressed, and (b) slowly 
expanded at the temperature T. There is a foroe of sliding friction f between the piston 
and the cylinder. 
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2-1 EQUATIONS OF STATE 

It is found by experiment that only a certain minimum number of the properties of 
a pure substance can be given arbitrary values. The values of the remaining prop­
erties are then determined by the nature of the substance. For example, suppose 
that oxygen gas is allowed to flow into an evacuated tank, the tank and its contents 
being kept at a thermodynamic temperature T. Tbe volume V of the gas admitted 
is then fixed by the volume of the tank and the mass m of gas is fixed by the amount 
which we allow to enter. Once T, V, and m have been fixed, the pressure P is 
determined by the nature of oxygen and cannot be given any arbitrary value. It 
follows that there exists a certain relation between the properties P, V, T, and m 
which can be expressed in general as 

f(P, V, T, m) == 0. (2-1) 

This relation is known as the equation of state of the substance. If any three of 
the properties arc fixed, the fourth is determined. · 

In some instances, properties in addition to those listed above arc necessary 
to completely describe the state of a system and these properties must be included 
in the equation of state. Examples are the area and surface tension of a liquid­
vapor surface, the magnetization and flux density in a magnetic material, and the 
state of charge of an electrolytic cell. For the present, however, we shall consider 
only systems whose state can be compl~tcly described by the properties P, V, T, 
andm. 

The equation of state can be written in a form which depends only on the 
nature of a substance, and not on how much of the substance is present, if a ll 
extensive properties are replaced by their corresponding specific values, per unit 
mass or per mole. Thus if the properties V and m are combined in the single 
intensive property 11 - Vjm, the equation of state becomes 

f(P, 11, T) = 0. (2-2) 

The equation of state varies from one substance to another. In general, it is an 
extremely complicated relation and is often expressed as a converging power series. 
A general idea of the nature of th.e function is often better conveyed by presenting 
the data in graphical form. 

2-2 EOUAnON OF STATE OF AN IDEAL GAS 

Suppose one bas measured the pressure, volume, temperature, and mass of a 
certain gas, over wide ranges of these variables. Instead of the actual volume V, 
we shall usc the molal specific volume, 11 - Vfn. Let us take all the data collected 
at a given temperature T, calculate for each individual measurement the ra tio 
PvfT, and plot these ratios as o rdinates against the pressure P as abscissa. It is 
found experimentally that these ratios all lie on a smooth curve, whatever the 
temperature, but that the ratios at different temperatures lie on different curves. 

p 
0. 

OJ 

lir 



2-2 EQUATION OF STATE OF AN IDEAL GAS 21 

The data for carbon dioxide are plotted in Fig. 2-1, for three different tempera­
tures. The remarkable feature of these curves i~ (a) that they all converge to exactly 
the same point on the vertical axis, whatever the temperature, and (b) that the 
curves for all other gases converge to exactly the same point. This common limit 
of the ratio PvfT, asP approaches zero, is called the uni~rsa/ gas C{)nstant and is 
denoted by R. The unit of PvfT is 

1 (N m-")(m1 kilomole-1)(K-1) = 1 (N m)(kilomole-1 K-1) = I J kilomole- 1 K-1, 

and the value of R in this system is 

R = 8.3143 x 10' J kilomole-1 K-•. 

e 
;e- o!--l...---c:!--'--!-• -"--+---'--!,-,-::o,o·• 

Pressure (N m"'l 

Fig. 2-1 The limiting value of Pv/T is independent of 
T for all gases. For an ideal gas, Pu/T is constant. 

It follows that at sufficiently low pressures we can write, for all gases, 

PvfT= R, or Po-RT. 

It is convenient to postulate an ideal gas for which, by definition, the ratio 
Pv/T is exactly equal to R at all pressures and temperatures. The equation of state 
of an ideal gas is therefore 

Po = RT, (2-3) 

or, since v 1:::1; Yfn, 

PV• nRT. (2-4) 

For an ideal gas,the curves in Fig. 2-1 coalesce into a single horizontal straight 
line at a height R above the pressure axis. 
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2-3 p.y. T SURFACE FOR AN IDEAL GAS 

The equation of state of a PvT system defines a surface in a rectangular co­
ordinate system in which P, v, and· Tare plotted along the three axes. A portion 
of this surface for an ideal gas is shown in F ig. 2- 2. Every possible equilibrium 
state of an ideal gas is represented by a point on its P-v-Tsurface, and every point on 
the surface represents a possible equilibrium state. A quasistatic process, i.e., a 
succession of equilibrium states, is represented by a line on the surface. The full 
lines in Fig. 2- 2 represent processes at constant temperature, or isothermal processes. 
The dotted lines represent /sachoric processes, and the dashed lines, isobaric 
processes. 

Figures 2-3(a) and 2-3(b) are projections of the lines in Fig. 2-2 onto the P-v 
and P· T planes. 

F~ 2-2 P·v-T surface for an ideal gas. 
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In an isothermal process, for a fixed mass of an ideal gas, 

Po = RT = constant. (2-S) 

Robert Boyle•, in 1660, d iscovered experimentally that the product of the 
pressure and volume is very nearly constant for a fixed mass of a real gas at con­
stant temperature. This fact is known as Boyft's fall". It is, of course, exactly true 
for an ideal gas, by definition. The curves in Fig. 2-3(a) are graphs of Eq. (2-S) for 
different temperatures and hence for different values of the constant. They arc 
equilateral hyperbolas. 

(1) (b) 

Fig. 2.-3 Projections of the ideal gas P-o-T surface onto (a) the P·• plane, and (b) the P·T 
plane. 

In a process at constant volume, for a fixed mass of an ideal gas, 

P = (":)r =constant x T. (2-6) 

That is, the pressure is a linear function of the temperature T. The dotted lines in 
Fig. 2- 3(b) a re graphs of Eq. (2-6) for different volumes and hence different values 
of the constant. 

If the pressure of a fixed mass of an ideal gas is constant, 

V = (";)r - constant x T, (2-7) 

and the volume is a linear function of the temperature at constant pressure. 

• Robert Boyle, British chemist (1627-1691). 



28 EQUATIONS OF STATE 2-4 

2-4 EQUATIONS OF STATE OF REAL GASES 

Many equations have been proposed which describe the P-u-T relations of real 
gases more accurately than does the equation of stale of an ideal gas. Some of 
these are purely empirical, while others are derived fro m assumptions regarding 
molecular properties. Vander Waals•, in 1873, derived the following equation: 

(2-8) 

The quantities a and b are constants for any one gas but differ for different 
gases. Some values are listed in Table 2-1. We shall show in Chapter 10 that the 
term afv' arises from the existence of intermolecular forces and that the term b "is 
proportional to the volume occupied by the molecules themselves, but for the 
present we shall consider the equation as an empirical one. 

\ 
Table l-1 Constants a and b in van der Waals equation. 
Pin Nm-•,vinm1 kilomolc-•, Tinkelvins,R •8.31 x 10' 
J kilomole-1 K- •. 

a b 
Substance (J m1 kilomoJc-•) (m1 kilomoJc- 1) 

He 3.44 X 1()1 0.0234 

H, 24.8 .0266 

o, 138 .0318 

co, 366 .0429 

H20 S80 .0319 

Hg 292 .ooss 

At sufficiently large specific volumes, the term afv' becomes negligible in com­
parison with P, and b becomes negligible in comparison with v. The van der Waals 
equation then reduces to the equation of state of an ideal gas, which any equation 
of state must do at large specific volumes. 

Figure 2-4 is a diagram of a portion of the f-u-Tsurface of a van der Waals ' 
gas, and Fig. 2-5 is a projection of a number of isotherms onto the P-v plane. 

• Johannes D. van der Waals, D utch physicist (1837-1923). 
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Fig. 2-4 P-v-T surface for a van der Waals gas. 

p 

Fig. 2-5 Isotherms of a van der Waals gas. 
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When expanded in powers of v, the van dec Waals equation takes the form 

Pu' - (Pb + RT)v' + av - ab = 0. (2-9) 

It is therefore a cubic in v and for given values of P and T has tliree roots, of which 
only one need be real. For low temperatures, such as that lettered T, in Fig. 2-5, 
three positive real roots exist over a certain range of values of P. As the temperature 
increases, the three real roots approach one another, and at the temperature T, 
they become equal. Above this temperature only one real root exists for all values 
of P. The significance of the point lettered c.p. and of the dotted line abc, will be 
explained in Section 2-5. 

Another useful form of the equation of state of a real gas is 

Pu =A+!!.+~+ ···, 
v v• 

(2-10) 

where A, B, C, etc., are functions of the temperature and are called the virial 
coefficients. Theoretical derivations of the equation of state, based on an assumed 
law of force between the molecules of a gas, usually lead to an equation in virial 
form. For an ideal gas, it is evidentthat A = RTand thatall other vi rial coefficients 
are zero. 

The v'an der Waals equation can be put in virial form as follows. We first write 
it as 

By the binomial theorem, 
( b)-1 a Pu = RT I - ~ - ~. 

( 
b)-' b b' 

1 - - =!+-+-+"', 
v v v2 

Hence 

Pu = RT + RTb - a + RTb' + ... 
v v• 

(2-11) 

and for a van dec Waals gas, A = RT, B = RTb -a, C = RTb', etc. 

2-5 P-•-T SURFACES FOR REAL SUBSTANCES 

Real substances can exist in the gas phase only at sufficiently high temperatures and 
low pressures. At low temperatures and high pressures transitions occur to the 
liquid phase and the solid phase. The P-v-Tsurface for a pure substance includes 
these phases as well as the gas phase. 

F.igures 2-{i and 2-7 are schematic diagrams of portions of the P-v-Tsurface 
for a real substance. The former is for a substance like carbon dioxide that con­
tracts on freez ing, the latter for a substance like water that expands on freezing. 
Study of the figures shows that there are certain regions (that is, certain ranges of 
the variables) in which the substance can exist in a single phase only. Tbese are the 
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regions lettered solid, liquid, and gas or vapor. (The distinction between a gas and a 
vapor will be discussed shortly.) In other regions, labeled solid-liquid, solid-vapor, 
and liquid-vapor, two phases can exist simultaneously in equilibrium, and along a 
line called the triple lint, all three phases can coexist. As with the P·v-T surface 
for an ideal gas, any line on the surface.JCpresents a possible quasistatic process, 
or a succession of equilibrium states. The lines in Figs. 2-6 and 2-7 represent 
isothermal processes. 

Flg. l1 P·r>-Tsurface for a substance that contraCis on 
freezing. 

Those portions of a surface at which two phases can coexist are ruled surfaces. 
That is, a straight edge parallel to the v-axis makes contact with the surface at all 
points. Hence when the surfaces in Figs. 2-6 and 2-7 are projected onto the P-T 
plane, these surfaces project as lines. The projection of the surface in Fig. 2-6 onto 
the P-Tplane is shown in Fig. 2-8(a), and that of the surface in Fig. 2-7 is shown 
in Fig. 2- 9(a). The lines co~responding tc values of pressure and temperature at 
which the solid and vapor phases, and the liquid and vapor phases, can coexist, 
always slope upward to the right. The line representing the equilibrium between 
solid and liquid slopes upward to the right in Fig. 2-8, but upward to the leO in 
Fig. 2-9. We shall show in Section 7-0 that the former is characteristic of all 
substances that contract on freezing, the latter of substances (like water) that expand 
on freezing. 
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Fie. Z- 7 P·v-T surface for a substance that expands 
on freezing. 

(a) 

2-5 

Fig. Z-8 Projections of the surface in Fig. 2-6 onto(a) theP·Tplaneand (b) theP·o plane. 
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(b) 

Fig. Z--9 Projections or the surface in Fig. 2-7 onto (a) the P-T plane and (b) the P-• 
plane. 

33 

The triple lines in Figs. 2-6and 2-7 project as a point, called the triple point, in 
the P-T diagram. Triple-point data for a few common substances are given in 
Table 2- 2. The triple-point temperature of water is the standard fixed point to 
which is assigned the a rbitrary temperature of 273.16 K. 

The projections of the surfaces in Figs. 2- 6 and 2-7 onto the P-v plane arc 
shown in Figs. 2-S(b) and 2-9(b). The surfaces can a lso be projected onto the r>-T 
plane, but this projection is rarely used since all essential features of the surface 
can be shown in the first two projections. 

Table l - l Triple-point data 

Temperature, Pressure, 
Substance (K) (Torr) 

Helium (4) (A point) 2.186 38.3 
Hydrogen (normal) 13.84 52.8 
Deuterium (normal) 18.63 128 
Neon 24.57 324 
Nitrogen 63.18 94 
Oxygen S4.36 1.14 
Ammonia 19S.40 4S.S1 
Carbon dioxide 216.SS 3880 
Sulfur dioxide 197.68 1.2S6 
Water 273.16 4.58 
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Let us follow the changes in state of the substance for which Fig. 2-{i is the 
P-v-Tsurface in a process that takes the system from point a to pointfalong the 
isothermal line at the temperature T1• To carry out this process, we imagine the 
substance to be enclosed in a cylinder with a movable piston. Starting at the state 
represented by point a, at which the substance is in the gas (or vapor) phase, we 
slowly increase the pressure on the piston. The volume decreases at first in a manner 
approximating that of an ideal gas. When the state represented by point b is reached, 
drops of liquid appear in the cylinder. • That is, the substance separates into two 
phases of very different densities, although both are at the same temperature and 
pressure. The specific volume of the vapor phase is that corresponding to point b, 
and that of the liquid phase corresponds to point c. · 

With further decrease in volume, along the line be, the pressure does not 
increase but remains constant. The fraction of the substance in the vapor phase 
continuously decreases and the fraction in the liquid phase continuously increases. 
In this part of the process, where liquid and vapor can exist in equilibrium, the 
vapor is Clllled a saturated vapor and the liquid a saturated liquid. (The adjective 
"saturated" is an unfortunate one, for it brings to mind the concept of a "saturated 
solution," that is, one in which the concentration of a dissolved substance is a 
maximum. There is nothing dissolved in a saturated vapor; the substance that 
"precipitates" out with decreasing volume is not a solute but the same substance as 
that of which the vapor is composed.) 

The pressure exerted by a saturated vapor or liquid is called the vapor pressure. 
The vapor pressure is evidently a functio n of temperature, increasing as the 
temperature increases. The curve lettered L-V in Fig. 2- S(a), the projection of the 
liquid-vapor surface onto the P-T plane, is the vopor pressure curve. The general 
shape of this curve is the same for all substances, but the vapor pressure at a given 
temperature varies widely from one substance to another. Thus at a temperature 
of 2o•c, the vapor pressure of mercury is 0.0012 Torr, that of water is I 7.5 Torr, 
and that of C01 is 42,960 Torr. 

Let us now return to the isothermal compression process. At point c in Fig. 
2-{i the substance is entirely in the liquid phase. To decrease the volume from that 
at point c to that at point d, a very large increase in pressure is required, since 
liquids arc not very compressible. At point d, the substance again separates into 
two phases. Crystals of the solid begin to develop, with a specific volume corre­
sponding to point e, and the pressure remains constant while both liquid and solid 
phases are present. The substance is entirely in the solid phase at point e and the 
volume decreases only slightly with further increase in pressure unless other forms 
of the solid can exist. Ice is an example of the latter case, where at least seven 
different forms have been observed at extremely high pressures, as illustrated in 
Fig. 2- 10. 

If the volume of the system is now slowly increased, all of the changes described 
above proceed in the opposite direction. 

• However, see Section 1- S for a further discussion of this phenomenon. 
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Fig. 2-10 P·o-T surface showing various forms of ice. 

It will be seen from a study of Fig. 2-6 that if a compression process like that 
j ust described were carried out at a higher temperature, such as T,, a higher 
pressure and a smaller specific volume would be required before a phase change 
from vapor to liquid commenced, and that when the substance was completely 
liquefied, its specific volume would be somewhat larger than that at the lower 
temperature. At the particular temperature lettered T,. called the critical ttmptra· 
ture, the specific volumes of saturated liquid and vapor become equal. Above this 
temperature, no separation into two phases of different densities occurs in a n iso­
thermal compression from a large volume. (fhat is, the liquid phase does not 
separate out. Separation into a gas and solid phase may occur at sufficiently high 
pressures.) The common value of the specific volumes of saturated liquid and vapor 
at the critical temperature is called the critical spt cijic volume, 11., and the corre­
sponding pressure the critical P"ssu,, P,. The point on the p.,.rsurface whose 
coordinates at P,. 11., and T, is the critical point. T he critical constants for a nu mber 
of substances are given in Table 2- 3. 
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Table l-3 Critical constants 

Substance T,(K) P,(Nm-2) o,(m• kilomole-1) 

Helium4 5.25 1.16 X 1()5 0.0578 
Helium 3 3.34 1.15 0.0726 
Hydrogen 33.3 12.8 0.0650 
Nitrogen 126.2 33.6 0.0901 
Oxygen 154.8 50.2 0,078 
Ammonia 405.5 111.0 0.0725 
Freon 12 384.7 39.7 0.218 
Carbon dioxide 304.2 73.0 0.094 
Sulfur dioxide 430.7 77.8 0.122 
Water 647.4 209.0 0.056 
Carbon disulfide 552 78 0.170 

Suppose that a system originally in the state represented by point a in Fig. 2-11 
is compressed isothermally. If the compression is carried out in a cylinder with 
transparent walls, we can observe the condensation to the liquid phase commence 
at the point where the isotherm meets the liquid-vapor surface, and we can see the 
liquid phase grow in amount while the vapor phase decreases. At the state rep­
resented by point b we would be sure that the substance in the cylinder was wholly 
in the liquid phase. On the other hand, we could start with the substance in the same 
state (point a) and carry out the process represented by the line from a to b that 
curves around the critical point. (This process, of course, is not isothermal.) The 
end state of the system is the same in both processes but at no time in the second 
process did the substance separate into two phases. Nevertheless, it would certainly 
be described as a liquid at the end of the second process as well as at the end of the 
first. It has all the properties of a liquid; i.e., it is a fluid of high density (small 
specific volume) and small compressibility (tlie pressure increases rapidly for small 
decreases in volume), but its p roperties change continuously from those associated 
with a vapor, a t point a, to those associated with a liquid, at point b. It is therefore 
possible to convert a vapor to a liquid wi thout going through the process of 
"_condensation," but no sharp dividing line can be drawn separating the portion of 
the P-v-Tsurface labeled "liquid" from that labeled "gas" or "vapor." 

So far we have used the terms "gas" and "vapor" without distinguishing 
between them; and the distinction is, in fact, an artificial and unnecessary one. The 
term "vapor" is usually applied to a gas in equilibrium with its liquid (i.e., a satu­
rated vapor) or to a gas at a temperature below its critical temperature, but the 
properties o f a "vapor" differ in no essential respect from those of a "gas." 

When the temperature of a gas at a given pressure is greater than the saturation 
temperature at this pressure, the gas is said to be "superheated" and is called a 
"superheated vapor." Thus "superheated" is synonymous with "nonsaturated." 
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Note that the term does not necessarily imply a high temperature. The saturation 
iemperature or nitrogen at a p ressure oro.s bar (its partial pressure in the earth's 
atmosphere) is -197.9°C, so that the nitrogen in the earth's atmosphere is always 
superheated. 

One may wonder whether or not the edges orthe solid-liquid surrace approach 
one another as do those or the liquid-vapor surrace, and ir there is another critical 
point ror the solid-liquid transition. No such point has ever been observed; i.e., 
there is always a finite difference in specific volume or density between the liquid 
and solid phases or a substance at the same temperature and pressure. This does 
not exclude the possibility or such critical points existing at extremely high pressures. 

Fig. l - 11 Two processes resulling in liquefying a gas. A 
phase separation is observed in the isothermal process, 
but not in the other process. 

Now consider the phase changes in an isobaric process. Suppose we have a 
vessel or liquid open to the atmosphere at a pressure P., in the state represented by 
point a in Fig. 2-12. 1r the temperature is increased at constant pressure, the 
representative point moves along a n isobaric line to point b. When poi9t b is 
reached, the system separates into two phases, one represented by point band the 
other by point e. The specific volume of the vapor phase is much greater than that 
of the liquid, and the volume of the system increases greatly. This is the familiar 
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phenomenon of boiling. If the vessel is open, the vapor diffuses into the atmos­
phere. Thus the temperature r. at which a liquid boils is merely that temperature 
at which its vapor pressure is equal to the external pressure, and the vapor pressure 
curve i11 Fig. 2-S(a) can also be considered as the boiling point cur~. If the sub­
stance diagramed in Fig. 2-12 is water (actually the solid-liquid line for water slopes 
in the opposite direction) and the pressure P1 is I atmosphere, the corresponding 
temperature r. is 373 K. The vapor pressure curve always slopes upward to the 
right, so that an increase in external pressure always· results in an elevation of the 
boiling temperature, and vice versa. 

Fig. 2.-ll Phase changes in an isobaric process. 

If, starting with the liquid at ·point a in Fig. 2-12, the temperature is lowered 
while the pressure is kept constant, the representative point moves along the 
isobaric line to point d. At this point, the system again separates into two phases, 
one represented by point d and the other by point e. For a substance like that rep­
resented in Fig. 2-12, the specific volume of the solid is less that that of the liquid, 
and the volume decreases. The process is that of freezing, and evidently the solid­
liquid equilibrium line in a P-T diagram like Fig. 2-8 is the freezing point cur~. 
and at the pressure P1 the freezing temperature is T1. If the solid-liquid equilibrium 
line slopes upward to the right as in Fig. 2-12, an mcrease in pressure raises the 
freezing point, and.vice versa. 
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It is evident from a study of Fig. 2- 12 that the liquid phase cannot exist at a 
temperature lower than that of the triple point, or -at a pressure less than that at 
the triple point. If the pressure is less than that at the triple point, say the value 
P,, the substance can exist in the solid and vapor phases only, or both can exist in 
equilibrium. The transition from one to the other takes place at the temperature of 
sublimation T,. Thus the solid-vapor equilibrium curve is also the sublimation point 
curve. 

For example, the triple-point temperature of CO, is -56.6°C and the corre­
sponding pressure is 5.2 bar. Liquid CO, therefore cannot exist at atmospheric 
pressure. When heat is supplied to solid CO, (dry ice) at atmospheric pressure, it 

Fig. 2-13 P-1>-T surface for helium with projection onto the P-T plane. 
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sublimes and changes d irectly to the vapor phase. Liquid co. can, of course, 
exist at room tempt:rature, provided the pressure is sufficiently high. This material 
is commonly stored in steel tanks which when "full" contain mostly liquid and a 
small amount of vapor (both, of course, saturated). The temperature is room tem­
perature if the tank has been standing in the room, and the pressure is that of the 
ordinate of the vapor pressure curve at room temperature. 

Figure 2- 13 is a schematic d iagram of the P-"~Tsurface of o rdinary helium (of 
mass number 4). This substance exhibits a unique behavior at low temperatures 
in the neighborhood of 2 K. The critical temperature and pressure are 5.25 K 
and 2.29 bar respectively. When helium in the vapo r phase is compressed isother­
mally at temperatures between 5.25 K and 2.18 K, it condenses to a liquid phase 
called helium I. When the vapor is compressed at temperatures below 2.18 K, a 
liquid phase called helium II, which is superlluid , resul ts. As is evident from the 
diagram, He I and He II can coexist in equilibrium over a range of temperatures 
and pressures, and He I can be converted to He II either by lowering the tempera­
ture, provided the pressure is not too great, or by reducing the pressure, provided 
the temperature is below 2.18 K. He II remains a liquid down to the lowest tem­
peratures that have thus fa r been attained, and presumably does so all the way 
down to absolute zero. 

Solid helium cannot exist at pressures lower than about 25 bar, nor can it 
exist in equilibrium with its vapor at any temperature or pressure. Helium has two 
trip le points, at one of which (called the lambda-point o r .<-point) the two forms of 
liquid are in equilibrium with the vapor; while at the other they are in equilibrium 
with the solid. It is interesting to note that the solid phase can exist at temperatures 
greater than the critical temperature. 

2-6 EQUATIONS OF STATE OF OTHER THAN P-•-T SYSTEMS 

The principles o f thermodynamics are of general applicability and are not restricted 
to gases, liquids, and solids under a uniform hydrostatic pressure. Depending o n 
the nature of a system, we may be interested in intensive-extensive pairs of prop­
erties other than, or in addition to , the pressure and volume of the system. What­
ever its nature, however, the temperature of a system is always a fu ndamental 
thermodynamic property. 

Consider, for example, a metal wire or rod under tension. The length L of the 
wire depends both on the tension §" and the temperature T, and the relation 
expressing the length in terms of these quantities is the equation of state of the wire. 
If the wire is not stretched beyond its proportional limit of elasticity, and if its 
temperature is not too fa r from a reference temperature T0 , the equation of state 
of the wire is 

I (2-12) 

where L0 is length under zero tension at the temperature T0, Y is the isothermal 



2-6 EQUATIONS OF STATE OF OTHER THAN P-v-T SYSTEMS 41 

stretch modulus (Young's• modulus), A is the cross-sectional area, and «is the 
coefficient of linear expansion, or the linear expanJiv/ly. In this example, the 
intensive variable is the tension F and the extensive variable is the length L. 

The magnetic moment M of a paramagnetic material, within which there is a 
uniform magnetic field of intensity Jt", depends both on Jt" and the temperature T. 
Except at extremely low temperatures and in large fields, the magnetic moment can 
be represented with sufficient accuracy by the equation 

M~co:!!.. 
T 

(Z-13) 

where C0 a constant characteristic of a given material, is called the Curiet conJ/ant. 
This relation is known as Curie's law. The magnetic moment M is an extensive 
variable and the field intensity Jt" is an intensive variable. 

The total dipole moment P of a dielectric in an external electric field E is given 
by a similar equation: 

(2- 14) 

The surface film of a liquid can be considered a thermodynamic system, 
although it is not a closed system because as the surface area of a given mass of 
liquid is changed, molecules move from the liquid into the film, o r vice versa. The 
intensive property of interest is the surface tension a, which may be defined as the 
force per unit length exerted by the film on its boundary. The corresponding 
extensive property is the area of the film, but unlike the systems considered thus far 
(and unlike a stretched rubber membrane) the surface tension is independent of 
the area of the film and depends only on its temperature. The surface tension of all 
liquids decreases with increasing temperature and becomes zero at the critical 
temperature T, (see Section 8-4). To a first approximation, the surface tension can 
be represented by the equation 

(
T, - T) a=uo - -- • r,- r. 

where a0 is the surface tension at a reference temperature T,. 

(2- 15) 

Another thermodynamic system, and one that is of great importance in physical 
chemistry, is the electrolytic cell. The electromotive force ~ of tbe cell is the 
intensive property of interest, and the corresponding extensive property is the 
charge Z, whose absolute value is of no importance but whose change in any process 
equals the quantity of charge flowing past a point in a circuit to which the cell is 
connected, and which is proportional to the number of moles reacting in the cell in 
the process. An electrolytic cell resembles a surface film in that the emf of a given 

• Thomas Young, Brilish physicist (1773-1829). 
t Pierre Curie, French physicist (18S9- 1906). 
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cell depends only on the temperature and not on the charge Z . The emf can be 
represented by a power ~eries in the temperature and is usually written as 

I • 1 111 + o:(t - 20") + p(t- 20•)• + )l(t - 20")1
, (2- 16) 

where 1 is ihe Celsius temperature, I 111 is the emf at 2o•c, and o:, p, and rare con· 
stants depending on the materials composing the cell. 

2-7 PARTIAL DERIVATIVES. EXPANSIVITY AND COMPRESSIBIUTY 

The equation of state of a P VT system is a relation between the values of pressure, 
volume, and temperature for any equilibrium state of the system. The equation 
defines a surface in a rectangular coordinate system, and Fig. 2-14 represents 
schematically the P-V·T surface of a solid or liquid. (The vertical scale is greatly 
euggerated.) The volume increases with increasing temperature if the pressure is 
constant, and decreases with increasing pressure if the temperature is constant. 
The surface in Fig. 2-14 corresponds to the surfaces lettered "solid" or " liquid" 
in Figs. 2~ and 2-7, ellcepl that in Fig. 2-14 the volume axis is vertical and the 
pressure axis is horizontal. 

T 

Flg. 2-14 A P-V-Tsurface for a solid or liquid. Notice that the 
V axis is now vertical and has been greatly exaggerated. 



2-7 PARTIAL DERIVAllVES. EXPANSMTY AND COMPRESSIBIUTY 43 

If the equation of state is solved for V, thus expressing Vas a function of the 
two independent variables P and T, the value of V corresponds to the vertical 
height of the surface above the p. T plane, at any given pair of values of P and T. 

Instead of specifying the height of the surface above the P-T plane, at any 
point, the surface can be described by giving its slope at any point. More specifically, 
we can specity the slope, at any point, of the lines of intersection of the surface with 
planes of constant pressure and of constant temperature. · 

v 

L-----~~~.----~T~,--------T 

Fig. 2- 15 The intenection of the 
surface of Fig. 2-14 with the 1>-T plane 
at pressure P1• 

The curve in Fig. 2-1 S is a graph of the intersection of the surface in Fig. 2- 14 
with the plane at which the pressure has the constant value P 1• That is, it is a graph 
of the volume V as a function of the temperature T, for the isobaric curve along 
which the pressure equals P 1• The sloJn of this curve at any point means the slope 
of the tangent to the curve at that point, and this is given by the derivative of V 
with respect to Tat the point. In Fig. 2-IS, the tangent has been constructed at 
point I, at which the temperature is T, and the pressure is P,. However, the volume 
Vis a function of Pas well as of T, and since P is constant along the curve, the 
derivative is called the partial derivative of V with respect to Tat constant pressure 
and is written: 

Slope of tangent == (av) . 
oTr> 

If the equation of state is known, expressing Vas a function of T and P, the 
partial derivative is calculated in the same way as an ordinary derivative of a function 
of a single variable, except that Pis considered constant. Thus if the system is an 
ideal gas, for which V = nRT/P, the quantity nR/P is considered constant and 

(av) _ nR . 
oTp P 
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In mathematics, the partial derivative would be written simply as (o VfoT). 
In thermodynamics, the subscript Pis included because, as we shall sec later, a 
PVT system has many other properties in addi tion to pressure, volume, and 

.temperature, and the volume can be expressed in terms of any two of these. The 
subscript not only indicates that Pis held constant, but that Vis to be expressed in 
terms of P and T. 

Point 2, in Figs. 2- 14 and 2- 15, is a second point on the isobaric curve at which 
the volume is V, and the temperature is T,. The slope of the chord from point I to 
point 2 is 

V, - V1 f.Vp 
Slope of chord = - -- = -- , 

T, - T1 t.Tp 

where again the subscript P indicates that the pressnre is constant. The slope of the 
chord is not equal to the slope of the tangent, but if point 2 is taken closer and 
closer to point I, so that t.T1• approaches zero, the slopes of the chord and the 
tangent become more and more nearly equal. Hence we can say 

lim f.Vp = (0~ . 
u,~ot.Tp oTIP 

(2- 17) 

Another point of view is the following. Suppose the volume of the system 
were to increase with temperature, not along the actual curve but along the tangent 
at point I. The increase in volume when the temperature was increased by f.Tp 
would then be represented by the length of the intercept of the tangent on the · 
vertical line through point 2, or it would be given by 

(av) t.r 
oT P P• 

the product of the slope of the tangent line, (oVfoT)1,, and the base t.Tp. 
As can be seen from Fig. 2- 15, the intercept is not equal to t.V1,, but the two 

approach equality as t.Tp approaches zero. Then 

lim (av) t. Tp = t. Vp, 
• T1- o oT P 

(2- 18) 

which is the same as Eq. (2-17). Hence if we let dV p and dT p represent the 
limiting values of t.V1, and t.T1, as t.T1,-+ 0, we can write 

(2-19) 

Instead of giving the value of the slope itself at any point, it is convenient to 
give the value of the slope, (o VfoT)p, divided by the volume Vat the point. The 
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quotient is called the coefficient of volume expansion of the material, or its expansivity 
{J, defined as 

Thus for an ideal gas, 

{J s !.(ilV) . 
v OTP 

(2-20) 

(2-21) 

and the expansivity depends only on the temperature and is equal to the reciprocal 
of the temperature. The unit ofexpansivity is evidently I reciprocal kelvin (I K- 1). 

Equation (2-20) can also he written in terms of specific volumes: 

fJ = !( ov) . (2-22) 
v oTp 

It follows from Eq. (2- 20) that for two closely adjacent states of a system at the 
same pressure, 

fJ = .!_ dVp- dVp/Y. 
YdTp dTp 

(2-23) 

The expansivity c.an therefore he described as the limiting value of the fractional 
increase in volume, dV Pi V, per unit change in temperature at constant pressure. 

The mean expansivity P over a finite temperature interval between T1 and T, 
is defined as 

p = (Y,- Y1)/Y1 = ~ 6.Yp . 
T,- T, Y1 6.Tp 

(2- 24) 

That is, the mean expansivity equals the slope of the chord shown in Fig. 2- 15, 
Ll.Vp/Ll.Tp, divided by the volume V1• 

Since both the slope of an isobar and the volume V will in general vary from 
point to point, the expansivity is a function of both temperature and pressure. 
Figure 2- 16 shows how the expansivity {J of copper varies with temperature at a 
constant pressure of I atm, from absolute zero up to a temperature of 1200 K. 
The ordinate of this graph, at any temperature, is equal to the slope of a graph of 
Vversus T, as in Fig. 2-15, divided by the volume. A particularly in\eresting feature 
of the graph in Fig. 2-1 6 is that the expansivity approaches zero as the temperature 
approaches zero. Other metals show a similar variation. 

Figure 2- 17 shows bow the expansivity of mercury varies with pressure at a 
constant temperature of o•c. Note that the origin of the scale of {J, in Fig. 2-17, 
does not appear in the diagram; the expan'sivity changes only slightly with changes 
in pressure, even for pressures as great as 7000 atm. 

Liquid water has a maximum density and a minimum specific volume at a 
temperature of 4°C. In the temperature interval between o•c and 4°C its specific 
volume decreases with increasing temperature and its expansivity is negative, while 
at 4•c it is zero. 
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Tcmpc.racurc (K) 

Fiz. Z-16 Compressibility K and expansivity {J or copper as functions of 
temperature at a constant pressure of I atm. 

2-7 

Tables of properties of materials usually list values of the lintar expansivities 
" of solids, related to p by the equation 

p = 3ot. (2-25) 
Tabulated values are ordinarily mtan values, over a temperature interval near 
room temperature and at atmospheric pressure, and provide only a very incomplete 
description of tbe complicated dependence of volume on temperature and pressure. 

!'r<DUr< (atm) 

Fig. Z-17 Compressibility • of and expansivily {J of mercury liS functions of 
pressure at a constant ccmperacure of 0°C. 
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Consider next the change in volume of a material when the pressure is changed 
at constant temperature, for example, when the state o f the system in Fig. 2-14 is 
changed from point 2 to point 3, along the isothermal curve at temperature T1• 

It should be evident without a detailed discussion that the slope of the tangent line 
to an isothermal curve at any point is given by 

Slope of tangent .. (av\ . 
aPJr 

Hence if dV r and dP r represent the limiting values of the volume and p ressure 
differences between two neighboring states at the same temperature, 

dVr - (~~)/Pr. (2-26) 

For an ideal gas, considering T constant, we have 

(aV\ = _ nRT . 
aPJr P1 

The isothtrmal compressibility K of a material is defined in the same way as its 
expansivity, namely, as the slope of an isothermal curve at any point, divided by 
the volume 

(2-27) 

T he negative sign is included because the volume always decreaus with inFreasing 
pressure at constant temperature so that tavJaP)r is inherently negati~e. The 
compressibility itself is therefore a positive quantity. The unit of compressibilily 
is the reciprocal of the unit of pressure, and in the MKS system it is I square meter 
per newton (I m1 N- 1). 

For an ideal gas, 

I< - _ .!.(- nRT) - .! . v p• p 
(2- 28) 

The mean compressibility ii is defined as 

_ 1 avr Kz= --- -. 
v,aPr 

The compressibility of a material, like its expansivity, is in general a function 
of both temperature and pressure. A graph of 1< versus T for copper is given in 
Fig. 2-16, and a graph of K versus P for mercury in Fig. 2-17. 

In the preceding discussion, we have considered two states at the same pressure, 
such as states I and 2 in Fig. 2-14, or two states at the same temperature, such as 
states 2 and 3. Suppose, however, that two states of a system are neither at the 
same pressure nor at the same temperature, such as states I and 3 in Fig. 2-14. The 
volume difference between the states depends only on the states and is independent 
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of any particular process by which the system is taken from one state to the other. 
Let us therefore take the system from state I to state 3, first along path 1-2, at 
constant pressureP1, followed by path 2-3 at constant temperature T,. The volume 
difference AV between the states then equals the sum of the volume change AV.P 
in process 1-2 and the change AVT in process 2,.3. In the limit as APT and ATp 
approach zero, by Eqs. (2-19) and (2-26) the volume difference dV is 

In terms of p and 1<, 

or 

av = (av) dT + (av) dP. (2-29) 
oTP oPT 

dV = {JV.dT - KV dP, 

dV = {JdT - KdP. 
v 

(2-30) 

(2-31) 

Now instead of considering that the partial derivatives of V (or the quantities 
{J and~<) can be calculated if the equation of state is known, we reverse this point of · 
view. That is, if {J and K have been measured experimentally and are known as 
functions of temperature and pressure, we can find the equation of state by inte­
grating Eq. (2-30) or (2-31). Thus suppose we had found experimentally, for a 
gas at low pressure, that{J = 1/Tand K - .lfP. Then from Eq. (2-31), 

and 

dV _ dT + dP = O 
V T P ' 

In V - In T + In P = In (constant), 

PV = constant, 
T 

which is tHe equation of state of an ideal gas if we identify the constant as nR. 
If Eq. (2-30) is integrated from some reference state V0, P0, T0 , to some arbi­

trary state V, P, T, we obtain 

l ydV = V - V
0 

= fT{JV dT- iPKV dP. 
P• Jr. P, 

The volume change of a solid or liquid is relatively small when the pressure and 
temperature are changed and to a first approximation we can consider V to be 
constant and equal to V0 in the integrals on the right. If {J and K can also be con­
sidered constant, then 

V = J'o[l + {J(T - T,) - ~e(P - P0) ). (2-32) 

Therefore measurements of the expansivity and compressibility, plus a knowl­
edge of the values of V0, P0, and T0 in the reference state, are sufficient to determine 
the equation of state of a solid or liquid, subject to the approximations above. 
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2-8 CRITICAL CONSTANTS OF A VAN DER WAALS GAS 

As another example of the use of partial derivatives in thermodynamics, we show 
how they are used to determine the critical constants of a van der Waals gas. In 
spite of the relative simplicity of the van der Waah equation, a van der Waah gas 
exhibits a critical point and its P-v-T surface bas features that correspond to the 
liquid-vapor region of a real gas. The point of coincidence of the three real values 
of 'o for a van der Waals gas is its critical point (sec Figs. 2-4 and 2-S). At tempera­
tures below the critical temperature, the van der Waals isotherms do not exhibit 
the horizontal portion dlong which the liquid and vapor phases of a real gas can 
coexist. One can, however, justify the construction of the horizontal line abc in 
Fig. 2- S by drawing it as a pressure such that the shaded areas are equal. Points 
a and c then correspond respectively to the specific volumes of saturated liquid and 
vapor. 

Since an isotherm represents those equilibrium states at which the temperature 
is constant, the slope of an isothermal curve projected on the P-o plane is given 
by (aP{ao)T. An examination of Fig. 2- S will show that at the critical point not 
only is the slope zero, but since the isotherm is concave upward at the leO of this 
point and concave downward at the right, the critical point is also a point of 
inficction. Hence at this point, 

(?.!:.) ~ 0, 
OV T 

and (2- 33) 

One of the useful properties of the van der Waals equation is that it may be 
solved for P, and hence partial derivatives of Pare easily calculated. We find 

P• RT -~. 
v - b v' 

Hence 

(~)= -~+~ 
ov T (v - b)' rJ ' 

(
o'P) 2RT 6a 
av' T= (v - b)'- 7 ' 

When T = T,, the critical temperature, and v - v., the critical volume, each 
of the expressions above is zero. Solving the two equations simultaneously for v, 
and T.. and inserting these values in the original equation, we get 

p .,....E... 
• 21b' ' o.- 3b, T. -~ 

' 21Rb. 
(2-34) 

These equations are commonly used to determine the values of a and b for a 
particular gas, in terms of measured values of the critical constants. However , 
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there are three equations for the two unknowns a and b, hence these are over­
determined. Tbat is, we find from the second of the equations above tbat 

b v, 
== 3 t 

while from simultaneous solution of the first and third equations, 

b = Rr •. 
SP, 

(2-35) 

When experimental values o f P., v,. and T, are inserted in the two preceding 
equations, we do not obtain the same value for b. In other words, it is not possible 
to lit a van der Waals P-v-Tsurface to that of a real substance at the critical point. 
Any two of the variables may be made to coincide, but not all three. Since the 
critical volume is more difficult to measure accurately than the critical pressure and 
temperature, the latter two are used to determine the values of a and bin Table 2-1. 

Another way of comparing the van der Waals equation with the equuion of 
state of a real substance is to compare the values of the quantity Pu/RT at the 
critical point. For a van der Waals gas, 

P,v, = ~ "" 0.375, (2-36) 
RT, 8 

and according to the van der Waals equation this ratio should have the value 3/8 
for all substances at the critical point. (For an ideal gas, of course, the ratio 
equals unity.) Experimental values are given in Table 2-4. The two are not equal, 
a lthough the discrepancies are not large. 

Table 1-4 Experimental 
values of P,u,/RT, 

Substance P,v,/RT, 

He 0.327 
H, 0.306 
0. 0.292 
co, 0.277 
H20 0.233 
Hg 0.909 

The van der Waals equation can be put in a form t.hat is applicable to any 
substance by introducing the reduced pressure, volume, and temperature, that is, 
the ratios of the pressure, volume, and temperature to the critical pressure, volume, 
and temperature: 

v v,.=-, 
"• 

T, = !.. 
T, 

(2- 37) 
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Combining these equations with Eqs. (2..-34) and (2..-8), the van der Waals equation, 
we get 

(2- 38) 

The quantities a and b have disappeared and the same equation applies to any van 
der Waals gas. The critical point has the coordinates I, I, I, in a P,·v,·T, diagram. 
Equation (2-38) is called the law of corresponding states. It is a " law," of course, 
only to the extent that real gases obey the van der Waals equation. Two different 
substances arc said to be in "corresponding states" if their pressures, volumes, and 
temperatures arc the same fraction (or multiple) of the critical pressure, volume, 
and temperature of the two substances. 

2-11 RELATIONS BETWEEN PARTIAL DERIVATIVES 

We have shown in Section 2-7 tbat the volume difference dVbetween two neighbor· 
ing equilibrium states of a system can be written 

dV - (i!V) dT + (i!V) dP. 
i!TP i)p,. 

It is assumed in this equation that the volume Vis expressed as a function of 
Tand P. But we can also consider that the pressure Pis expressed as a function of 
V and T, and by tbe same reasoning as above we can write 

dP = (i)P\ dT + (i)p) dV. ar/y av,. 
Let us now eliminate dP between the preceding equations and collect coefficients 

of dV and dT. The result is 

[1 - (~~),.(:~),.] dV- [(~~),.(:it+ (~~t] dT. 

This equation must hold for any two neighboring equilibrium states. In 
particular, for two states at the same temperature but having different volumes, 
dT = 0, dV # 0, and to satisfy the equation above we must have 

1 - ( i)") (i)p) - 0, 
i!P r av,. 

or 

(
i)V\ I 
i)p},. = (i)PjiJV),.. (2- 39) 

Similarly, since we can have dV = 0, dT # 0, it must be true that 

(av) { aP) + (a") _ 0 
iJP T i)T y i)Tp . (2-40) 
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By combining Eqs. (2-39) and (2-40) the preceding equation can be put in the 
more symmetrical form, 

(iW\ (oP) (oT) ~ _1 oPJT oT v oV P • 
(2-41) 

Note that in this equation the deno minator in any partial derivative becomes the 
numerator of the next, and that the symbols V, P, T occur cyclically in each of the 
partial derivatives. 

To illustrate the use of the preceding equations, suppose we wish to calculate 
the increase in pressure when the temperature of a system is increased but the system 
is not allowed to expand. That is, we wish to have the value of the partial derivative 
(oPfoT).,. Having measured the expansivity and compressibility of a material, it is 
not necessary to perform a third series of experiments to find the dependence of 
pressure on temperature at constant volume. It follows from Eq. (2-41) that 

(
of'\ _ (oVJOT)p _ _ 1!_ _ ~ (

2
-4

2
) 

oTJv- - (oV/oP)T- -~eV- "' 

and the desired partial derivative is the ratio of tlie expansivity to the compres­
sibility. The larger the expansivity and the smaller the compressibility, the greater 
the increase in pressure for a given increase in temperature. 

The pressure change in a finite change in temperature at constant volume is 

I 

and if p and " can be considered constant, 

p 
P1 - P1 ~ - (T1 - T1), 

K 

a relat ion that can also be obtained from Eq. (2-32) by setting V = V0• 

Throughout the foregoing, we have considered only a PVT system so as to 
give the analysis a physical rather than simply a mathematical basis. Let us now 
rewrite the important equations in a more general form. Suppose we have any three 
variables satisfying the equation 

j(x,y, z) = 0. 

Then Eqs. (2-39) and (2-41) become 

(ox) 1 ay. = (oyfox),' (2-43) 

(~).(tz).(~). = - I. (2-44) 

The letters x, y, and z can be associated with any of the three variables whose 
values specify the state of any system. 

' ,• 
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2-10 EXACT DIFFERENTIALS 

Since the volume difference between two equilibrium states of a system is inde-· 
pendent of the nature of any process between the states, we can also evaluate the 
volume difference between states I and 3 in Fig. 2-14 along the path 1-4-3. In our 
earlier derivation, in which we used path 1-2-3, the pressure along portion 1-2 bad 
the constant value P1 and the temperature along pori ion 2-3 bad the conslant value 
T,. We therefore write Eq. (2-29) explicitly as 

dV. .•.• - (ov) dT + (ov) dP. oT P 1 oPT, 
Along path 1-4-3, 

dV. .•.• - (ov) dP + (ov) dT. oP T 1 oT P , 

Sioce these volume changes are the same, it follows that 

[(~t,- (~)p.J [(~)T,- (~)T.J 
dP dT 

(2-45) 

In the limit, as dP and dT approach zero, we can consider that the partial 
derivative (oVfoT)p, is evaluated at point 4, and the parti'l derivative (oVfaT)p, 
is evaluated at point I, which is at the same temperature as point4. The numerator 
on the lefl side of Eq. (2-45) is therefo re the change in the value of this partial 
derivative when the pressure is changed by dP, from P 1 to P1 , at consta nt tempera­
ture. When divided by dP, the quotient is the. rate of change with pressure, at 
constant temperature, of the partial derivative (oVfoT)p, or, it is the so-called 
mixed second partial derivative of V with respect to P and T and is written 

[ a (av) ] a•v ap oT P T or oP aT . 
In the same way, the right side of Eq. (2-45) is 

[a (av) J a>v oT oPT p or ar oP. 
We therefore have the important result that 

a•v a•v 
oPoT = oTaP· (2-46) 

That is, the value of the mixed second partial derivative is independent af the order 
of differentiation. 
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Note that the preceding result is true only if the volume difference dV between 
states I and 3 is the same for all processes between the states. A differential for 
which this is t rue is called an exact differential. The differentials of all proper/Its 
of a syste~uch as volume, pressure, temperature, magnetization, etc.-are 
exact In fact, this criterion can be considered the definition of a thermodynamic 
property. A quantity whose differential is not exact is not a thermodynamic 
property. Later on, when we consider energy interchanges between a system and 
its surroundings, we shall encounter quantities whose differentials are not exact and 
which are therefore not properties of a system. 

Still another point of view is the following. The volume difference between any 
two arbitrary states of a system can be found by summing or integrating the 
infinitesimal volume changes dV along any arbitrary path between the states. Thus 
if V, and V1 a re the volumes in the two states, 

f."· dV- Y1 - Y1, 
y, 

(2-47) 

and the value of the integral is irultptndenl of tht patlr. 
It follows that if the path is cyclic, so that points I and 2 coincide, Y1 - Y., 

Y1 - Y1 = 0 , and 

(2-48) 

where the symbol f means that the integral is evaluated around a closed path. 
Conversely, if the integral of a differential between two arbitrary states is 

independent of the path, the integral around any closed path is zero and the 
differential is uact. 

A test as to whether or not a differential is exact can be determined as follows. 
The exact differential dV can be written 

dV = (iW) dT + (oV) dP. or p oP r 
The partial derivatives are the coefficitnts of the differentials dTand dP; and as we 
have shown, the partial derivative with respect toP of the coefficient of dTis equal 
to the partial derivative with respect to Tof the coefficient of dP. In general, if for 
any three variables x, y, z, we have a relation of the form 

dz- M(x,y)dx + N(x,y)dy, 

the differential dz is exact if 

(2-49) 



PROBLEMS 15 

PROBLEMS 

l-1 The table below lists corresponding values of the pressure and specific volume of 
steam at the three temperatures of 700°F, JIS0°F and I 600°F, Without converting to 
MKS units, compute the ratio Pv/Tat each temperature and pressure; and for each tem­
perature plot these ratios as a function of pressure. · Estimate the extrapolated value of 
Pv/T as P approaches zero, and find the value of R in J kilomoJe-1 K- 1• 

p I - 700°F 1 - uso•p I- I600°F 

lb in-• v v v 
ft1 llr'1 ft1 Jb- 1 ft' Jb- 1 

500 1.304 1.888 2.442 
1000 0.608 0.918 1.215 
2000 .249 .449 0,601 
3000 .0984 .289 .397 
4000 .0287 .209 .294 
5000 .0268 .161 .233 

.. 
:Z-:Z (a) Estimate as accurately as you can from Fig. 2-1 the molal specific volume of co, 
at a pressure of 3 x 107 N m-• and a temperature T1• Assume T1 ~ 340 K. (b) At this 
pressure and temperature, how many kilomoles of C01 are contained in a tank of volume 
0.5 m'? (c) How many kilomoles would the tank contain if COi were an ideal gas? 

2-3 A cyl inder provided with a movable piston contains an ideal gas at a pressure P., 
specific volume v1, and temperature T1• The pressure and volume are simultaneously 
increased so that at every instant P and v are related by the equation 

P =Av, 

where A is a constant. (a) Express the constant A in terms of the pressure P1, the tempera­
ture T1 , and the gas constant R. (b) Construct the graph representing the process above 
in the P-v plane. (c) Find the temperature when the specific volume has doubled, if T1 = 
200K. 

:Z-4 The U-tube in Fig. 2-18, of uniform cross section I cm2, contains mercury to the 
depth shown. The barometric pressure is 150 Torr. The left side of the tube is n'f:' closed 
at the top, and the right side is connected to a good vacuum pump. (a) How far does the 
mercury level fall in the left side and (b) what is the final pressure of the trapped air? The 
temperature remains constant. 

:Z-5 The left side of the U-tube in Fig. 2-18 is closed at the top. (a) If the initial tempera­
ture is 300 K,lind the temperature Tat which the air column at the left is 60cm long. The 
barometric pressure remains constant at 750 Torr. (b) Sketch the isotherms at 300 K and 
at the temperature T, in theP-v plane, and show the curve representing the process through 
which the gas in the left side of the U-tube is carried as its temperature increases. 
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Figurel-18 

H The J-shaped tube, of uniform cross section, in Fig. 2-19 contains air at atmospheric 
pressure. The barometric height is h0• Mercury is poured into the open end, trapping the 
air in the closed end. What is the height h or the mercury column in the closed end when 
the open end is filled with mercury 7 Assume that the temperature is constant and that 
air is an idfal gas? Neglect any effect of the curvature at the bottom. As a numerical 
example, let h0 - 0.75 m, h1 - 0.25 m, h1 - 2.25 m. 

Figure l - 19 

l-7 If n moles of an ideal gas can be pumped through a tube of diameter d at 4 K, what 
must be the diameter of the tube to pump the same number of moles at 300 K 7 

p 

Figure l-20 
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l-8 Figure 2-20 shows five processes, a - b, b - c, c - d, d - a and a - c, plotted in 
the P-v plane for an ideal gas in a closed system. Show the same processes (a) in the 
P·T plane, (b) in the T-v plane. (c) Locate the four points of intersection of the lines 
on the P-v-T sunace in Fig. 2-2 that correspond to a, b, c, and din Fig. 2-20 . 

.1-9 In Fig. 2-20, let P1 • JO x 10' N m- 1 , P1 • • x JO' N m- 1, v1 • 2.S m0 kilo· 
mole-•. F ind (a) the temperature T, (b) the specific volume .,, (c) the tempe,ratures at 
points band d, (d) the actual volume Vat point a if the system consists of 4 kilomoles 
of hydrogen, (e) the mass or the hydrogen. 
l-10 A tank of volume 0.3 m• contains oxygen at an absolute pressure of l.S x 101 N 
m- • and a tempera lUre of 20"C. Assume that oxygen behaves like an ideal gas. (a) How 
many kilomoles of oxygen are there in the tank? (b) How many kilograms? (c) Find the 
pressure if the temperature is increased to 300"C. (d) At a temperature of20"C, how many 
kilomoles can be wi thdrawn from the tank before the pressure falls to 10 percent of the 
original pressure 7 

2-11 A quantity or air is contained in a cylinder provided with a movable piston. 
Initially the pressure of the air is 2 x 107 N m- 1,the volume is O.S m1 and the temperature 
is 300 K. Assume a ir is an ideal gas. (a) What is the final volume of the air if it is allowed 
to expand isothermally until the pressure is I x 107 N m-1, the piston moving outward to 
provide for the increased volume oft he air? (b) What is the final temperature of the air if 
the piston is held fixed at its initial position and the system is cooled until the pressure 
is I x 107 N m- •7 (c) What are the final temperature and volume of the air if it is 
allowed to expand isothermally from the initial conditions until the pressure is 1.3 x 
107 N m- • and then it is cooled at constant volume until the pressure is I x 107 N m-t? 
(d) What are the final temperature and volume of the air if an isochoric cooling to 1.5 x 
107 N m-1 is followed by an isothermal expansion to I x 107 N m- 1 7 (e) Plot each of 
these processes on a T· V diagram. 
2-12 A volume Vat temperature T contains n"' moles of ideal gas A and n0 moles of 
ideal gas B. The gases do not react chemically. (a) Show that the total pressure P of the 
system is given by 

p = P.& + PB (2-50) 

where p"' and Pn are the pressures that each gas would exert if it were in the volume alone. 
The quantity PA is called the partial pressure of gas A and Eq. (2- 50) is known as Dalton·s• 
law of partial pressures. (b) Show that PA - x,.P where xA is the fraction of moles of A 
in the system. 

2- 13 In all so..:alled diatomic gases, some of the molecules are dissociated into separated 
atoms, the fraction dissociated increasing with incrca1ing temperature. The gas as a 
whole thus consists or a diatomic and a monatomic portion. Even though each component 
may act as an ideal gas. I he mixture docs not, because the number or moles varies with 
the temperature. The degree of dissociation dora diatomic: gas is defined as the rat io of 
the mass m1 or the monatomic: portion to the total mass m of the system 

• John Dalton, British chemist (1766-1844). 
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(a) Show that tbc equation of state of the gas io 

PV - (4 + l)(m/M,)RT, 

where M1 is the molecular "weight" of the diatomic component. Assume that the gas 
obeys Dalton's law (sec Problem 2-12). (b) The table below lists measured values of the 
ratio PV/m, for iodine vapor, at three diffcrcottcmperaturcs. Compute and show in a 
graph the degree of dissociation as a function of temperature. 

t("C) 800 1000 1200 

PV. 
-;; , 1 kg-1 3.72 X 10' S.08 X 10' 7.30 X 10' 

2-14 A vessel contains C01 at a temperature of 137°C. The specific volume is 0.0700 
m1 kilomole-1• Compute the pressure inN m-• (a) from the ideal gas equation, (b) from 
the van der Waals equation. (c) Calculate the ratio Po/ T, in 1 kilomole-1 K-1, for the two 
pressures found above, and compare with the CJ<perimcntal value as read from Fig. 2-1 
assuming T1 - 137"C. 
2-15 A cylinder provided with a piston contains waler vapor a1a 1empera1ure of -1o•c. 
From a sludy of Fig. 2-10, describe lhc changes lhal lake place as lhc volume of lhe 
system is decreased isolhermally. Make a graph of the process in I he P-v plane, approxi­
mately to scale. 

2-16 The crilical conslanls of CO, are given in Table 2-3. AI 299 K I he vapor pressure 
Is 66 x 10' N m- • and I he specific volumes of lhcliquld and I he vapor arc, respeclively, 
0.063 and 0.2 m1 kilomolc-1•· AI I he triple point, T - 216 K, P - S.l x 10' N m- •, 
and lhc specific volumes of lhc solid and liquid arc respeclivcly 0.029 and 0.037 m' 
kilomolc-•. (a) Conslrucl as much as you can of I he P·v diagram for CO, corresponding 
to Fig. 2-5. (b) One mole of solid co, is inaroduccd inlo a vessel whose volume varies with 
pressure acx:ording to lhc relalion P - 7 x 10' V, where V Is in m1 and P in N m-t. 
Describe lhc change in I he con Ienis of lhc vessel as I he lcmpcraturc is slowly increased 10 
JIOK. 

2-17 Show that {J - 3« for an isolropic solid. 

2-18 (a) Show that the cocfficicnl of volume CJ<pansion can be. expressed as 

{J- -! (~p \ . 
P arjp 

where p is lhe densily. (b) Show that the ioothcrmal compressibility can be expressed as 

K- H~l· 
2-19 The temperature of a block of copper is increased from 400 K 10 410 K. What 
change in pressure is necessary to keep the volume cons1an1? Oblain I he 'necessary 
numerical dala from Fig. 2-16. 
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l-20 Design a mercury-in-glass thermometer for use near room temperature. The length 
of the mercury column should change one centimeter per deg C. Assume that the volume 
expansivity of mercury is equal to 2 x Jo-- K- 1 and is independent of temperature near 
room temperature and that the expansivity of glass is essentially zero. 

1-21 (a) Show that the coefficient of volume expansion of a van der Waals gas is 

R,S(v- b) 
fJ = RTrr - 2a(v - b)'· 

(b) What is the expression for {J if a - b - 0 (ideal gas) 7 

2-ll (a) Show that the compressibility of a van der Waals gas is 

v1(v - b)1 

K - RTrr - 2a(v - b)'· 

(b) What is the expression for • if a - b - 0 7 
l-23 An approximate equation of state is P(v - b) - RT. (a) Compute the expansivity 
and the compressibility for a substance obeying this equation of state. {b) Show that the 
corresponding equations for a van der Waals gas (see Problems 2-21 and 2-22) reduce to 
the expressions derived in (a) when a - 0. 

2-24 A hypothetical substance has an isothermal compressibility K - afv and an 
expansivity {J a 2bTfv, where a and bare constants. {a) Show that the equation of state 
is given by v - bT' + aP - constant. {b) If at a pressure P0 and temperature T0, the 
specific volume is v0 , evaluate the constant. 
2-25 A substance has an isothermal compressibility K - aT'fP' and an expansivity 
{J - bT'/P where a and bare constants. Find the equation of state of the substance and 
the ratio, afb. 

2-26 From the equation of state given in Eq. {2-12) compute (a) the rate at which the 
length of a rod changes with temperature when the tension is kept constant; (b) the rate 
at which the length changes with tension when the temperature is constant; (c) the change 
dT in temperature that is necessary to keep the length constant when there is a small 
change dF in the tension. Assume Young's modulus is independent of temperature. 

2-27 A railroad track is laid without expansion joints in a desert where day and night 
temperatures differ by !!. T = SO K. The cross-sectional area of a rail is A a 3.6 X IO-• 
m1, the stretch modulus y is 20 X 1010 N m-•. and the coefficient of linear expansion 
" - 8 x Jo-- (K)-1

• (a) If the length of the track is kept constant, what is the difference 
in the tension in the rails between day and night? (b) If the tension is zero when the 
temperature is a minimum, what is it when the temperature is a maximum? (c) If the 
track is 15,000 m long, and is free to expand, what is the change in its length between day 
and night 7 (d) What partial derivatives must be evaluated to answer the preceding 
questions? 

2- 28 Find the critical constants P., v., and T, in terms of a, b, and R for a van der 
Waals gas. 

l-29 Using the critical constants listed in Table 2-3, compute the value of b iq the van 
der Waals equation for C02 , {a) from v,, and (b) from T, and P,. 
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l-30 Show that the critical constants of a substance obeying the Dieterici• equation of 
state, P(v - b) exp (a/vRT) - RT, are 

P. - a/~0b0, "• - 2b, T, - a/4Rb. 
(b) Compare the ratio P.vJRT. for a Dieterici gas wi th the experimental values in Table 
2-4. 

2-31 Derive Eq. (2-38). 
l-31 (a) Making uscoftbe cyclic relation Eq. (l-41), find theexpansivity (1 of a substance 
obeying the Dieterici equation or.tate given in Problem 2-30. (b) At high temperaturesand 
large specific volumes all gases approximate ideal gases. Verify that for large values or T 
and v, the bieterici equation and the expression for {J derived in (a) both go over to the 
corresponding equat ions for an ideal gas. 

l-33 Find ( aP/ aT). for gases obeying (a) the van der Waals equation of state, (b) the 
approximate equation of state of Problem 2-23, and (c) the Dieterici equation of state 
(Problem 2-30). 

l-34 From the equation of state of a paramagnetic material, show that the cyclic partial 
derivatives (aM/aJt')T, (aJt'tan.u. and (aT/aM)..,., satisfy Eq. (2-44). 

l-35 (a) Usc the fact that dv is an euct differential and the definitions of {J and K to prove 
that 

(b) From Fig.l-16, obtain a linear equation that gives approximately the relation between 
K and Tfor copper, at a constant pressure of I atm, and at T - 1000 K. (c) Compute the 
change of the expansivity of copper with pressure, at constant temperature. (d) Find the 
expansivi ty or copper a tiOOO K and I atm, and compute the fractional change in volume 
or the copper when the pressure is isothermally increased to 1000 atm. Assume that 
( a (If aP"lT is independent of pressure. 

2-36 Usc the relatiop of the previous problem to show that the data given in Problems 
2-24 and 2-25 arc consistent. 

l-37 Show tha t the magnetic moment, M , of a paramagnetic material is a state function 
by showing that dM is an exact differential. 

• Conrad H. D ieterici, German physicist (ISSS-1929). 
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3-t INTRODUCTION 

The work-energy principle, in mechanics, is a consequence of Newton's Jaws of 
motion. It states that the work of the resultant force on a particle is equal to the 
change in kinetic energy of the particle. If a force is conservative, the work of this 
force can be set equal to the change in potential energy of the particle, and the 
work of all forces exclusive of this force is equal to the sum of the changes in kinetic 
and potential energy of the particle. The same statements apply to a rigid body. 
(For simplicity, assume that the lines of action of all forces pass through the center 
of mass so that rotational motion need not be considered.) 

Work can also be done in processes in which there is no change in either the 
kinetic or potential energy of a system. Thus work is done when a gas is compressed 
or expanded, o r when an electrolytic cell is charged or discharged, or when a 
paramagnetic rod is magnetized or demagnetized, even though the gas, or the cell, 
or the rod remains at rest at the same elevation. The science of thermodynamics is 
largely (but not exclusively) concerned with processes of this sort. 

In mechanics, the work d'W of a force F when its point of appHcation is dis­
placed a distance ds is defined as F cos 0 ds, where 8 is the angle between the 
vectors F and ds. IfF and ds are in the same direction, 0 = o•, cos 8 = I , and 
work equals F ds. In thermodynamics, and for reasons that will be explained 
shortly, it is customary to reverse this sign convention and define the work as 
d' W = -Fcos 0 ds. Then when F and ds are in opposite directions, 0 = 180°, 
cos 8 - - I , and the work is + F ds. The reason fo r using d' W rather than dW 
will be explained in Section 3-4. 

When a thermodynamic system undergoes a process, the work in the process 
can always be traced back ultimately to the work of some force. H owever, it is 
convenient to express the work in terms of the thermodynamic properties of the 
system and we begin by considering the work in a volume change. 

3-2 WORK IN A VOLUME CHANGE 

The full Hne in Fig. 3-1 represents the boundary of a system of volume V and 
arbitrary shape, acted on by a uniform external hydrosta tic pressure P,. Suppose 
the system expands against this pressure to the shape shown by the dotted outline. 
The external force acting on an element of the boundary surface of area dA is 
dF, = P, dA. When the element moves outward through a distance ds, the force 
and displacement are in opposite di rections and the work of the force is dF, ds ~ 
P,dA ds. When all surface elements are included, the work d'Win the process is 
found by integrating the product P, t!A ds over the entire surface: 

d' W = P,f dAds. 

The integral equals the volume between the two boundaries, or the increase dV 
in the volume of the system. Therefore 

~W = ~W ~ij 
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Thus when a system expands against an external pressure, dV is positive, the 
work is positive, and we say that work is done by the system. When a system is 
compressed, dV is negative, the work is negative, and we say that work is done on 
the system. When the science of thermodynamics was fi rst being developed, a 
quantity of primary interest was the work done by a system in a process in which 
steam in a cylinder expanded against a piston. It was con.venient.to consider the 
work in such a process as positive, which is the reason for reversing the usual sign 
convention as described above. Some texts in thermodynamics retain the sign 
convention of mechanics and hence express the work in a volume change as 
d'W .. -P, dV. Then positive work corresponds to work done on a system, and 
negative work to work done by a system. In this book, however, we shall retain 
the sign convention customarily used in thermodynamics, in which the work done 
by a system is positive. 

Fig. 3-1 The work done by a 
system expanding against an external 
force is given by P, dA ds. 

The MKS unit of pressure is I newton per square meter (I N m-1) and the 
unit of volume is I cubic meter (I m'). The unit of work is therefore I newton­
meter (I N m) or I joule (I J). 

The work of the exttrna/ forces exerted on the boundary of a system is often 
spoken of as external work. The external work in a volume change is given by Eq. 
(3- 1) whatever the nature of a process. If a process is reversible, the system is 
e~sentially in mechanical equilibrium at all times and the external pressure P, 
equ•ls the pressure P exerted against the boundary by the system. Hence in a 
reversible process we can replace P, with P and write 

~W=P~ (3~ 
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In a finite reversible process in which the volume changes from v. to V,, the 
total work W is 

(• 
W=j, P dV. 

"· 
(3-3) 

When the nature of a process is specified, P can be expressed as a function of V 
through the equation of state of the system and the integral can be evaluated. 

The relation between the pressure and volume of a system, in any reversible 
process, can be represented by a curve in the P-V plane. The work in a small 
volume change dV is represented graphically by the area P dV of a narrow vertical 
strip such as that shown shaded in Fig. 3-2. The total work Win a finite process 
is proportional to the area between the curve representing the process and the 
horizontal axis, bounded by vertical lines as v. and V,. The work is positive if the 
process proceeds in the direction shown, from state a to state b. If the process 
proceeds in the opposite direction, the work is negative. 

p 

Fie. 3-2 The shaded area represents the 
work in a small volume change. 

We next evaluate J P dV for a few reversible processes. 
The work in any isochoric process is evidently zero since in such a process 

V =constant. 
In an isobaric process the pressure is constant and 

f."• W = P dV = P(V, - V.,). 

"· 
(3-4) 

The work is represented by the area of the shaded rectangle in Fig. 3- 3(a) of base 
V, - v. and of height P. 

If Pis not constant, it must be expressed as a function of V through the equa­
tion of state. If the system is an ideal gas, 

P= nRTfV. 
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p 

T 

(a) (b) 

Fig. 3-3 The shaded area represents the work In an (a) isobaric process, 
(b) isothermal process. 

For the special case of an isothermal process, Tis constant and 

f. v, dV V, 
W = nRT - = nRTln-. 

v. v v. (3-5) 

The work is represented by the shaded area in Fig. 3-3(b). If v, > v •. the process 
is an expansion, In (VJ V.) is positive, and the work is positive. If v, < v., the 
process is a compression, In (VJV.) is negative, and the work is negative. 

It is left as a problem to calculate the work in an isothermal change in volume 
of a Van der Waals gas. 

3-3 OTHER FORMS OF WORK 

Figure 3-4 represents a wire under tension. The left end of the wire is fixed and an 
external stretching force F , is exerted on the right end. When the wire is stretched 
a small additional amount ds = dL, F, and dL are in the same direction and the 
work of the force F, is d' W = -F, dL. If the process is reversible, the external 
force !F, equals the tension !F in the wire and 

d'W = -:FdL. (3-6) 

If dL is positive, dW is negative and work is done on the wire. If the wire is allowed 
to shorten, dL is negative, d' W is positive, and work is done by the wire. The MKS 
unit of tension is I newton (I N) and the unit of length is I me tel (I m). 

One of the most important applicatio ns of thermodynamics is to the study of 
the behavior of paramagnetic substances at extremely low temperatures. This 
question will be considered more fully in Section 8-8, and for the present we con­
sider only the expression for the work in a process in which the magnetic state of 
the substance is changed. The system is to consist of a long slender rod in an 
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D 
,., 

L ~J-

B f--....- F. 

Fig. 3-4 The work done on a wire in increasing 
its length dL is 1', dL. 

external magnetic field parallel to its length, so that demagnetizing effects can be 
neglected. Let L represent the length of the rod and A its cross·sectional area, and 
suppose it to be wound uniformly with a magnetizing winding of negligible resis­
tance, having N turns and carrying a current I. Let B represent the flux density 
in the rod and 0%> - BA the total ftux. When the current in the windings is increased 
by dl in a time dt, the ftux changes by dOl> and the induced emf in the winding is 

t!= -Nd<l> = - NA dB. 
dt dt 

The power input fJ' to the system is given by fJ' = t! /, and the work d' W in 
timed/ is 

d'W- lil'dt- t!Jdt. 

The magnetic intensity Jft' produced by the current I in the winding is 

and eliminating /, we get 
d'W- VJft' dB, (3-7) 

where V ~ AL is the volume of the rod. 
If.Af is1the magnetization in the rod, or the magnetic moment per unit volume, 

the ftux detlsity B is 
B = flo(Jf' + .Af). 

When this expression forB is inserted in Eq. (3-7), we have 

d' w = - fl• v Jf' dJft' - ,... v Jft' d.Af. (3-8) 

The first term on the r ight is the work that would be required to increase the field 
in a vacuum, if the rod were not present, since in such a case .Af and d.lt would 
be zero. The second term is therefore the work associated with the change in 
magnetization of the rod. 
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The magnetic moment M of a specimen of volume Vis M- V-1, but to 
avoid the appearance of the magnetic constant p.0 - 4,. x I0- 1 henry m-1 

(H m-•)• in our equations, let us define the magnetic moment as 

M ~ iJoV.I. (3-9) 

Then the work of magnetization, exclusive of the vacuum work, is simply 

d'W'"' -df'dM. (3-10) 

The MKS unit of df' is I ampere per meter (I A m-•)t. The unit of magnetiza­
tion .I is also I A m-1• Therefore the unit of magnetic moment defined in Eq. 
(3-9) is 417 x JQ-' henry ampere meter (4" x to-' HAm). 

Similar reasoning leads to the result that when the electric intensity E in a 
dielectric slab is changed, the work is 

d'W~ -EdP, (3-11) 

where P is the dipole moment of the slab, equal to the product of its polarization 
(dipole moment per unit volume) and its volume V. 

The MKS unit of E is I volt per meter (I V m-•)t and the unit of polarization 
is I coulomb per rnet~r squared (I C m-'). § The unit of dipole moment P is I 
coulomb meter (I C m) and again the unit of work is I volt coulomb ... I J. 

Fig. 3-5 A circuit to do 
work reversibly on an 
electrolytic cell of emf I. 

Consider next an electrolytic cell of emf I and of negligible internal resis tance 
Let the terminals of the cell be connected respectively to one end a of a resistor, 
and to a sliding contact bon the resistor, as in Fig. 3-S. The resistor is connected 
across a second cell of emf I ' , greater than I. 

• Joseph Henry, American physicist (1797-1878). 
t Andre M. Ampere, French physicist (lnS- 1836). 
t Count Alessandro Volta, Italian physicist (I 74S-t 827). 
t Charles A. de Coulomb, French engineer (1736-1806). 
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If the position of the sliding contact is adjusted so that the potential difference 
"· •· due to the current in the resistor, is exactly equal to .r, the current in the cell 
will be zero. If V,, is infinitesimally greater than'· there will be a current in the cell 
from right to left, and if V,, is infinitesimally less than I, there will be a current 
in the cell in the opposite direction. Since the direction of the current in the cell 
can be reversed by an infinitesimal change in "·•· the process taking place in the 
cell is reversible in the thermodynamic sense. If, in addition, the reacting substances 
in the cell a re properly chosen, the direction of the chemical reaction within the 
cell will be reversed when the current reverses, and we speak of such a cell as a 
uversible cell. 

The power & supplied to or by the cell is given by & = II, where I is the 
current in the cell. The work in a short time interval dr is 

d'W - &dr = 1 /dr. 

In Chapter 2, we defined a quantity Z whose change tiZ is the quantity o f 
charge I dt flowing past a point in the cell in time dt. To agree with the thermody­
namic sign convention, we must write 

d'W- - ldZ. (3-12) 

If Z increases, as it does when the cell is being "charged," tiZ is positive, dW is 
negative, and work is done on the cell. 

The MKS uni t of .r is I volt (I V) and the unit of Z is I coulomb (I C). The 
unit of W is therefore I joule (I J). 

Fie. U Surface tension forces exerted 
at the boundary or a thin film. 

As a final example, we calculate the work when the area of a surface film is 
changed. Figure 3-0 represents a common method for demonstrating the phenom­
enon of surface tension. A soap film is formed o n a U-shaped frame having a 
sliding crossbar. Both surfaces of the film exert inward forces on the boundary 
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of the film, and the crossbar is kept in equilibrium by an external force F,. The 
surface tension a of the film is defined as the inward force exerted by one of the 
film surfaces, per unit length of boundary. Hence if Lis the length of the crossbar, 
the total upward force on it is 2aL (the film has two surfaces) and hence F, = 
2aL. When the crossbar is moved down a distance dx, the work of the force 
F,is 

d'W= -F,dx= -2aLdx, 

where the negative sign enters because F, and dx are in the same direction. The 
total surface area of the film is A - 2Lx, so 

dA • 2Ldx 
and hence 

d'W= -adA. (3-13) 

The unit of a is I newton per meter ( I N m- 1) and the unit of A is I square meter 
(I m') so that the unit of work is I N m - 11. 

3-4 W ORK DEPENDS ON THE PATH 

Suppose that a PVT system is taken from an initial equilibrium state a to a final 
equilibrium state b by two different r~utrsiblt processes, represented by the two 
paths I and II in Fig. 3- 7. The expression for the work Win either process is 

f.. f.y' 
W - d' W • PdV. 

• Y, 

Although the work along either path is given by the integral of P dV, the 
pressure P is a different function of V along the two paths and hence the work is 
different also. The work in process I corresponds to the total shaded area under 
path I; the work in process II corresponds to the lightly shaded area under path II. 
Hence in contrast to the volume change v. - V, between states a and b, which is 
the same for all paths between the states, the work W depends on the path and not 
simply on its endpoints. Therefore, as explained in Section 2- 10, the quantity 
d ' W is an inexact differential and the work W is not a property of the system. 
Work is a path fU(Iction, not a paint function like V, and the work in a process 
cannot be set equal to the difference between the values o f some property of a 
system in the end states of a process. Thus we use the symbol d' W to emphasize 
that the work of an infinitesimal process is an inexact differential. 

If the system in Fig. 3-7 is taken from state a to state b along path I and then 
returned from state b to state a along path 11, the system performs a cyclic process. 
The positive work along path I is greater than the negative work along path II. 
The ntt work in the cycle is then positive, or work is done by the system, a nd the 
net work is represented by the area bounded by the closed path. If the cycle is 
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traversed in the opposite sense, that is, first from a to b along path II and back 
from b to a along path I, the net work is negative and work is done on the system. 
In either case, the magnitude of the net work W is 

(3-14) 

This is in contrast to the integral of an exact d ifferential around a closed path, 
which always equals zero, as was shown io Section 2-10. 

Fig. 3-7 Work depends upon the path. 

3-5 CONFIGURATION WORK AND DISSIPATIVE WORK 

In all of the examples in the preced ing sections, the work in a reversible process is 
given by the product of some intensive variable (P, Jft', G, u) and the change in 
some extensive variable (V, M, Z, A). Let Y represent any such intensive variable 
and X the fo rresponding extensive variable. In the most general case, where more 
than one pair of variables may be involved, 

d'W = Y, dX, + Y, dX, + ''' = I y dX, (3-1 5) 

with the understanding that each product is to be taken with the proper algebraic 
sign: P dV, -Jft' dM, etc. The extensive variables X,, X,, etc. , are said to deter­
mine the configuration of the system and the work I Y dX is called configuration 
work. 

It is possible that the configuration of a system can change wit/tout the per­
formance of work. In Fig. 3-8, a vessel is divided into two parts by a diaphragm. 
The space above the diaphragm is evacuated and that below the diaphragm con­
tains a gas. If the diaphragm is punctured, the gas expands into the evacuated 
region and fills the entire vessel. The end state would be the same if the diaphragm 
were a very light piston, originally fastened in place and then released. The pro­
cess is known as a free expansion. 
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Fig. 3-8 In a free expan· 
sion of a gas, the configu· 
ration work is zero since 
P, is zero. 

Since the space above the diaphragm is evacuated, the external pressure P, on 
the diaphragm is zero. The work in a free expansion is therefore 

W = JP.dV = 0, 

and the work is zero even though the volume of the gas increases. 
Suppose that a stirrer is immersed in a fluid, the stirrer and fluid together being 

considered a system. The stirrer is attached to a shaft projecting through the wall of 
the container and an external torque is exerted on the outer end of the shaft. 
Regardless of the direction of rotation of the shaft, the external torque is always 
in the same direction as the angular displacement of the shaft and the work of the 
external torque is always negative, that is, work is always done on the composite 
system of fluid and stirrer. We speak of the work as stirring work or, more generally, 
as dissipative work. 

Another common example of dissipative work is the work needed to maintain 
an electric current I in a resistor of resistance R. Electrical work of magnitude 
J I 'R dt must be done on the resistor, regardless of the direction of the current. 

Unlike configuration work, the dissipative work in a process cannot be ex­
pressed in terms of a change in some property of a system on which the work is 
done. There is a close connection between dissipative work and a flow of heat , as 
we shall see later. 

Any process in which dissipative work is done is necessarily irreversible. Work 
is done on a system when a stirrer in a fluid is rotated, but a small change in the 
external torque rotating the stirrer will not result in work being done by the system. 
Similarly, a small change in the terminal voltage of a source sending a current 
through a resistor will not result in work being done by the resistor. 

In the general case, both configuration work and dissipative work may be 
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done in a process. The total work in the process is defined as the algebraic sum of 
the configuration work and the dissipative work. If a process is to be reversible, 
the dissipative work must be zero. Since a reversible process is necessarily quasi­
static, then to specify that a process is reversible implies (a) that the process is 
quasistatic and (b) that the dissipative work is zero. In a reversible process, then, 
the total work equals the configuration work. 

3-8 THE FIRST LAW OF THERMODYNAMICS 

There are many different processes by which a system can be taken from one 
equilibrium state to another, and in general the work done by the system is different 
in different processes. Out of all possible processes between two given states, let 
us select those that are adiabatic. That is, the system is enclosed by an adiabatic 
boundary and its temperature is independent of that of the surroundings. The 
boundary need not be rigid, so that configuration work can be done on or by the 
system. We assume also that dissipative work may be done on the system, and that 
there is no change in the kinetic and potential energies of the system. 

Even though we consider only adiabatic processes, many such processes aro 
possible between a given pair of states. A few of these are shown in Fig. 3-9. The 
system, initially in state a, first performs an adiabatic free expansion (represented 
by the cross-hatched line) from a to c. No configuration work is done in this process, 
and we assume there is no dissipative work. The system next performs a rever­
sible adiabatic expansion to state b. In ·this process, the configuration work is 
represented by the shaded area under the curve cb, and since the dissipative work 
is zero in any reversible process, this shaded area represents the total work in the 
process a-c-b. 

v 
Fig. 3-9 The same amount of work 
is done in all adiabatic processes 
between the same pair of equilibrium 
states. 
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In a second process, starting again at state a, the system first performs a re­
versible adiabatic expansion to state d, this state being so chosen that a subse­
quent free expansion (again in the absence of any dissipative work) will terminate 
at state b. The total work in process a-d-b is then represented by the shaded area 
under the curve ad. 

Although the two processes arc very different, it is an experimental fact that 
the work, represented by the two shaded areas, is the same in both. 

In a third possible process, the reversible adiabatic expansion starting at a is 
continued beyond point d to pointe, at which the configuration (in this case, the 
volume) is the same as in state b. Then adiabatic dissipative work at constant 
configuration is done on the system (for example, a stirrer is rotated within the 
system) until it again reaches state b. (The dissipative work is not represented by 
an area in the diagram.) 

The total work done by the system in the process a-e-b equals the configuration 
work done by the system in process a·e, represented by the area under the curve 
ae, minus the dissipative work done on the system in process e-b. It is found that 
this total work is the same as that in the first two processes, and it follows that the 
work by the system in the reversible expansion from d to e is equal to the work 
on the system in the dissipative process e-b. 

It should not be inferred that experiments such as those illustrated in Fig. 3-9 
have been carried out with high precision for all possible adiabatic processes 
between aU possible pairs of equilibrium states. Nevertheless, the entire structure 
of thermodynamics is consistent with the conclusion that whatever the nature of the 
process, 

the total work is the same in all adiabatic processes between any two equilibrium 
states having tbc same kinetic and potential energy. 

The preceding statement is called the first law of thermodynamics. Processes in 
which the kinetic and potential energies in the end states are not the same arc dis­
cussed in Section 3-13. 

3-7 INTERNAL ENERGY 

The total work W .. in any adiabatic process is the sum of the works d' W .. in each 
stage of the process: J 

w .. ={d·w ... 
Although in general the differential d' W is inexact, and the work W bas different 
values for different paths, the differential d' w.4 is exact in the sense that the work 
is the same along all adiabatic paths between a given pair of states having the ~arne 
kinetic and potential energies. It is therefore possible to define a property of a 
system, represented by U, such that the difference between its values in states a 
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and b is ~qual to the total work done by the system along any adiabatic path from 
a to b. We call this property the internal energy of the system. 

The value of the internal energy (apart from an arbitrary constant which does 
nQt affect the values of differmcts in internal energy) depends only on the state of 
the system, and hence dU is an exact differential. It is conventional to define dU 
as the negative of the adiabatic work d' w •• done by a system, or as equal to the 
adiabatic work done on the system. Thus, 

du- -d'w ••. 
For two states that differ by a finite amount, 

J.u, J.' dU- u, - u. =- d'w •• = -w ••. 
u. • 

o r 
(3-16) 

That is, the total work w •• done by a system in any adiabatic process between 
two states a and b having the same kinetic and potential energies is equal to the 
decrease (U. - U,) in the internal energy of the system. Thus a gas expanding 
against a piston, in an adiabatic process, can do work even though there is no 
change in its kinetic or potential energy ; the work is done at the expense of the 
internal energy of the gas. 

It is evident that the unit of internal energy is equal to the unit of work, and 
that in the MKS system the unit is I joule ( I J). 

Note that no assumptions or statements need be made regarding the nature 
of internal energy, from a molecular point of view. We shall see later how the 
methods of kinetic theory and statistical thermodynamics make it possible to 
interpret the internal energy of a system in terms of the energies of the particles 
of which the system is composed. From the standpoint of thermodynamics it 
suffices to know that the property of internal energy exists, and to know how it is 
defined. 

We shall show in Chapter 5 that not all states of a system can be reached from 
a given state by adiabatic processes. However, if state b cannot be reached from 
state a by an adiabatic process, it is always true that state a can be reached fro m 
state b by an infinite number of adiabatic processes, in all of which the work w.4 
is the same. The adiabatic work then defines the internal energy differences u, - u •. 

3-a HEAT FLOW 

The first law of thermodynamics makes it possible to define the internal energy 
U o f a system as a property of the system whose change between two equilibrium 
states equals the negative of the total work in any adiabatic process between the 
states. We now consider processes between a given pair of equilibrium states that 
are not adiabatic. That is, the system is not thermally insulated from its surrounding 
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but makes contact via a nonadiabatic boundary with one or more other systems 
whose temperature differs from that of the system under consideration. Under 
these circumstances we say that there is a flow of heat Q (for brevity, a heat flow Q) 
between the system and its surroundings. 

The heat flow Q is defined quantitatively in terms of the work in a process as 
follows. The total work W in a nonadiabatic process between a given pair of 
equilibrium states differs from one such process to another, and differs also from 
the work W u. in any adiabatic process between the same pair of states. We define 
the heat flow Q into the system in any process as the difference between the work 
Wand the adiabatic work w.d: 

Q = w- wad. (3-17) 

The heat flow into a system, like the change in its internal energy, is thus 
defined wholly in terms of mechanical work, and the unit of Q is evidently I joule. 
The procedure we have followed seems very different from that of defining a unit 
of heat as the heat flow into I gram of water when its temperature is increased by 
1 degree Celsius (the gram-calorie) or the heat flow into I pound mass of water 
when its temperature is increased by I degree Fahrenheit (the British thermal 
unit or Btu). The advantage of the method we have used is that the unit of h eat is 
defined inabsolutetermsanddoes not involve the properties of a particular,terial. 
We shall return to this point in Section 3-10. 

Depending on the nature of a process, the work W may be greater or less than 
the adiabatic work Wad and hence the algebraic sign of Q may be positive or 
negative. If Q is positive, there is a heat flow into the system; if Q is negative there 
is a heat flow out of the system. The heat flow may be positive during some parts 
of a process and negative in others. Then Q equals the net heat flow into the system. 

Since numerical values of temperature are assigned in such a way that heat 
flows by conduction from a higher to a lower temperature, it follows that if the 
temperature of the surroundings is greater than that of a system, there will be a heat 
flow into the system and Q is positive. If the temperature of the surroundings is 
lower than that of the system, there will be a heat flow out of the system and Q is 
negative. 

A reversible change in temperature of a system, as discussed in Section 1-9, 
can now be described in terms of a flow of heat. If the temperature of a system 
differs only infinitesimally from that of the surroundings, the direction of the heat 
flow can be reversed by an infinitesimal change in temperature of the system, and 
the heat flow is reversible. 

If a process is adiabatic, the work W becomes simply the adiabatic work W o4 

and from Eq. (3-17) the heat flow Q is zero. This justifies a statement made in 
Section 1-5, namely, that an adiabatic boundary can be described as one across 
which there is no flow of heat even if there is a difference in temperature between 
the surfaces of the boundary. An adiabatic boundary is an ideal beat insulator. 

Since by definition the adiabatic work done by a system in a process from an 
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initial equilibrium sta te a to a final equilibrium state b is equal 10 the decrease in 
internal energy of the system, u. - u,, Eq. (3-17) can be written 

u, - u. = Q- w. (3-18) 

The difference u,- u. is the incuau in internal energy, and Eq . (3-18) slates that 
the increase in internal energy of a sysltm, in any prouss in ,.·hich theu is no change 
in the kinetic and potenlial energies of the system, equals the net heat flow Q into the 
system minus the total work W done by the system. 

Had we used the sign convention of mechanics, in which the work of a force is 
defined as F cos 6 ds instead of - F cos 0 ds1 the sign of W would be reversed and we 
would have, instead of Eq. (3-18), 

u,-u. - Q+W. 

That is, Q is positive when there is a heal How Into I he system and W is posllive when 
work is done on the system. The increase in internal energy is then equal to the sum 
of the heat How into the system and the work done on the system. This is a more 
logical sign convention and it is used by some authors. 

If the heal flow and the work are both very small, the change in internal energy 
is very small also and Eq. (l- 18) becomes 

dU co d'Q - d'W. (3-19) 

Equation (3-18), or its differential form, Eq. (3-19), is commonly referred to 
as the analytical formulation of the first law of thermodynamics (and we shall 
continue to refer to it as such); but, in fact, these equations are nothing more than 
the dtjinltions of Q or d' Q and do not constitute a physical law. The true significance 
of the first law lies in the statement that the work is the same in all adiabatic pro­
cesses between any two equilibrium states having the same kinetic and potential 
energy. 

T here is no restriction on the nature of the process to which Eqs. (l-18) and 
(3-19) refer; the process may be reversible or irreversible. If it Is reversible, the 
only work is configuration work, and (for a P VT system) we can replace d'Wwilh 
P dV. Hence in a reversible process, 

dU = d'Q - PdV. (3-20) 

More generally, for a system of any nature in a reversible process, 

dU - d' Q - I y dX. (3-21) 
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3-9 HEAT FLOW DEPENDS ON THE PATH 

Equations (3-18) and (3-19) can be written 

Q-(U.-U.)+W, 

d'Q - dU + d'W. 

For a given pair of initial and final states, the values of (U• - u.), or of dU, 
arc the same for all processes between the states. However, as we have seen, the 
quantities W or d'Warc different for different processes and as a consequence the 
heat fl ows Q ord'Q arc different also. Thus d'Q,like d'W, is an inexact differential 
and Q is not a property of a system. Heat, like work, is a path function, not a 
point function, and it has a meaning only in connection with a process. The net 
heat flow Q into a system in any process between states a and b is the sum of the 
d'Q's in each stage of the process, and we can write 

Q•fd'Q. 

However, as with the work Win a process, we cannot set the integral equal to 
the difference between the values of some property of the system in the initial and 
final states. Thus suppose we were to arbitrarily pick some reference state of a 
system and assign a value Q, to the "heat in the system" in this reference state. 
The "heat" in soine second state would then equal the "heat" Q0, plus the heat 
flow Q into the system in a process from the reference state to the second state. 
But the heat flow is different for different processes between the states and it is 
impossible to assign any definite value to the "heat" in the second state. 

If a process is cyclic, its end states coincide; there is no change in the internal 
energy; and from Eq. (3-18), Q - W. In such a process, the net heat flow Q into 
the system equals the net work W done by the system. But since the net work W 
is not necessarily zero, the net heat flow Q is not necessarily zero, and all we can 
say is that 

This is analogous to the corresponding expression for the work Win a cyclic process 
and is in contrast to the integral of an exact differential around a closed path, which 
is always zero. 

3-10 THE MECHANICAL EQUIVALENT OF HEAT 

Suppose that dissipative work "'• is done on a system, in an adiabatic process at 
constant configuration. This will be the case, for example, if work is done on a 
friction device immersed in a fluid kept at constant volume and thermally insulated. 
The heat flow Q in the process is zero, the configuration work is zero, and the dissi­
pative work is the total work. Then if u. and u. are respectively the initial and final 
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values of the internal energy of the system, and since work done on a system is 
inherently negative, we can write 

u. - u. = I W41- (3-22) 

That is, the increase in internal energy of the system equals the magnitude of the 
dissipative work done on the system. 

On the other hand, in a process in which the configuration work and dissipative 
work arc both zero, but in which there is a heat flow Q into the system, the change 
in internal energy is 

u. - u. ~ Q. (3-23) 

If Eqs. (3-22) and (3-23) refer to the same pair of end states, the heat flow Q 
in the second process equals the dissipative work in the first. From the standpoint 
of the system, it is a matter of indifference whether the internal energy is increased 
by the performance of dissipative work, or by an inflow of heat from the sur­
roundings. 

These two processes illustrate what is meant by the common but imprecise 
statement that in a dissipative process, "work is converted to heat." All one cao 
really say is that the change in internal energy of a system, in a dissipative process, 
is the same as if there had been a heat flow Q into the system, equal in magnitude 
to the dissipative work. 

As another special case, suppose that d issipative work W4 is done on a system 
at constant configuration, and at the same time there is a heat flow Q out of the 
system, equal in magnitude to W4 • The internal energy of the system then remains 
constant. This will be the case if a resistor carrying a current is kept at constant 
temperature by a stream of cooling water. A heat flow out of the resistor into the 
cooling water is equal in magnitude to the dissipative work done on the resistor, 
and it is customary to say in this case also that "work is converted to heat." 

For many years, the quantity of heat flowing into a system was expressed in 
terms of calories, or British thermal units, I caloric being defined as the heat flow 
into I gram of water in a process in which its temperature was increased by 1 
Celsius degree, and I Btu as the heat ftow into I pound-mass of water when its 
temperature was increased by I Fahrenheit degree. Careful measurements showed 
that these quantities of heat varied slightly with the particular location of the one· 
degree interval, for example, whether it was from o•c to l°C, or from 50°C to 
51°C. To avoid confusion, the IS-degree calorie was defined as the heat flow into 
I gram of water when its temperature was increased from 14.5°C to 15.5°C. 

If the same rise in temperature is produced by the performance of dissipative 
work, the best experimental measurements find that 4.1858 joules arc required, a 
value that is referred to as the mechanical fiJllivalent of heat. We can then say, 

I 15-dcgree caloric = 4.1858 joules. (3-24) 

This relation between the joule and the 15-dcgrce caloric is necessarily subject 
to some experimental uncertainty. For this reason, and also so as not to base the 
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definition of the caloric on the properties of some particular material (i.e., water), 
an international commission has agreed to define the New International Steam 
Table calorie (the IT caloric) by the equation 

I IT calorie .. .h watt hour - Y.N joules (exactly). 

Then to five significant figures, 

liT calorie • 4. I 860 joules. (3-25) 

The apparently arbitrary figure of 860 was chosen so that the IT caloric would 
agree closely with the experimental value of the IS-degree calorie. 

Since the relations between the joule and the foot-pound, between the gram 
and the pound-mass, and between the Celsius and Fahrenheit degrees are also 
matters of definition and not subject to experimental uncertainty, the British 
thermal unit is also defined exactly in terms of the joule. To five significant figures, 

I Btu = 778.28 foot-pounds. (3-26) 

This definition of the calorie and the Btu as exact multiples of the joule has 
the effect of making these units obsolete; and in current experimental physics, 
quantities of heat are customarily expressed in joules. However, the caloric and 
the Btu are so deeply embedded in the scientific and engineering literature that in 
all probability it will be many years before their use disappears enlirely. 

For many years it was thought that heat was a substance contained in material. 
The first conclusive evidence that it was not was given by Count Rumford* who 
observed the temperature rise of the chips produced while boring cannons. He 
concluded that heat flow into the chips was caused by the work of boring. The 
earliest p recision measurements of the mechanical equivalent of heat wcre~ade by 
J oule, who measured the mechanical dissipative work done on a system of paddle 
wheels immersed in a tank of water and calculated, from the known mass of water 
and its measured rise in temperature, the quantity of heat that would have to flow 
into the water to produce the same change in internal energy. The experiments 
were performed in a period from 1840 to 1878, and although Joule expressed his 
results in English units, they are equivalent to the remarkably precise value of 

I calorie ,. 4.19 joules. 

(The energy unit, I joule, was not introduced or named until after Joule's death, 
and the standardized IS-degree calorie had not been agneed on at the t ime of 
Joule's work.) 

However, the true significance of Joule's work went far beyond a mere deter­
mination of the mechanical equivalent of heat. By means of experiments like those 
above, and others of a similar nature, Joule demonstrated conclusively that there 
was in fact a direct proportion between "work" and "heat," and he succeeded in 

• Benjamin Thompson, Count Rumford, American physicist (1753-1814). 
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dispelling the belief, current at that time, that " heat" was an invisible, weightless 
fluid known as "caloric." It may be said that Joule not only determined the value 
of the mechanical equivalent of heat but provided the experimental proof that such 
a quantity actually existed. 

3-11 HEAT CAPACITY 

Provided no changes of phase take place in a process, and except in certain special 
cases, the temperature of a system changes when there is a heat flow into the system. 
The mean heat capacity C of a system, in a given process, is defined as the ratio 
of the heat flow Q into the system, to the corresponding change in temperature, AT: 

(3-27) 

The term "capacity" is not well chosen because it implies that a system has a 
definite "capacity" for holding so much heat and no more, like the "capacity" of 
a bucket for water. A better term, following the usage in electricity, would be "heat 
capacitance, or uthermal capacitance." 

The true heat capacity at any temperature is defined as the limit approached 
by Cas t.Tapproaches zero: 

Q d' Q 
C=lim -=-. 

•T-of.T dT 
(3-28) 

The MKS unit of Cis I joule per kelvin_{l J K- 1). 

Note carefully that the ratio d'QfdT cannot be interpreted as the derivative 
of Q with respect to T, since Q is not a property of the system and is not a function 
ofT. The notation d'Q simply means "a small flow of heat," and dT is the corre­
sponding change in temperature. 

A process is not completely defined by the temperature difference between its 
end states; and for a given temperature change dT the heat flow d'Q may be posi­
tive, negative, or zero, depending on the nature of the process. The heat capacity 
of a system therefore depends both on the nature of the system and on the particular 
process the system may undergo, and for a given system it may have any value 
between - oo and + oo. 

The heat capacity in a process in which a system is subjected to a constant 
external hydrostatic pressure is called the heat capacity at constant pressure and is 
represented by C1 •. The value of Cp, for a given system, depends both on the 
pressure and on the temperature. If a system is kept at constant volume while heat 
is supplied to it, the corresponding heat capacity is called the heat capacity at 
constant volume and is represented by c.,. Because of the large stresses set up when 
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a solid or liquid is heated and not allowed to expand , direct experimental deter­
minations ofCy for a solid or liquid are difficult and Cp is the quantity generally 
measured. However, as we shall show later, if Cp is known, the heat capacity 
for any other process can be calculated if, in addition, we know the equation of 
state of the system. 

To measure the heat capacity of a system experimentally, we must measure 
the heat d'Q flowing into the system in a process, and measure the corresponding 
change in temperature dT. The most precise method of measuring the heat flowing 
into a system is to insert a resistor into the system, or surround it with a coil of 
resistance wire, and measure the electrical dissipative work d'W- J I'R dt done 
on the resistor. As we have shown, if the state of the resistor does not change, 
the heat flow d'Q out of the resistor and into the system is equal in magnitude to 
the electrical work d' W. In such an experiment, the temperature of the resistor 
increases along with that of the system so that its internal energy does not remain 
constant and the heat flowing out of it into the system is not exactly equal to the 
electrical work. The difference, however, can be made negligibly small or a correc­
tion can be made for it. A correction must also be made for the heat flow between 
the system and the surroundings. 

The concept of heat capacity applies to a given system. The specific heat 
capacity, or the heat capacity per unit mass or p tr mole, is characteristic of the 
material of which the system is composed and is represented by Cp or c •. The MKS 
unit of specific heat capacity is I joule per kelvin, per kilogram (I J kg-1 K- 1) or 
I joule per kelvin, per kilomole (I J kilomole- • K- 1) . 

Figure 3- 10 shows the variation with temperature of the molal specific heat 
capacities cp and c. for copper, at a constant pressure of I atm. At low tempera­
tures the two arc nearly equal, and near absolute zero both drop rapidly to zero. 
(Compare with the graph of expansivity in Fig. 2- 16.) This behavior is charac­
teristic of most solids, although the temperature at which the sharp drop occurs 
varies widely from one substance to another. At high temperatures, cp continues 
to increase while c. becomes nearly constant and equal to about 25 x 10• J 
kilomole-• K- 1• It is found that this same value of c. is approached by many 
solids at high temperatures and it is called the Dulong* and Petitt value, after the 
men who first discovered this fact. 

Although there seems to be little connection between the heat capacity of 
solids and the properties o f gases at low pressure, it will be recalled that the gas 
constant R equals 8.31 x 10' J kilomoJe- • K- 1 , and 25 x 10' J kilomolc- 1 K-1 is 
almost exactly three times this; that is, the specific heat capacity at constant volume 
is nearly equal to 3R at high temperatures. We shall show in Section 9-8 that on 
theoretical grounds a value of 3R is to be expected for c. for solids at high tempera­
tures. 

* Pierre L. Dulong, French chemist (178l-1838). 
t Alexis T. Petit, French physicist (1791-1820). 
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Tcmperalure (K) 

Fig. 3-10 Graphs of c. and cp for copper as funclions of tern· 
perature at a constant pressure of 1 atm. 

3-11 

Figure 3-11 shows the change with pressure of Cp and c. for mercury, at coo­
stan! temperature. The pressure variation is relatively much smaller than the 
variation with temperature. 

Some values of cp and c. for gases, also expressed in terms of R, are given in 
Table 9-1 for temperatures near room temperature. It will be noted that for 
monatomic gases cpfR"" 5/2 - 2.50, c.fR ""'3/2 • 1.50, and for diatomic 
gases, cpfR""' 1/2 = 3.50, c.fR ~'« 5/2 = 2.50. 
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Fig. 3-11 Graphs of c. and cp for mercury as functions of pressure 
at a constant temperature of o•c. 
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The total quanti ty of heat ftowing into a system, in any process, is given by 

I J,"'· f"'• Q - d'Q ~ C dT - n ), c dT, 
2', r, 

(3-29) 

where Cis the heat capacity appropriate to the process and cis the corresponding 
molal value. O ver a temperature interval in which C can be considered constant, 

Q • C(T1 - T,) = nc(T1 - T1). (3-30) 

The larger the heat capacity of a system, the smaller its change in temperature 
for a given flow of heat, and by making the heat capacity very large indeed, the 
temperature change can be made as small as we please. A system of very large 
heat capacity is referred to as a Mat rnervoir, with the implication that the heat 
flow into or out of it can be as large as we please, without any change in the tem­
perature of the reservoir. Thus any reversible process carried out by a system in 
contact with a heat reservoir is isothermal. 

Heat capacities corresponding to C P and c, can be defined for systems other 
than PVT systems. Thus in a process in which the magnetic field intensity .Jt' is 
constant, a magnetic system has a heat capacity C .Jf'• If the magnetic moment M 
is constant, the corresponding heat capacity is C M· For a polymer or stretched 
wire, the heat capacities are those at constant tension , c,, and at constant length, 
CL. 

3-12 HEATS OF TRANSFORMATION. ENTHALPY 

In Section 2-S, the changes of phase of a pure substance were described but no 
reference was made to the work or heat accompanying these changes. We now 
consider this question. 

Consider a portion of an isothermal process in either the solid-liquid, liquid­
vapor, or solid-vapor region, and let the process proceed in such a direction that 
a mass m is converted from solid to liquid, liquid to vapor, or solid to vapor. The 
system then absorbs heat , and the Mat of transformation I is defined as the! ratio of 
the heat absorbed to the mass m undergoing the change of phase. (One can also 
define the molal heat of transformation as the ratio of the heat absorbed to the 
number of moles n undergoing a change.) The unit of heat of transformation is I J 
kg-1 o r I J kilomole- 1• 

Changes of phase are always associated with changes in volume, so that work 
is always done on or by a system in a phase change (except at the critical point, 
where the specific volumes of liquid and vapor are equal). If the change takes 
place at constant temperature, the pressure is constant also and the specific work 
done by the system is therefore 

w- P(v1 - v,), 
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where v1 and v,. are the final and ini tial specific volumes. Then from the first law, 
the change in specific internal energy is 

u1 - u1 = I - P(v1 - vJ. 

This equation can be written 

I .. (u1 + PvJ - (u1 + PvJ. 

The sum (u + Pv) occurs frequenlly in thermodynamics. Since u, P, and v are 
all properties of a system, the sum is a property a lso and is called the specific 
enthalpy (accent on the second syllable) and is denoted by IJ: 

h ., u + Pv, (3- 31) 

and the unit of h is also I joule per kilogram or I j oule per kilomole. 
Therefore, 

1 - h,- h,. (3-32) 

The heat of transformation in any change of phase is equal to the difference 
between the enthalpies of the system in the two p hases. We shall show later that 
this is a sqtcial case of the general property of enthalpy that the heat flow in any 
reversible rsobaric process is equal to the change in enthalpy. 

We shall use the notation 111, 111, 111 to represent heats of transformation from 
solid to liquid, liquid to vapor, and solid to vapor. These are called respectively 
the heats of fusion, vaporization, and sublimation. Particular properties of the solid, 
liquid , and vapor phases will be distinguished by one, two, or three primes respec­
tively. The order of the numbers of primes follows the order of the p hases of a 
substance as the temperature is increased. 

As an example, consider the change in phase from liquid water 10 water vapor 
at a temperature of I00°C. The heat of vaporizarion at this temperalure ~ 

10 - h" - h• - 22.6 x J()S J kg-'. 

The vapor pressure P at lhis lemperalure is I aim or 1.01 x lOS N m- 1, and the 
specific volumes or vapor and liquid are •" - 1.8 m• kg-1 and , • - to-• m• kg-'. 
The work in the phase change is lhen 

w - P(u" - u•) - 1.7 x lOS J kg-1• 

The change in specific inlernal energy ~ 

,.- - u• - 1,. - w - 20.9 x 10' J kg-1• 

Thus aboul 92 Y. of the heal or lransformation ~ accounled for by the increase in 
inlemal energy, and aboul BY. by 1he work lhat mus1 be done 10 push back lhe 
almosphere to make room for lhe vapor. 

Figure 3-12 is a graph of the heat of vaporization of water as a function of 
temperature. It decreases with increasing temperature and becomes zero at the 
critiCal temperature where the properties of liquid and vapor become identical. 
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25 K tO' 

400 

Fig. 3-Jl Latent heat of vaporization or water as a function 
of temperature. 1be latent heat becomes zero at the critical 
temperature r, • 374"C. 

Since enthalpy his a state function , its value depends only o n the state of the 
system. If a system performs a cyclic process, the initial and final enthalpies arc 
equal and the net enthalpy change in the process is zero. This makes it possible to 
derive a simple relation between the three heats of transformation at the triple 
point. 

Consider a cyclic process performed around the triple point and close enough 
to it so that the only changes in enthalpy occur during phase transitions. Let the 
substance, initially in the solid phase, be first transformed to the vapor phase, 
then to the liquid phase, and finally returned to its initial state in the solid phase. 
(See Fig. 2-10.) There is a heat flow into the system in the first process and the 
increase in specific enthalpy is 11h1 ~ 1.,. In the second and third processes there 
is a heat flow out of the ·system, and the corresponding changes in enthalpy are 
11h, = -I,. and 1111, = -111• Then since 

11h, + 11h, + 11h, - 0, 
it follows that 

1 .. - 1, - 1 .. - 0, 
or 

1., = 1., + 1.,. (3-33) 

That is, the heat of sublimation, at the triple point, equals the sum of the heat of 
vaporization and the heat of fusion. 
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S-13 GENERAL FORM OF THE FIRST LAW 

Up to now we have considered only processes in which the potential and kinetic 
energies of a system remained constant. We now relax this constraint. In mechanics, 
the work-energy theorem states that the increase in kinetic energy A£• of a system 
equals the work W done on the system. In the sign convention of thermodynamics, 
where work done by a system is positive, we have 

6E.~ -w. 
More generally, the intemal energy of a system, as well as its kinetic energy, 

can change in a process, and can change as a result of a flow of heat into the system 
as well as by the performance of work. Then in general, 

6U + 6E. = Q - w. 
If conservative forces act on a system, the system has a potential energy and 

the work of the conservative forces (in the sign convention of thermodynamics) 
equals the change in potential energy 6E0 • Let us define a quantity w• as the total 
work W, minus the work w. of any conservative forces: 

w•-w-w. or w-w•+w •. 
Then 

6U + 6E• = Q - w• - w •. 
Now replace the "work" term w. with the change in potential energy 6E• 

and transfer this term to the "energy" side of the equation. This gives 

t:.U + AE• + 6E• • Q - w•. 
We now define the Iota/energy E of the system as the sum of its internal energy, its 
kinetic energy, and its potential energy: 

E• U+E.+Ep. 
Therefore 

AE- 6U + AE• + 6£0 ; 

and finally, if E, and E. represent the final and initial values of the total energy in a 
process, 

6E • E, - E. = Q - w•. (3-34) 

If the heat flow and the work are both small, 

dE .. d'Q- d' W*. (3-35) 

If the kinetic and potential energies are constant, 6E .. 6U and w• = W, 
so Eqs. (3-34) and (3-35) reduce to 

u,-u. -Q-w, 
dU • d'Q - d'W. 
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Equations (3-34) and (3-3S) are often referred to as the general form of the 
first law of thermodynamics, but they are better described as generalizations of the 
work-energy theorem of mechanics. That is, the principles of thermodynamics 
generalize this theorem by including the internal energy U of a system as well as 
its kinetic and potential energies, and by including the heat Q flowing into the 
system as well as the work w•. Thus the change in the total energy 11£ of a system 
equals the new fl ow of heat Q into the system, minus the work w• done by the 
system, exclusive of the work of any conservative forces. 

If a system is completely isolated, that is, if it is enclosed in a rigid adiabatic 
boundary and is acted on only by conservative forces, the heat Q and the work 
w• are both zero. Then t:.E = 0 and the total energy of the system remains con· 
stant. This is the generalized form of the principle of conservation of energy: the 
total energy of an isoloted system is constant. In the special case in which the 
kinetic and potential energies are constant, as for a system at rest in the laboratory, 
the internal energy U is constant. 

Since Eqs. (3-34) and (3-35) do not apply to an isolated system, they should 
not be referred to as expressing the principle of conservation of energy. 

3-14 ENERGY EQUATION OF STEADY FLOW 

As a first illustration of the application of the general form of the first law, con· 
sider the apparatus .shown schematically in Fig. 3-13. The large rectangle repre· 
sents a device through which there is a flow of fluid. No restrictions are placed on 
the nature of the device, and we assume only that a steady state exists, that is, the 
state of the fluid at any point does not change with time. The fluid enters at an 
elevation z., with a veloci ty "f/'1 and at a pressure P1, and it leaves at an elevation 
z1 with a velocity "f/'2 and at a pressure P1 • During the time in which a mass m 
passes through the device, there is a heat flow Q into the fluid, and mechanical 
work w,. (the so-called shafl11'ork) is done by the fluid. 

Let us imagine that at a certain instant pistons are inserted in the pipes through 
which the fluid enters and leaves, and that these are moved along the pipes with the 
veloci ties "f/'1 and .Y,. The distances moved by the pistons during a time interval 
in which the mass m enters and leaves are respectively x1 and x1. The arrows .F1 

and.~. represent the forces exerted on the pistons by the adjacent fluid. 
The work done by the forces 9'1 and F , is 

9'1x1 - 9'1x1 = P,A,x, - P1A1x 1 = P,V, - P1 V., 

where V1 and V, arc respectively the volumes occupied by the mass m on entering 

~~~ I 
The gravitational force on the mass m is mg, where g is the local acceleration 

of gravity, and the work of this force when a mass m is lifted from elevation z1 

to elevation z, is 
w. = mg(z, - z1). 
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r 
Fi&:. 3-13 Steady flow process. 

The total work W, including the shaft work, is 

W = w .. + P,V, - P1V1 + mg(z, - zJ. 

T 
I 

3-14 

The work w•, or the total work minus the work W, of the conservative gravi­
tational force, is 

w• • w,. + P,V,- P1V1• 

The increase in internal energy of the mass m is 

D.U = m(u, - u1), 

where u1 and u, are the respective specific internal energies. 
The increase in kinetic energy is 

t:.E. ~ lmW:- 'f'1), 

and the increase in potential energy is 

D.E0 - mg(z, - zJ - W0 • 

We then have from Eq. (3- 34) 

m(u, - u,) + im(1'":- 'f'1) + mg(z1 - z,) ~ Q - W.. - P,v, + P1 v,. 
(3-36) 

Let v, and v, be the specific volumes of the ftu id o n entering and leaving, and le t 
q and w,~o represent the heat flow and shaft work, per uni t mass. Then 

V1 = mv1 , Y1 = mo1 , Q = mq, w, .. = mw • .,. 
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After inserting these expressions in Eq. (3-36} canceling m, and rearranging 
terms, we have 

(u, + Pv, + 11'": + gzJ- (u1 + Pv, + 111 + gz,)- q - w,h. 

Substituting the specific enthalpy h for u + Pv, Eq. (l-36} can be written 

(h1 + ~~ + gzJ - (h1 + 111 + gzJ = q - w,0• (l-37) 

This is the ~nugy equation for st~ady flow. We now apply it to some special cases. 

The turbine The temperature in a steam turbine is higher than that of Jits sur­
roundings but the flow of fluid through it is so rapid that only a relatively small 
quantity of heat is lost per unit mass of steam and we can set q - 0. The shaft 
work is o f course not uro, but differences in elevation between inlet and outlet 
can usually be neglected. With these approximations, Eq. (l-37} becomes 

-w.,. - (h, - h,} + H~ - 7'i). (l-38} 

The shaft work obtained from the turbine, per unit mass of steam, depends on the 
enthalpy difference between inlet and outlet, and on the difference between the 
squares of the inlet and exhaust velocities. 

----------·· --------Fig. 3-14 Flow through a nozzle. 

Flow through a nozzle T he steam entering a turbine comes from a boiler where its 
velocity is small, and before entering the turbine it is given a high velocity by flowing 
through a nozzle. Figure 3- 14 shows a nozzle in which steam enters at a velocity 
1'"1 and leaves at a veloci ty 1'"1 . The shaft work is zero, the heat flow is small and 
can be neglected , and differences in elevation are small. Hence for a nozzle 

1'": ~ j'"~ + 2(h, - h.}. (3-39) 

Bernoulll 's• equation Consider the flow of an incompressible fluid along a pipe 
of varying cross section and elevation. No shaft work is done, and we assume the 
flow to be adiabatic and frictionless. Then 

h, + !11 + gz1 ~ h, + !1'": + gz, =constant, 

or, wri ting out the expression for the enthalpy, 

u + Pv + !1'"' + gz - constant. 

• Daniel Bernoulli, Swiss mathematician (1700-1782). 
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The change in internal energy of a system in any process equals the heat flow 
into the system minus the sum of the configuration work and the diss ipative work. 
For a rigid body or an incompressible fluid, the configuration work is necessarily 
zero since the volume is constant. If the dissipative work and the heat flow a re both 
zero, as in this case, the internal energy is constant. Therefore 

Pu + l1"' + gz = constant, 

and replacing u by 1/ p, where p is the densi ty, we have 

P + tp1"' + pgz = constant. {3-40) 

This is Bernoulli's equation for the steady flow of an incompressible frictionless 
fluid. 

PROBLEMS 

3-1 Compute the work done aga inst atmospheric pressure when 10 kg of water is con· 
verted to steam occupying 16.7 m'. 

3-% Steam at a constant pressure of 30 atm is admilled 10 the cylinder of a steam engine. 
The length of the stroke is 0.5 m and the diameter of the cylinder is 0.4 m. How much 
work in joules is done by the steam per stroke? 
3-3 An ideal gas originally a t a temperature T 1 and pressure P1 is compressed reversibly 
against a piston to a volume equal to one-half of its original volume. The temperature of 
the gas is varied during the compression so that at each instant the relation P - A V is 
satisfied, where A is a constant. (a) Draw a diagram of the process in the P-Vplane. (b) 
Find the work done on the gas, in terms of n, R, and T1• 

3-4 Compute the work done by the expanding air in the left side of the U-tube in 
Problem 2-4. Assume the process to be reversible and isothermal. 

3-5 Compute the work of the expanding gas in the left side of the U-tube in Problem 2-S. 
The process is reversible and isothermal. Explain why the work is not merely that required 
to raise the center of gravity of the mercury. 

3-6 An ideal gas, and a block of copper, have equal volumes of 0.5 m' at 300 K and 
atmospheric pressure. The pressure on borh is increased reversibly and isothermally to 
S a tm. (a) Explain with the aid of a P·V diagram why the work is not the same in the two 
processes. (b) In which process is the work done greater? (c) Find the work done on each 
if the compressibility of the copper is 0. 7 x 10-• atm- 1• (d) Calculate the change in 
volume io each case. 
3-7 (a) Derive the general expression for the work per kilomole of a van der Waals gas 
in expanding reversibly and at a constant temperature T from a specific volume v1 to a 
specific volume u,. (b) Using the constants in Table 2-l, find the work done when 2 
kilomoles of ~team expand from a volume of 30m' to a volume of 60 m' at a temperature 
of l00°C. (c) Find the work of an ideal gas in the same expansion. 
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3-8 (a) Show that the work done in an arbitrary process on a gas can be expressed as 

d'W- PVPdT - PVKdP. 

(b) Find the work of an ideal gas in the arbilrary process. 

3-9 (a) Derive an equation similar to that in Problem 3-8 for the worlc d' W when the 
temperature of a stretched wire changes by dT and the tension changes by d JF. (b) Find 
the expression for the work when the temperature is changed and the tension is held 
constant. What is the algebraic: sign of W if the temperature increases? (c) Find the 
expression for the work when the tension is changed isothermally. What is the algebraic 
sign of W if the tension d«:reases? 

3-10 (a) Derive an equation similar to that in Problem 3-8 for the work d' W when the 
temperature of a paramagnetic salt changes by dT and the applied magnetic intensity 
changes by dJt'. (b) Find the expression for the work when the temperature is changed 
and the magnetic intensity is held constant. What is the algebraic: sign of W when the 
temperature rises? What is doing work in this process? (c) Find the expression for the 
work when the magnetic intensity is increased isothermally. What is the algebraic$ign of 
W when the intensity is decreased? 

3-ll Calculate the work necessary to reversibly and isothermally double the magneti­
zation in a slender cylindrical paramagnetic rod which fills the volume V o f a coaxial 
cylindrical solenoid of N turns having no resistance. Assume that the magnetic intensity 
is uniform inside the solenoid and neglect end effects. How does the problem change if the 
resi5tance of the coil must be considered? 

3-Jl Show that d'W • -EdP by calculating the work necessary to charge a parallel 
plate capacitor containing a dielectric. 

3-13 Calculate the work necessary to slowly increase the volume of a spherical rubber 
balloon by 20 percent. The initial radius of the balloon is 20 em and the surface tension of 
a thin rubber sheet can be considered to be 3 x 10' N m-1• 

3- 14 A volume of 10m' contains 8 kg of oxygen a t a temperature of 300 K . Find the 
work necessary to decrease the volume to S m1, (a) a t a con5tant prrssure and (b) at 
constant temperature. (c) What is the temperature at the end of the process in (a)? (d) 
What is the pressure at the end of the process in (b)? (e) Show both processes in the P- Jl 
plane. 

3-15 On a P-V diagram starting from an initialstate P0 V0 plot an adiabatic expansion to 
2 Jl0 , an isothermal expansion to 2 J10 and an isobaric expansion to 2 Jl0• (a) Use this graph 
to determine in which process the least work is done by the system. (b) If. instead, the 
substance was compressed to V.,J2, in which process would the least work be done? (c) 
Plot the processes of parts (a) and (b) on a P-T diagram starting from P,T,. Indicate 
expansions and compressions and be carrful tO show relative positions at the endpoints 
of each process. 

3-16 The temperature of an Ideal gas at an initial pressure P1 and volume Jl1 is increased 
at constant volume until the pressure is doubled. The gas is then expanded isothermally 
unt il the pressure drops to Its o riginal value, where it is compressed at constant pressure 
until the volume returnsto its initial value. (a) Sketch theseprocessesinthe P- Jiplaneand 
in the P-T plane. (b) Compute the work in each process and the net work done in the 
cycle ir" - 2 kilomoles, P1 - 2 atm and v, - 4 m'. 
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3-17 (a) Calculate the work done by one kilomole of an ideal gas in reversibly traversing 
the cycle shown in Fig. 3- JS ten times. (b) Indicate the direction of traversal a round the 
cycle if the net work is posi tive. 
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Figure 3-IS 

3-18 (a) Calculate the work done on I em• of a magnetic material in reversibly traversing 
the cycle shown in Fig. 3-16. (b) Indicate the direction in which the cycle must be traversed 
if the net work is positive. 
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Figure 3-16 

3- 19 Calculale the work necessary to isothermally and reversibly remove a paramagnetic 
slender rod from a close fitting coaxial solenoid of zero resistance while the magnetic 
intensity X' remains constant. Assume that the rod obeys Curie's law. 

3-20 Consider only adiabatic processes which lransform a system from stale o 10 slated 
as shown in Fig. 3-17. The two curves a·c·e and b·cifare reversible adiabatic processes. 
The processes indicated with cross-hatches are not reversible. (a) Prove that the total 
work done along paths o-b·d, a·MI, o-c·e·f-<1 is the same. (b) Show that the configuration 
work along a·b - c·d - e-f = 0. (c) Show that the dissipative work a long path c·d is 
greater than that along path a·b and less than that along path ef. 
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3-21 Make a sketch of the changes of internal energy as the volume of the s>'ftem of the 
previous problem changes during the processes shown in Fig. 3-17. 

3-ll Calculate the change in internal energy of a fluid in an adiabatic container when a 
current o f 10 A is passed for 70s through a 4-0 resistor in contact with the fluid. 

3-23 A gas explosion takes place inside a well-Insulated balloon. As a result, the balloon 
expands 10 percent in volume. Does the internal energy of the balloon increase, decrease, 
or stay the same; or is there enough information given to determine the change in internal 
energy? Explain your answer. 

3-24 A mixture of hydrogen and oxygen is enclosed in a rigid insulating container and 
exploded by a spark. The temperature and pressure both increase. Neglect the small 
amount of energy provided by the spark itsel f. (a) Has there been a How of heal into the 
system? {b) Has any work been done by the system ? (c) Has there been any change in 
internal energy U of the system 7 

3-1.5 The water in a rigid, insulated cylindrical tank is set in rotation and left to itself. 
It is eventually brought to rest by viscous forces. The tank and water constitute the 
system. (a) Is any work done during the process in which the water is brought to rest? 
(b) Is there a flow of heat? (c) Is there any change in the internal energy U? 

3-26 When a system is taken fro m state a to state b, in Fig. 3- 18 along the path a-e·b, 
80 J of heat flow into the system, and the system does 30 J of work. (a) How much heat 
flows into thesystem along path a-d-b, if the work done is 10 J7 (b) The system is returned 
from state b to state a along the curved path. The work done on the system is 20 J . Does 
the system absorb or liberate heat and how much? (c) If u. - Oand u. - 40 J , lind the 
heat absorbed in the processes a-d and d-b. 

3-27 Compressing the system represented in Fig. 3- 19 along the adiabatic path a-c re­
q uiresiOOOJ. Compressing the system along b-e requires 1500 J but 600 J of heat flow out 
of the system. (a) Calculate the work done, the heat absorbed, and the internal energy 
change of the system in each process and in the total cycle a-b-c-a. (b) Sketch this cycle 
on a P· V diagram. (c) What are the limitations on the values that could be specified for 
process b-e given tha t 1000 J are required to compress the system along a·c. 
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3-28 The molal specific heat capacity cp of most substances (except at very low tem­
peratures) can be satisfactorily expressed by the empirical formula 

cp - a + 2bT - cr-•, 
where a, b, and care constants and Tis the Kelvin temperature. (a) In terms of a, b, and 
c, find the heat required to raise the temperature of n moles of the substance at constant 
pressure from T1 to T,. (b) Find the mean specific heat capacity between T1 and T1• (c) 
For magnesium, the numerical values of the constants arc a = 25.7 x 10', b - 3.13, 
c - 3.27 x !OS, when cp is in J kilomole- 1 K- 1• Find the true specific hea t capacity of 
magnesium f t 300 K, and the mean specific heat capacity between 300 K and 500 K. 

3-29 The specific heat capacity c, or solids at low temperature is given by the equation 

c,- A(~)'. 
a relation known as the Debye T' law. The quantity A is a constant equal to 19.4 x 10' 1 
kilomole- 1 K-1 and 0 is the "Debye* temperature," equal to 320 K for NaCI. What is the 

• Peter J . W. Dcbye, Dutch chemist (1884-1966) 
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mola l specific heatcapacityatconstant volumeofNaCI (a)atlO K, (b) at SO K? (c) How 
much heat is required to raise the temperature or 2 kilomoles or NaCI from 10 K to SO K, 
at constant volume? (d) What is the mean specific heat capacity at constant volume over 
this temperature range? 

3-30 Use Fig. 3- 10 to estimate the energy necessary to heat one gram or copper from 
300 to 600 K (a) at constant volume, (b) at constant pressure. (c) Determine the change 
in intemalen<rgy or the copper in each case. (d) Why is cp larger than •• 1 
3-31 Electrical energy is supplied to a thermally insulated resistor at the constant rate of 
~walls*, and the temperature Tor the resistor is measured as a function or time 1. (a) 
Derive an expression for the heat capacity or the resistor In terms or the slope or the 
tempera ture-time graph. (b) By means or a heating coil, heat is supplied at a constant 
rate or 31.2 walls to a block or cadmium or mass 0.5 kg. The temperature is recorded at 
certain intervals as follows: 

0 IS 45 lOS 165 22S 285 345 405 465 S2S 

34 45 57 80 100 118 137 ISS 172 191 208 

Construct a graph or Tversus 1, and measure the slopes at a sufficient number or points 
to plot a graph or the molal specific heat capacity or cadmium, at constant pressure, as a 
function of temperature. The atomic weight or cadmium Is 112. 

3-31 A fictional metal or atomic weight 27 has a density or 3000 kg m-1• The heat or 
fusion is 4 x JO' J kg-1 at the melting point (900 K), and at the boiling point (1300 K) 
the heat or vaporization is 1.20 x 10' J kg-1• For the solid, cp can be given by 7SO + 
O.S T in J kg-• K-1 and in the liquid cp is 1200 J kg-1 K-• independent or temperature. 
(a) Draw a curve or temperature versus time as 10 g of this metal are heated at a constant 
rate of 1 W from 300 to 1200 K. (b) Determine the amount or heat necessary to cause this 
temperature change. 

3-33 (a) Calculate the heat or sublimation or the metal sample or the previous problem 
assuming that the heats or vaporization and fusion are independent or temperature and 
pressure. (b) Calculate the change or internal energy or the metal sample upon melt ing. 
(c) Calculate the change or internal energy or the metal sample upon vaporizing. Justify 
the approximations which must be made. 

3-34 Use physical arguments to show that ror a system consisting or IWO phases in 
equilibrium the specific heat capacity at constant pressure and the coefficient or thermal 
expansion are infinite. 

3-35 Consider a system consisting of a cylinder containing 0.2 kilomoles or an ideal gas 
and filled with a massless piston of area O.S m1• The force or friction between the piston 
and the cylinder walls is 10 N. The gas is initially at a pressure or I atm and the system is 
to be maintained at300 K. The volume of the system is slowly decreased IOperccnt by an 
external rorce. (a) Computet he work don< on thesystemby the external rorcc. (b)Compute 

• James Wall, Scollish engineer (ln6-I819). 
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the conHg~rational work done on the system. (c) Compute the dissipative work done on 
the system. (d) How do the above answers change if the piston has a mass of I kg and the 
piston is displaced vertically 7 

3-36 A steam turbine receives a steam How of 5000 kg hr-1 and its power output is 500 
kilowatts. Neglect any heat loss from the turbine. Find the change in specific enthalpy of 
the steam flowing through the turbine, (a) if entrance and exist are at the same elevation, 
and entrance and exit velocities are negligible, (b) if the entrance velocity is 60 m s-1, the 
exit velocity is 360m s-1, and the inlet pipe is 3m above the exhaust. 
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8-1 CHEMICAL POTENTIAL 

In this chapter the thermodynamic principles developed in the preceding chapters 
are applied to some simple systems. We begin by relaxing the constraint that the 
system be closed, and we investigate how the relationships developed are changed if 
mass enters or leaves the system or if mass is interchanged between parts of a 
system. 

Suppose that a container of volume Vis divided into two parts by a partition. 
On one side of the partition there are n1 moles of an ideal gas and on the other side 
there are n, moles of a different ideal gas, both gases being at the same temperature 
T and pressure P. 

The partition is now removed, each gas diffuses into the other, and a new equi­
librium stale is eventually attained in which both gases occupy the same total 
volume V. If the gases are ideal,there is no change in the temperature Tor in the 
total pressure P. The final partial pressures of the gases are p1 and p,, and 
p, + p, = P. 

The initial Gibbs function of the system is 

whereg11 andg21 are the initial values of the specific Gibbs function of the respective 
gases. From Eq. (7- 14), 

g11 = RT(ln P + </>1) , g,1 = RT(Jn P + </>,), 

where </>1 and ,p, are functions of temperature only. 
The final value of the Gibbs function is 

and since the final pressure of each gas is its partial pressure p, 

g11 = RT(Inp1 + c/>1), g21 = RT(Jn p, + ¢,). 

The quantities ¢1 and c/>2 have the same value in the initia l and final slates, since they 
are functions of temperature only. 

The molefrac/ions x, and x, of each constituent, in the final state, are defined 
as 

"z "J xl = ---=- . 
n1 + n2 n 

"t "t Xt= --- = -
Ill+ ll2 II 

(8-J) 

where the total number of moles n = 111 + "•· Since both constituents are ideal 
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4-1 THE ENERGY EQUATION 

The specific internal energy u o f a pure substance, in a state of thermodynamic 
equilibrium, is a function only of the state o f the substance and is a property of the 
substance. We shall restrict the discussion for the present to systems whose sta te 
can be described by the properties P, v, and T. 

The equation which expresses the internal energy of a substance as a function 
of the variables defining the state of the substance is called its mergy equation. 
Like the equation of state, the energy equation is different for different substances. 
The equation of state and the energy equation together completely determine a ll 
properties of a substance. The energy equation cannot be derived from the equa­
tion of state but must be determined independently. 

Since the variables P, v, and T are related through the equation of state, the 
values of any two of them suffice to determine the state. Hence the internal energy 
can be expressed as a function of any pair of these variables. Each of these equa­
tions defi nes a surface called the energy surface, in a rectangular coordinate system 
in which u is plotted on one axis while the other two axes may be P and v, P and 
T, or T and o. 

As was explained in Chapter 2, in connection with the P-1>-T surface of a sub­
stance, an energy surface can also be described in terms of the partial derivatives 
ofu, atany point, or the slopes of lines in the surface in two mutually perpendicular 
directions. If the equation of the energy surface is known, the slopes can be found 
by partial differentiation. Conversely, if the slopes or partial derivatives are known 
or have been measured experimentally, in principle the equation of the surface 
can be found, to within a constant, by integration. 

4-2 T AND • INDEPENDENT 

We begin by considering u as a function of Tand v. T hen as explained in Chapter 
2 , the difference in internal energy du between two equilibrium states in which the 
temperature and volume differ by dT and dv is 

du - (
0
"),dr + (~) dv. 

iJT • iJv T 
(4-1) 

The partial derivatives are the slopes of isothermal and isochoric lines on a surface 
in which u is plotted as a function of T and v. 

·We shall show in a later chapter that, making use of the suond law of thermo­
dynamics, the partial derivative (ilujilv)T can be calculated from the equation of 
state. This is not true of the derivative (iJujiJT)., which must be measured experi­
mentally and whose physical significance we now derive. To do this, we make use 
of the first law for a reversible process, 

d'q- du + Pdv. (4-2) 
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When theexpressiDn for au from Eq. (4-1) is inserted in this equation, we obtain 

(4-3) 

In the special case of a proces~ at constant volume, rlv = 0 and d'q = c. dT. 
Then in such a process, 

and hence 

c. dT. = (iJu), dT,, 
iJT . 

(:~).=c .. (4-4) 

Thus the geometrical significance of c. is the slope of an isochoric line on a 
u-T-v surface, and experimental measurements of c. determine this slope at any 
point. This is analogous to the factthatthe slope of an isobaric line on a P-v-T 
surface, (ov/iJT)1• is equal to the expansivity p multiplied by the volume v. Then 
just as this partial derivative can be replaced in any equation by Pv, so can the 
derivative (iJufiJT). be replaced with c.. Equation (4-3) can therefore be written 
for any reversible process as 

d' q = c.dT + [(~)2' + P] dv. (4-5) 

In a process at constant pressure, d'q = cp dTand 

cpdTp = c.dTp + [{~)2' + P] dvp. 

Dividing through by dTp and replacing rlvpfdTp with (iJvfiJT)p, we get 

(4-6) 

It should be noted that this equation does not refer to a process between two 
equilibrium states. It is simply a general relation that must hold between quantities 
that are all properties of a system in any one equilibrium state. Since all of the 
quantities on the right can be calculated from the equation of state, we can find 
c. if c p has been meas.ured experimentally. 

For a process at constant temperature, dT = 0, and Eq. (4-5) becomes 

d'q1' ~ [{~)2' + P]dv1'- {~)/v2' + Pdv1'. (4-7) 

This equation merely states that the heat supplied to a system in a reversible iso­
thermal process equals the sum of the work done by the system and the increase 
in its internal energy. Note that it serves no purpose to define a specific heat 
capacity at constant temperature, c1' by the equation d'q1' • cr dT, because d'qr 
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is not zero while dT = 0. Hence cT = ± co, since d'qT can be positive or negative. 
Jn other words, a system behaves in an isothermal process as if it had an infinite 
heat capacity, since any amount of heat can flow into or out of it without producing 
a change in temperature. 

Finally, we consider a reversible adiabatic process, in which d'q = 0. The 
changes in the properties of the system in such a process will be designated by the 
subscript s, the reason being that the specifi c entropy s (see Section 5-3) remains 
constant in such a p rocess. Equation (4-5) becomes 

(4-8) 

4-3 T AND P INDEPENDENT 

The enthalpy h of a pure substance, like its internal energy u, is a property of the 
substance that depends on the state only and can be expressed as a function of any 
two of the variables P, v, and T. Each o f these relations defi nes an enthalpy surface 
in a rectangular coordinate system in which h is plotted along one axis while the 
other two axes are P and v, P and T , or Tand v. Equa1ions in which the tempera­
ture T and pressure P are considered independent can be derived most directly 
by considering the h-T-P surface. 

The enthalpy difference between two neighboring states is 

dh = ( oh) dT + (!!!) dP. 
oTp oPT 

(4-9) 

We shall show later that the derivative (oh/oP)-r can be calculated from the 
equation of state. To evaluate (oh/oT)p, we start with the definiti on of enthalpy 
for a PvT system: 

h = u + Pv. 

For a ny two states that differ by dv and dP, 

dlr = du + P dv + v dP, 

and when this is combined with the first Jaw, 

d'q- du + Pdu, 
we obtain 

d'q = dlr- udP. (4- 10) 

When the expression for dh from Eq. (4-9) is inserted in this equation, we have 

(4-11) 

which is the analogue of Eq. (4-3). 
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where any dn~H represents the small difference in the number of moles of con· 
stituent i in phase J. Writing out a few terms in the double sum, we have 

p\0 cln\0 + p\'1 dn\11 + · · · + p\'1 dn\'1 

+ pl0 dnl0 + PI" dnl" + · · · + 1'1'1 dnl'1 

(8-27) 

+ p!0 tin!" + P!" dn!" + · · · + 1'!'1 dn!'1 
- 0. 

If each of the d ifferentia ls dnl11 in this formidable equation were independent, 
so that each could be given some arbitrary value, the equation could be satisfied 
only if the cOtfficient p~" of each were zero. Thus although we might find a set of 
,u~'"s such that the sum would be zero for some arbitrary choice of the dn)'1's, it 
would not be zero for a different a rbitrary choice. However, the total amount of 
each constituent in all phases together must be constant, since none of the con­
stituents is being created , destroyed , or transformed. A reduction of the amount 
of a constituent in one phase must result in an increase o f the amount of that con· 
stituent in other phases. Thus the differentials dn~11 are not independent; but 

dn\11 + dtr\" + · · · + dn\' 1 ~ 0, 

dn~u + dn~'!J + · · · + dn~•J - 0, 

dn~' 1 + dn1" + · · · + dn~' 1 
• 0. 

(8-28) 

The solution of Eq. (8- 27) is constrained by the k conditions expressed by these 
condition equatio11s. 

To fin d this solution, the value of dn~11 obtained from each of Eqs. (8-28) is 
substituted into the corresponding line of Eq. (8-27). The first line of Eq. (8-27) 
becomes 

-p\"(dn\11 + dn\11 + · · · + dn\'1) + p\11 dn\11 + · · · + p\'1 dn\'1, 

which can be rewritten as 

{p\11 - p\11) dn\11 + (p\" - p\11) dn\" + · · • + (p\'1 - p\11) dn\". 

Similar expressionscan be written for each line of Eq. (8-27); but now each o f these 
remaining dnlH (in which}'# I) is independent and can be varied arbit rarily. In 
order that Eq. (8- 27) have a solution for all arbitrary variations of these dn~H, 
their cOtfficients must each be equal to zero. For the first line of Eq. (8-27), we 
obtain 

,u~., == JA~0, P1, = P1u, · · · 'J-4•' = .u1u; 
that is, the chemical potential of this consti tuent must have the same value in all 
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phases. Continuing the procedure for each constituent gives the result that the 
chemical potential of each constitutlll must have the same value in all phases, that is, 

p~l) = f'~2) = ... = .ul'\ 
,U~U = fJ~I):::: • • • = .U~w), 

(8-29) 

P!u = 1'~1, = .. . = Pl•J · 

If this is the case, we can omit the superscripts in the preceding equations and 
simply write p 1, p 1, eto., for the chemical potentials. The first line in Eq. (8- 27) 
then becomes 

p.(dnl0 + dnl'' + · · · dnl'') 
which from the first of the condition equations equals zero. The same is true for 
every other consti tuent and Eq. (8-27) is satisfied. It is not obvious that Eqs. 
(8-29) are necessary as well as sufficient. A proof of this will be found in Appendix 
B. Equations (8-29) are generalizations of the result derived earlier that when two 
or more phases of a single constituent are in equilibrium, the chemical potential 
has the same value in all phases. 

Suppose the phases of a system are not in equilibrium. Then the molal Gibbs 
function of each constituent will not have the same value in each phase. For each 
constituent for which a difference in the molal Gibbs function exists, there will be 
a tendency, called the escaping tendency, to escape spontaneously from the phase 
in which its molal Gibbs function is higher to that phase in which the molal Gibbs 
function is lower, until equilibrium exists between the phases, i.e., until the molal 
Gibbs function has the same value in all phases. Conversely, the escaping tendency 
of any constituent is the same in all phases when the system is in equilibrium. 

The phase rule, which was fi rst derived by Gibbs, follows logically from the 
conclusions reached above. First we shall consider a heterogeneous system in 
which the constituents are present in all phases. Equations (8- 29), which specify 
the conditions of phase equilibrium and hence will be called the equations of phase 
equilibrium, are k('"- I) in number. Now the composition of each phase con­
taining k constituents is fixed if k - I constituents are known, since the sum of the 
mole fractions of each constituent in the phase must equal unity. Therefore, for'" 
phases, there are a total of 7t(k - I) variables, in addition to temperature and 
pressure, which must be specified. There are, then, 7r(k - I) + 2 variables 
altogether. 

If the number of variables is equal to the number of equations, then whether 
or not we can actually solve the equations, the temperature, pressure, and com­
position of each phase are determined. The system is then called non variant and is 
said to have zero variance. 
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In a process at constant pressure, dP = 0 and d'q = cp dT. Therefore 

(;~t = Cp, (4-12) 

and the slope of an isobaric line on the h-T·P surface equals the specific heat 
capacity at constant pressure. Comparison with Eq. (4-4) shows that the enthalpy 
h plays the same role in processes at constant pressure as does the internal energy 
u in processes at constant volume. The derivative (iJhjiJT)p can therefore be re· 
placed with cp in any equation in which it occurs and Eq. (4-11) can be written for 
any reversible process, 

d'q = Cp dT + [(;~)T-v] dP, (4-13) 

which is the analogue of Eq. (4-5). 
In a process at constant volume, d'q ~ c, dT and 

Cp- c.= -[(~t- vJ(:;).. (4-14) 

which is the analogue of Eq. (4-6). 
If the temperature is constant, 

d'qT = [(~)T-v] dPT. (4-15) 

In an adiabatic process, d'q = 0 and 

(4-16) 

4-4 P AND • INDEPENDENT 

Equations corresponding to those derived in Sections 4- 2 and 4- 3, but in terms of 
P and vas independent variables, can be derived as follows. The energy difference 
between two neighboring equilibrium states in which the pressure and volume 
differ by dP and dv is 

I (4-t7) 

However, the partial derivatives (iJujiJP), and (iJujiJv)p do not involve any 
properties other than those already introduced. To show this, we return to the 
expression fo r du in terms of dT and dv, namely, 

du = ( iJu)dr +(~)do. 
iJT v iJv T 

Then since 

dT = ( iJT)dP + (iJT) dv, 
iJP • ov P 
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we can eliminate dT between these equations and obtain 

du = [(!~).e~)J dP + [(:~).(~~" + (~)T] dv. 

Comparison with Eq. (4-17) shows that 

(~). = (!~).(!~) .. (4- 18) 

and 

(~t = (:~),(~~),. + (~)T· (4-19) 

The partial derivatives on the right sides of these equations have already been intro­
duced in the preceding sections. 

It is left as a problem to obtain expressions corresponding to Eqs. (4-18) and 
(4-19) for the partial derivatives of lr with respect toP and v. 

Later on, we shall encounter other properties in addition to u and lr that can 
be express¢d as functions of P, v, and T. For any such property u·. and any three 
variables x, y, and z, the general forms of Eqs. (4-18) and (4-19) are 

(~).= (~).(~).. (4-20) 

(~\_ (~\ (£=.) + (~) 
a~.- ozl. ox. ox.· 

(4-21) 

The first of these equations is simply the chain rule for partial derivatives, in which 
one of the variables is constant. 

It is left as a problem to show that 

(~), = c.(~~); (4-22) 

(iJh) (iJ~ - -cp-
iJv P- iJv p' (4-23) 

, (iJT) (iJT), d qT ~ Cp - dvT + c, - dPT, 
iJv P iJP • 

(4-24) 

and 

c,(~), = Cp(!:)T. (4-25) 

~ THE GAY-LUSSAC-JOULE EXPERIMENT AND THE JOULE-THOMSON 
EXPERIMENT 

It was mentioned in the preceding sections that on the basis of the second law of 
thermodynamics, the partial derivatives (ouj ov)r- and (ohfiJP)T, which describe 
the way in which the internal energy of a substance varies with volume and in which 
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the enthalpy varies with pressure, at constant temperature, can be calculated from 
the equation of state of the substance. We now describe how they can also be 
determined experimentally, for a gaseous system. Since there are no instruments 
that measure internal energy and enthalpy directly, we first express the5ej deriva­
tives in terms of measurable properties. Making use of Eq. (2-44), we cah write 

Therefore 
(~) (~) (CJT) = -I 

OUT aT. au. . 

(~)T = -c.(~:).. (4-26) 

and the desired partial derivative cat~ be found from a measurement of the rate of 
change of temperature with volume, in a process at constant internal energy. 

In the same way, we find that 

(~)T = -cp(~~).. (4-27) 

a nd the partial derivative can be found from a measurement of the rate of change 
of temperature with pressure, for states at the same enthalpy. 

Fig. 4-1 Principle of the Gay-Lussac­
Joule experiment. 

The earliest attempts to determine the dependence of the internal energy of a 
gas on its volume were made by Gay-Lussac• and later by Joule, at about the 
middle of the last century. The apparatus used is shown in principle in Fig. 4-1. 
Vessel A, containing a sample of the gas to be investigated, is connected to an 
evacuated vessel B by a tube in which there is a stopcock, initially closed. The 
vessels are immersed in a tank of water of known mass, whose temperature can 
be measured by a thermometer. Heat losses from the tank to its surroundings will 
be assumed negligible, or will be allowed for. 

• Joseph L. Gay-Lussac, French chemist (1,778-1850). 
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The entire system is first allowed to come to thermal equilibrium and the 
thermometer reading is noted. The stopcock is then opened and the gas performs 
a free expansion into the evacuated vessel. The work Win this expansion is zero. 
Eventually, the system comes to a new equilibrium state in which the pressure is 
the same in both vessels. If the temperature of the gas changes in the free expansion, 
there will be a flow of heat between the gas and the water bath and the reading of 
the thermometer in the water will change. 

Both Gay-Lussac and Joule found that the temperature change of the water 
bath, if any, was too small to be detected. The difficulty is that the heat capacity 
of the bath is so large that a small heal flow into or out of it produces only a very 
small change in temperature. Similar experiments have been performed more 
recently with modified apparatus, but the experimental techniques are difficult and 
the results are not of great precision. All experiments show, however, that the 
temperature change of the gas itself, even if there were no heat flow to the sur­
roundings, is not large; and hence we postulate as an additional property of an 
ideal gas that its temperature change in a free expansion is zero. There is then no 
beat flow from the gas to the surroundings and both Q and Ware zero. Therefore 
the internal energy is constant, and for an ideal gas, 

( or\ = 0 (ideal gas). o"";J. (4-28) 

The partial derivative above is called the Joule coefficient and js represented 
by '1: 

(4-29) 

Although it is equal to zero for an ideal gas, the Joule coefficient of a real gas is 
not zero. 

It follows from Eq. (4-26), since c, is finite, that for an ideal gas 

(~)T- 0. (4-30) 

That is, the specific internal energy of an ideal gus is independent of the volume and 
is a function of temperature only. For an ideal gas, the partial derivative (oufoT), 
is a total derivative and 

du 
'• = dT' du = c,dr. (4-31) 

The energy equation of an ideal gas can now be found by integration. We have 

J•du = u - u0 =JT c, dT, 
lit Tt 
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where u0 is the internal energy at some reference temperature T0 • If c, can be con­
sidered constant, 

u ~ u0 + c.(T - 10)- (4-32) 

The energy surface of an ideal gas (of constant r,) is shown in Fig. 4-2, 
plotted as a function of T and v. At constant temperature, the internal energy is 
constant, independent of the volume. At constant volume, the internal energy 
increases linearly with temperature. 

Fig. 4-2 The tt-L'· T surface for an ideal gas. 

Because of the difficulty of measuring precisely 1he ex1remely small tempera­
ture changes in a free expansion, Joule and Thomson (who later became Lord 
Kelvin) devised another experiment in which ihe temperature change of an ex­
panding gas would not be masked by the relatively large heat capacity of its sur­
roundings. Many gases have been carefully investigated in this way. Not only do 
the results provide information about intermolecular forces but they can be used 
to reduce gas thermometer temperatures to thermodynamic temperatures without 
the necessity of extrapolation to zero pressure. The temperature drop produced 
in the process is util ized in some of the methods for liquefying gases. 

The apparatus used by Joule and Thomson is shown schematically in Fig. 4-3. 
A continuous stream of gas at a pressure P1 and a temperature T1 is forced through 
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a porous plug in a tube, from which it emerges at a lower pressure P, and a tem­
perature T,. The device is thermally insulated , and after it has opera led for a time 
long enough for the steady state to become established , the only heat flow from the 
gas stream is the small flow through the insulation. That is, in the steady state, no 
heat flows from the gas to chang~ the temperature of the walls , and the large heat 
capacity of the walls does not mask the temperature change of the gas, which is 
practically what it would be were the system truly an isolated one. 

The process is then one o f steady jloll', in which the heat flow Q and the shaft 
W," are both zero, and in which there is no change in elevation. The initial and 
final velocities are both small and their squares can be neglecced. Then from the 
energy equation of steady flow, Eq. (3-38), we have 

I 
hl = hs, 

and the initial and final enthalpies are equal. 

T, 

.,.,_ P, P, _ .,., 

Fig. 4-3 Principle of the Joule-Thomson 
experiment 

Suppose that a series of measurements are made o n the same gas, keeping 
the initial pressure P1 and the temperature T1 the same but varying the pumping 
rate so that the pressure P, on the downstream side of the plug is made to take on 
a series of values P,, P,, etc. Let the temperatures T,, T,, etc. be measured in each 
experiment. (Note that once the pressure o n the downstream side is fixed, nothing 
can be done about the temperature. The p roperties of the gas determine what the 
temperature will be.) The corresponding pairs of values of P, and T., P, and T,, 
etc., will determine a number of points in a pressure-temperature diagram as in 
Fig. 4-4(a). Since h1 = h, = h,, etc., the enthalpy is the same at all of these points 
and a smooth curve drawn through the points is a curve of constant enthalpy. Note 
carefully that this curve does not represent theproa.rsexecuted by the gas in passing 
through the plug, since the process is not q uasista tic and the gas does not pass 
through a series of equilibrium states. The final pressure and temperature must be 
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measured at a sufficient distance from the plug for local nonuniformities in the 
stream to die out, and the gas passes by a nonquasistatic process from one point 
on the curve to another. 

By performing other series of experiments, again keeping the initial pressure 
and temperature the same in each series but varying them from one series to another, 
a family of curves corresponding to different values of h can be obtained. Such a 
family is shown in Fig. 4-4(b), which is typical of all real gases. If the initial tern· 
perature is not too great, the curves pass through a maximum called the inversion 
point. The locus of the inversion points is the inversion curve. 

T T 

~---------------------P 
l•l (b) 

Fig. 4-4 (a) Points of equal enthalpy. (b) Jsenthalpic curves and the inversion curve. 

When the J oule-Thomson expansion is to be used in the liquefaction of gases, 
it is evident that the initial temperature and pressure, and the final pressure, must 
be so chosen that the temperature decreases during the process. This is possible 
only if the pressure and temperature lie on a curve having a maximum. T hus a 
drop in temperature would be produced by an expansion from point a or b to 
point c, but a temperature rise would result in an expansion from d to e. 

The slope of an isenthalpic curve at any point is the partial derivative, 
(oTfoP). . It is called the Joule-Thomson (or the Joule-Kelvin) coefficient and is 
represented by f'· 

(4-33) 

At low pressures and high temperatures, where the properties of real gases 
approach those of an ideal gas, the isenthalpic curves become nearly horizontal 
and their slope approaches zero. We therefore postulate that an ideal gas shows 
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no temperature change when forced through a porous plug. Hence for such a 
gas f1 = 0, and from Eq. (4-27), 

(E!!.) = 0 (ideal gas). (4-34) oPT 
We shall return in Section 6-10 to a further discussion of the Joule-Thomson 

experiment, after it has been shown how fl can be calculated fro m the equation of 
state. 

Since for an ideal gas, 

(~) = (E!!.) = 0, OuT oP T 
Eqs. (4-6) and (4-14) become 

cp _ c, ~ P( a") = •(aP); 
CIT" CIT. 

and from the equation of state, Pu - RT, 

p( ou) ~ u(oP) = R. 
CIT l ' CIT , 

Thus for an ideal gas, 
Cp - c, - R. (4-35) 

Table 9-1 gives experimental values of (c. - c,)/ R for a number of real 
gases at temperatures near room temperature. This ratio, exactly unity for an 
ideal gas at all temperatures, is seen to differ from unity by less than 1 percent for 
nearly all of the gases listed. 

If h0 is the specific enthalpy of an ideal gas in a reference state in which the 
internal energy is u0 and the temperature is T0 , it follows that if c1• can be considered 
constant, the enthalpy equation of an ideal gas is 

h ~ 1!0 + c1.(T - T0), 

which is the analogue of Eq. (4-30). 

4-6 REVERSIBLE ADIABATIC PROCESSES 

(4-36) 

We have from Eq. (4-25), for any substance in a reversible adiabatic process, 

(oP) c1.(oP) 
~ .=~ ~T· 

Fo r an ideal gas, 

(~) =- ~ -
Ciu T u 

Let us repr~sent the rat io c1.jc, by y: 

c,. 
r= - . 

c, 
(4-37) 
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Replacing (oP/ou), by dP Jdu,, and omitting the subscripts for simplici ty, we have 
for an ideal gas, 

or 

!!! + )'~ = 0. 
p v 

In an interval in which y can be considered constant, this integrates to 

In P + yIn v = InK, 

Pu' = K, (4-38) 

where K is an integration constant T hat is, when an ideal gas for which y is 
constant performs a reversible adiabatic process, the quantity Pu' has th e same 
value at all points of the process. 

Since the gas necessarily obeys its equation of state in any reversible p rocess, 
t he re lation~ between Tand P, or between Tand u, can be found from the equation 
above by elimi nating u or P between it and the equation of state. They can also 
be found by integrating Eq. (4-8) and Eq. (4-16). The results arc 

TP"-'"' =constant, 

Tvr-1 
- constant. 

(4-39) 

(4-40) 

It was stated in Section 3-11 that the value of c, for monatomic gases is very 
nearly equal to SR/2 and that for diatomic gases is nearly equal to 7 R/2. Since the 
d ifference c1, - c. is equal toR for an ideal gas and is very nearly equal to R for 
all gases, we can write fo r a monatomic gas 

c,. Cp 5R/2 5 
'Y = - :::z --- = =-- 1.67; 

c. Cp - R (5R/2) - R 3 

for a diatomic gas, 
1Rf2 

y = (1R f2) - R = I.40. 

T able 9-t includes the experimental values of y for a number of common gases. 
The curves representing adiabatic processes are shown on the ideal gas 

P-v-Tsurface in Fig. 4-5(a), and their projections on the P-u plane in Fig. 4-5(b). 
The adiabatic curves projected onto the P-v plane have at every point a some­

what steeper slope than the isotherms. The temperature of an ideal gas increases 
in a reversible ad iabatic compression, as will be seen from an examination o f Fig. 
4-5(a) or from Eqs. (4-39) or (4-40). This increase in temperature may be very 
large and it is utilized in the Diesel type of internal combustion engine, where, on 
the compression stroke, air is compressed in the cylinders to about 1/15 of its 
volume at atmospheric pressure. The air temperature at the completion of the 
compression stroke is so high that fuel oil injected into the air burns without the 
necessity of a spark to initiate the combustion process. 
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r, 
T, 
r, 

Fig. 4-S (a) Adiabatic processes (full lines) on the ideal gas P·u·Tsurface. (b) Projection 
of the adiabat ic processes in (a) onto the P-u plane. The shaded a rea is a Carnot cycle 
(see Section 4- 7). 

The specific work in a reversible adiabatic expansion of an ideal gas is 

w ... J.·'p dv "' xJ. .. v-• dv .. .. 
= - 1

- [Ko1
-']• • (4-41) 

1-y '•' 
where K is the integration constant in Eq. (4-36). But to state that Pv' = const = 
K means that 

P,vr = P,vi = K. 
Hence when inserting the upper limit in Eq. (4-39) we let K = P,u:, while at the 
lower limit we let K = P,vf. Then 

w- -
1
- (P11>z- P,v,). (4-42) 

1- 'Y 
T he work can also be found by realizing that since there is no heat flow into or 

out of a system in an adiaba tic process, the work is done wholly at the expense of 
the internal energy of the system. Hence 

w = u1 - Ut, 

and for an ideal gas for which c. is constant, 

w - c.(T1 - 7t). (4-43) 
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4-7 THE CARNOT CYCLE 

In 1824, Carnot• first introduced into the theory of thermodynamics a simple 
cyclic process now known as a Carnot cycle. Carnot was primarily interested in 
improving the efficiencies of steam engines, but instead of concerning himself with 
mechanical details he concentrated o n an understanding of the basic physical 
principles on which the efficiency depended. It may be said that the work ofCarnot 
laid the foundation of the science of thermodynamics. Although actual engines 
have been constructed which carry a system through essentially the same sequence 
of processes as in a Carnot cycle, the chief utility of the cycle is as an aid in thermo­
dynamic reasoning. In this section we shall describe the Carnot cycle and in the 
next section wi ll consider its relation to the efficiency of an engine. 

p 

Fig. 4-6 The Carnot cycle. 

A Carnot cycle can be carried out with a system of any nature. It may be a 
solid, liquid, or gas, or a surface film, or a paramagnetic substance. T he system 
may even undergo a change of phase during the cycle. A Carnot cycle for an ideal 
gas is represented by the shaded area on the P-v-Tsurface of Fig. 4-S(a), and its 
projection onto the P-v plane is shown in Fig. 4- 5(b) and again in Fig. 4-6. 

Starting at state a, the system at a temperature T, is brought in contact with a 
heat reservoir at this temperature and performs a reversible isothermal process 
that takes it to state b. For an ideal gas, this process is an expansion. For a para­
magnetic material, it would be an increase in the magnetic moment M, etc. In 
this process there is a heat flow Q, into the system and work W, is done by the 
system. 

At state b, the system is thermally insulated and performs a reversible adia­
batic process to state c. In this process the temperature decreases to a lower value 

• N. L. Sadi Carnot, French engineer ( t796-1832). 
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T,. The heat flow into the system is zero and additional work W' is done by the 
system. 

T he system is next brought in contact with a heat reservoir at temperature T1 

and performs a r~wrsibl~ isothtrmal process to state d. There is a heat flow Q1 

out of the system and work W1 is done on the system. 
State d must be chosen so that a final r~u~rsiblt adiabatic process will return 

the system to its initial state a. The heat flow is zero in this process and work 
W" is done on the system. 

The significant features of any Carnot cycle are therefore (a) the entire heat 
flow into the system takes place at single higher temperature T,; (b) the entire heat 
flow out of the system takes place at a single lower temperature T1 ; (c) the system, 
often referred to as the working substance, is carried through a cyclic prooess; and 
(d) all processes are r~IH!rsible. We can say in general that any cyclic prooess 
bounded by two reversible isothermals and two reversible adiabatics consti tutes a 
Carnot cycle. 

Although the magnitudes of the heat flows and quantities of work are arbitrary 
(they depend on the actual changes in volume, magnetic moment, etc.) , it is found 
that the ratio QJQ1 depends only on the temperatures T1 and T1• To calculate 
this ratio, it is necessary to know the equation of state of the system, and its energy 
equation. ( It is necessary to know these at this stage of our development of the 
principles of thermodynamics. We shall show in Section 5-2 that for two given 
temperatures T, and T1 the ratio T JT1 has the same value fora// working substances.) 
Let us therefore assume that the system is an ideal gas. 

Since the internal energy of an ideal gas is a function of its temperature only, 
the internal energy is constant in the isothermal p rocess a-b and the heat flow Q, 
into the system in this process is equal to the work W,. Hence from Eq. (3-5), 

Q,- W, = nRT,In.!l, 
v. 

(4-44) 

where V, and v. are the volumes in slates b and a, respectively. Similarly, the 
magnitude of the heatflow Q1 equals the work W1 and 

Q1 = W1 = nRT1 1n~. v. 
(4-45) 

But states b and c lie on the same adiabatic, and hence from Eq. (4-40), 

Similarly, since states a and b lie on the same adiabatic, 
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When the first o f these equations is divided by the second, we find that 

{4-46) 

It follows from Eqs. {4-44) , {4-45), and {4-46) that 

Q, Ts 
Q.=r;· {4-47) 

Thus for an ideal gas, the ratio QJQ1 depends only on the temperatures T1 and T1• 

4- 8 THE HEAT ENGINE AND THE REFRIGERATOR 

A system carried through a Carnot cycle is the protolype of all cyclic heat engines. 
The feature that is common to all such devices is that they receive an input of heat 
at one or more higher temperatures, do mechanical work on their surroundings, 
and reject heat at some lower temperature. 

When any working substance is carried through a cyclic process, there is no 
change in its internal energy in any complete cycle and from the first law the net 
fl ow of heat Q into the substance, in any complete cycle, is equal to the work W 
done by the engine, per cycle. Thus if Q, and Q1 are the absolute magnitudes of 
the heatflows into and out of the working substance, per cycle, the net heat flo w Q 
per cycle is 

Q = Q, - Q,. 

The net work W per cycle is therefore 

w ~ Q = Q, - Q,. {4-48) 

The thermal efficiency 11 of a heat engine is defined as the ratio of the work 
output W to the heat input Q,: 

11 = ~ = Q, - Q,. {4-49) 
Q. Q, 

The work output is "what you get," the heat input is "what you pay for." Of 
course, the rejected heat Q, is in a sense a part of the "output" of the engine, but 
ordinarily this is wasted {as in the hot exhaust gases of an automobile engine, or as a 
contribution to the "thermal pollution" of the surroundings) and has·no economic 
value. If the rejected heat were included as a part of its output, the thermal effi­
ciency of every heat engine would be 100%. The definition of thermal efficiency as 
work output divided by heat input applies to every type of heat engine and is not 
restricted to a Carnot engine. 
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If the working substance is an ideal gas, then for a Carnot cycle we have shown 
that 

The thermal efficiency is then 

TJ = Q, - Q, = I - ~ = I - 2!, 
Q, Q, T, 

(4-50) 

or 

T,- T1 TJ=---. 
T, 

(4-51) 

The thermal efficiency therefore depends only on the temperatures T, and T,. We 
shall show in Section 5- 2 that the thermal efficiency of any Carnot cycle is given by 
the expression above, whatever the nature of the working substance. 

Q, 

Fig. 4-7 Schematic ftow 
diagram of a heat engine. 

It is helpful to represent the operation of any heat engine by a schematic ftow 
diagram like that in Fig. 4-7. The width of the "pipeline" from the high tempera­
ture reservoir is proportional to the heat Q,, the width of the line to the low tem­
perature reservoir is proportional to Q1 , and the width of the line leading out from 
the side of the engine is proportional to the work output W. The circle is merely 
a schematic way of indicating the engine. The goal of an engine designer is to make 
the work output pipeline as large as possible, and the rejected heat pipeline as 
small as possible, for a given incoming pipeline from the high temperature reservoir. 

We may mention that Carnot would not have constructed his flow diagram 11 

in the same way as that in Fig. 4-7. In Carnot's time, it was believed that "heat" 
was some sort of indestructible ftuid, in which case the pipelines Q, and Q1 would 
have the same width . H ow then could there be any pipeline W? It was thought 

I 
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that work W could be abstracted from a "downhill" flow of heat in the same way 
that work can be obtained from a flow of water through a turbine, from a higher 
to a lower elevation. The quantities of water flowing into and out of the turbine 
are equal, and the mechanical work is done at the expense of the decrease in poten­
tial energy of the water. But in spite of his erroneous ideas as to the nature of heat, 
Carnot did obtain the correct expression for the efficiency of a Carnot engine. 

If the Carnot cycle in Fig. 4-6 is traversed in a counterclockwise rather than a 
clockwise direction, the directions of all arrows in Figs. 4-6 and 4-7 are reversed, 
and since all processes in the cycle are reversible (in the thermodynamic sense), 
there is no change in the magnitudes of Q1 , Q1 , and W. Heat Q, is now removed 
from the low-temperature reservoir, work W is done on the system, and heat 
Q1 equal to W + Q, is delivered to the high-temperature reservoir. We now have 
a Carnot rtfrigerator or a heat pump, rather than a Carnot engine. That is, heat is 
pumped out of a system at low temperature (the interior of a household refrigerator, 
for example, or out of the atmosphere or the ground in the case of a heat pump 
used for house heating), mechanical work is done (by the motor driving the re­
frigerator), and heat equal to the sum of the mechanical work and the heat removed 
from the low-temperature reservoir is liberated at a higher temperature. 

The useful result of operating a refrigerator is the heat Q, removed from the 
low-temperature reservoir; this is "what you get." What you have to pay for is 
the work input, W. The greater the ratio of what you get to what you pay for, the 
better the refrigerator. A refrigerator is therefore rated by its coefficient of per­
formance, c, defined as the ratio of Q, to W. Again making use of Eq. (f-48), we 
can write 

c=~~-Q-'- . 
w Q,-Q, 

(4-52) 

The coefficient of performance of a refrigerator, unlike the thermal efficiency of a 
heat engine, can be much larger than 100%. 

The definition above of coefficient of performance applies to any refrigerator, 
whether or not it operates in a Carnot cycle. For a Carnot refrigerator, Q1/Q1 -

TJT1 and 
r. c=-- -. 

1i- T, 
(4-53) 

PROBLEMS 

4-1 The specific int<rnal energy of a van der Waals gas is given by 

Q 
u - c.T - U + constant. 
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(a) Sketch a 11-T-u surface assuming c, is a constant. (b) Show that for a van dcr Waals 
gas, 

Cp - c, = R 2a(u b)'· 
1 -~ 

4-2 The equation of state of a certain gas is (P + b)u = RT and its specific internal 
energy is given by u • aT + bu + u0 • (a) Find c.. (b) Show I hat cl' - c, • R. (c) 
Using Eq. (4-8) show that Tun1'• - constant. 

4-3 The specific internal energy of a substance can be given by 

u - u0 • 3 T2 + 2v, 

in an appropriate set of units. (a) Sketch a 11-T-v diagram for this substance. (b) Compute 
the change in temperature of the substance if S uni ts of heat arc added while the volume 
of the substance is held constant. Show this process on the u-T-v diagram. (c) Can the 
change in temperature of the substance during an adiabatic decrease in volume o f 20% 
be determined from the information given ? If so, compute it. If not , state what additional 
information must be supplied. 
4-4 At temperatures above SOO K, the value o f Cp for copper can be approximated by a 
linearrelat ion of the form c1• - a + bT. (a) Find as accurately as you can from Fig. 3-10 
the values of a and b. (b) Compute the change in the specific enthalpy of copper at a 
pressure of I atm when the temperature is increased from SOO to 1200 K. 

4-S Show that (~)7'- -cp(:;) .. 
4-6 Show tha t ( :~ )P • Cp - P{Jv. 

4-7 Compqrc the magnitudes of the terms c1, and P{lv in the previous problem (a) for 
copper at 600 K and I atm, and (b) for an ideal gas fo r which c1• = SR/2. (c) When hea t 
is supplied to an ideal gas in an isobaric process, what frac1ion goes imo an increase in 
interna l energy? (d) When heat is supplied to copper in an isobaric process, what fraction 
goes into an increase in internal energy? 
4-8 (a} Show that the specific enthalpy of the gas of Problem 4-2 can be written as 
II - (a + R}T +constant. (b) Find r1 •• (c) Using Eq. (4-16}show that T(P + b)-RI'r­
constant. (d) Show that (iJhfac)1,- r1.T/v. 
4-9 Derive expressions analogous to Eq. (4-18) and Eq. (4-19) for It as a function of P 
and v. 

4- 10 Complete the derivations of Eqs. (4-22} to (4-25). 

4- 11 An ideal gas for which c, = SR/2 is taken from point a to point bin Fig. 4-8 along 
the three paths a·c·b, a-d·b, and a·b. Let P, • 2P1, and v, - 2v1• (a} Compute the heat 
supplied to the gas, per mole, in each of the three processes. Express the answer in terms 
of Rand T1• (b) Compute the molal specific heat capacity of the gas, in terms of R, for 
the process a·b. 
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p 

Figure 4-8 

4- 12 For a van der Waals gas obeying I he energy equal ion of Problem 4-1 show Chat 

(~T) y (~T) a;,-;; ap ; 

4- 13 For a paramagnecic subscance obeying Curie's law che incernal energy is a funccion 
of T only. Show chac (a) d'Q = c.11 dT- .;'(' dM; (b) c/'Q ~ c.,. dT - M d.lf ·; and (c) 
C1 - C.11 = M.lf·JT. 

4-14 Fo r a one-dimensional syscem show chac (a) CL = (:~)L; (b) c, = (:~)_,; 

and (c) cLC~~)s -c,(:;)T· 
4- 15 For an ideal gas show !hac (a) {;~1 - 0, and (b) (~). - 0. 

4- 16 Suppose one of che vessels in che Joule apparacus of Fig. 4-1 concains nA moles o f a 
van der Waals gas and the other contains nu moles, both at an initial temperature T1• 

The volume of each vessel is V. Find che expression for che change in cemperature when 
che stopcock is opened a nd the syscem is allowed co come to a new equilibrium scace. 
Neglect any ftow of heat to the vessels. Verify your solul ion for the cases when nlJ - 0, 
using Eq. (4-26), and when n_, - n0 . Assume che energy equation of Problem 4-1. 

4-17 (a) Show chac for an ideal gas /1 - h0 = cp(T- T0) and (b) skelch a n h-P-T 
surface fo r an ideal gas. 

4- 18 Assume che energy equacion given in Problem 4- 1. (a) Find che expression for che 
J oule coefficient '1 for a van der Waals gas. (b) Find che expression for I he enchalpy of a 
van der Waals gas, as a funccion of v and T. (c) Find che expression for che Joule· 
Thomson coefficienl 1• for a van der Waals gas. (d) Show !hac che expressions in (a) and 
(c) reduce to chose for an ideal gas if a - b - 0. [H int: See Problem 2- 22.] 
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4-19 Show that (a) (~)T • -!•<p, (b) (a") [ f11•] (ah) 1•c1• 
aT r - CJ' I - -; ' (c) iU T • t;;' ' 

(ar) ~< 
(d) Tv" A • (UK - puff) • 

4-20 For an ideal gas, show that in a reversible adiabatic process (a) rp<..-ll/7 • constant, 
and (b) Tu1~'-11 • constant. 

I 

r1 P •• v, LJ To 

Figure 4-9 

4-21 Figure4-9 represents a cylinder wilh thermally insulaled walls containing a movable 
friclionless thermally insula led pislon. On each side of I he piSion are 11 moles of an ideal 
gas. The ini1ial pressure P0 , volume V0 , and 1empera1ure T0 are the sa~ on bolh sides of 
the piston. TbC'value of y for I he gas is I.SO, and '• is independent of lemperalure. By 
means of a heaiingcoil in I he gas on lhelefuide oflhe pislon, heal is supplied slowly to I he 
gas on Ibis side. It expands and compresses the gas on the righl side un1il its pressure has 
increased to 27 Po/8. In terms ofn, c., and T0 , (a) how much work is done on 1hegason 1he 
right side? (b) what isthe finallemperaiUre of the gas on I he rig hi? (c) whal is I he final 
tempera lure of I he gas on the lefl? {d) how much heal flows inlo the gas on the lcfl? 

4-22 In lhe compression slroke of a Diesel engine, air is compressed from a1mospheric 
pressure and room tempera1ure to aboul 1/IS of ils original volume. Find the fina l 
temperalure, assuming a reversible adiabalic compression. (Take y01, - 1.4.) 

4-23 (a) Show I hat the work done on an ideal gas 10 compress il isothermally is grealer 
than thai necessary to compress 1he gas adiabalically if lhe pressure change is 1he sa~ in 
the 1wo processes, and (b) thai I he isolhermal work is less I han I he adiaba1ic work if I he 
volume change is the same in I he IWO processes. As a numerical example, lake I he inilial 
pressure and volume to be 10' N m- • and O.S m' kilomole-t, and lake y to be S/3. Com· 
pulelhe work necessary 10 change I he value of I he appropriale variable by a faclor of 2. 
(c) Plol these processes on a P·V diagram and explain physically why I he isolhermal work 
should be grealerthan the adiabalic work in pan (a) and why il should be less in pari (b). 

4-24 An ideal gas for which c. • 3R/2 occupies a volume of 4 m' at a pressure o f 8 aim 
and a temperaiUre of 400 K. The gas expands to a final pressure of I atm. Compu1e 1hc 
final volume and tempera1ure, lhe work done, 1he heat absorbed, and the change in 
internal energy, for each of! he following processes: (a) a reversible, isolhermalexpansion; 
(b) a reversible adiabalic expansion; and (c) an expansion inlo a vacuum. 

4-lS One mole of an ideal gas is taken from P • I aim and T - 273 K 10 P • O.S 
atm and T • S46 K by a reversible iso1hermal process followed by a reversible isobaric 
process. It is returned to ils initial state by a reversible lsochoric process followed by a 
reversible adiabat ic process. Assume that c. • (3/2)R. (a) D raw Ibis cycle on a P-V 
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diagram. (b) For each prooess and for the whole cycle, lind the change in T, V, P, W, 
Q, U, and H. A tabular arrangement of the resuhs will be useful . (c) Draw this cycle on • 
V· T diagram and on a U- V diagram. 

4-26 (a) Use Eq. (4-8) to derive for a van der Waals gas the equalions corresponding 
to Eqs. (4-38) a nd (4-40). (b) Compute the work in a reversible adiabatic expansion by 
direct evaluation of J P tlv and by use o f the energy equation o f Problem 4-1. 

4-27 The equation of stale for radiant energy in equilibrium with the temperature of the 
walls of a cavity of volume Vis P ~ ar</3. The energy equation is U = ar< V. (a) Show 
that the heal supplied in an isothermal doubling of the volume of the cavi ty is 4aT' V/3. 
(b) Use Eq. (4-3) to show thai in an adiabatic process vr• is a constant 

4-28 Sketch a Carnol cycle for a n ideal gas on a (a) u-v diagram, (b) u·T diagram, (c) 
u-h diagram, (d) p. T diagram. 

4-29 Sketch qualitatively a Camol cycle (a) in the V-T plane fo r a n ideal gas; (b) in the 
P-V plane for a liquid in equilibrium with its vapor; (c) in the d'·Z plane for a reversible 
eleclrolytic cell whose emf is a function ofT alone a nd assuming that reversible adiabatics 
have a constant posit ive slope. 

4-30 A Camol engine is operated between two heat reservoirs at temperatures of 400 K 
and 300 K. (a) If the engine reoeives 1200 Cal from the reservoir at 400 K in each cycle, 
how many Calories does it reject to the reservoir at 300 K? (b) If the engine is operated as 
a refrigerator (i.e., in reverse) and receives 1200 Cal from the reservoir at300 K, how many 
Calories does it deliver 10 the reservoir at400 K? (c) How much work is done by the engine 
in each case? 

4-31 (a) Show that for Camel engines operating between the same high temperature 
reservoirs and different low temperature reservoirs, the engine operating over rhe largest 
temperature d ifference has the greatest efficiency. (b) Is the more effective way 10 increase 
the efficiency of a Carnol engine 10 increase the temperature of the holler reservoir, 
keeping I he temperature of the colder reservoi r constant, o r vice versa? (c) Repeal pans 
(a) and (b) to lind the optimum coefficient of performance for a Camol refrigerator. 

4-32 Derive a relationship between the efficiency of a Carnol engine and the coefficient 
of performance o f the same engine when operated as a refrigerator. Is a Cambt engine 
whose efficiency Is very high particularly suited as a refrigerator? Give reasons for your 
answer. 
4-33 An Ideal gas for which c, • 3R/2 is the working substance of a Carnol engine. 
During the isotherm" I expansion the volume doubles. The ratio of the final volume 10 the 
initial volume in the adiabat ic expansion is 5.7. The work output of the engine is 9 x 
10' J in each cycle. Compute the temperature of the reservoirs between which the engine 
operates. 
4-34 Calculate the efficiency and the coefficient of performance of the cycles shown in 
(a) Problem 3-26, and (b) Problem 3-27. 

4-35 An electrolytic cell is used as the working substance of a Carnol cycle. In the 
appropriate temper:uure range the equation of stale for the cell is 6' - 4'0 - «(T - T0), 

where ex > 0 and T > T0 • The energy equation is 

u- U0 - { 4'- r~)z + Cz(T - T0) 
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where C z is the heal capacity at constant Z which is assumed to be a constant and Z is 
the charge which flows through the cell. (a) Sketc h the Carnot cycle on an~ - Z diagram 
and indicate the direction in which the cycle operates as an engine. (b) Use the expression 
for the efficiency of a Carnot cycle to show that charge transferred in the isothermal 
processes must have the same magnitude. 

4-36 A building is to be cooled by a Carnot engine opera ted in reverse (a Carnot refriger· 
ator). The outside temperature is 35°C (95"F) and the temperature inside the building is 
20°C (68°F). (a) If the engine is driven by a 12 x 10' watt electric motor, how much heat 
is removed from the building per hour? (b) The motor is supplied with electricity generated 
in a power plant which consists of a Carnot engine operating between reservoirs at tem­
peratures of soo•c and 35"C. Electricity (transmitted over a S ohm line), is received at 
220 volts. The motors which operate the refrigerator and the generator at the power plant 
each have an efficiency of 90%. Determine the number of units of refrigeration obtained 
per uqit of heat supplied. (c) How much heat must be supplied per hour at the power 
plant? (d) How much heat is rejected per hour from the power plant ? 

4-37 Refrigerator cycles have been developed for heating buildings. Heat is absorbed 
from the earth by a fluid circulating in buried pipes and heat is delivered at a higher tem­
perature to the interior of the building. If a Carnot refrigerator were available for use in 
th is way, operating between an outside temperature of o•c and an interior temperature 
or 20°C, how many kilowatt-hours of heat would be supplied to the building for every 
kilowatt-hour of electrical energy needed to operate the refrigerator? 

4-38 The temperature of a household refrigerator is s•c and the temperature of the room 
in which it is located is 20°C. The hea t nowing from the warmer room every 24 hours is 
about 3 x l<>' J (enough to melt about 20 lb o f ice) and this heat must be pumped out 
again if the refrigerator is to be kept cold. If the refr igerator is 60% as efficient as a 
Carnot engine operating between reservoirs having temperatures of s•c and 20°C, how 
much power in watts would be required to operate it ? Compare the daily cost at 3 cents 
per kilowatt-hour with the cost of 20 lb of ice (about 75 cents). 

4-39 An approximate equation of state for a gas is P(o -b) - RT, whereb is a constant. 
The specific internal energy of a gas obeying this equation of state is 11 - c.T + constant. 
fa) Show that the specific heat at constant pressure of this gas is equal to c. + R. (b) 
Show that the equation of a reversible adiabatic process is P(u - b)' - constant. (c) 
Show that the efficiency of a Carnot cycle using this gas as the working substance is the 
same as that for an ideal gas, assuming (oujov)'J' - 0. 
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6-1 THE SECOND LAW OF TH ERMODYNAMICS 

Figure 5-1 shows three different systems, each enclosed in a rigid adiabatic bound­
ary. In part (a), a body at a temperature T1 makes thermal contact with a large 
heat reservoir at a higher temperature T,. In part (b), a rotating flywheel drives 
a generator that sends a current through a resistor immersed in a heat reservoir. 
In part (c), a gas is confined to the left portion of the container by a diaphragm. 
The remainder of the container is evacuated. We know from experience that in 
part (a) there will be a heat flow from the reservoir into the body and that, even­
tually, the body will come to the same temperature T, as the reservoir. (The heat 
capacity of a reservoir is so large that its temperature is not changed appreciably 
by a flow of heat into or outofit.) In part (b) the flywheel will eventually be brought 
to rest. Dissipative work will be done on the resistor and there will be a heat flow 
out of it into the reservoir, equal in magnitude to the original kinetic energy of the 
flywheel. If the diaphragm in part (c) is punctured, the gas will perform a free 
expansion into the evacuated region and will come to a new equilibrium state at 
a larger volume and a lower pressure. In each of these processes, the total energy 
of the system, including any kinetic energy of the flywheel in part (b), remains 
constant. 

(a) {b) (<) 

Fig. 5-1 In part (a) I here is a reversible heat flow between a body a1 temperature T1 and a 
lar~e heat reservoir at a higher temperature T2 • In (b), a ro1a1ing flywheel drives a generator 
wh1ch sends a currentlhrough a resis1or in a heat reservoir. In (c), a gas in I he left por1ion 
of the container performs a free expansion into the evacua1ed region when the diaphragm 
Is punctured. 

Now suppose we start with the three systems at the end states of the above 
processes and imagine the processes to take place in the reversed direction. In 
the first example, the body originally at the same temperature as the reservoir 
would spontaneously cool down until its original temperature was restored. In 
the second, there would be a heat flow out of the reservoir into the resistor, which 
would send a current through the generator (now serving as a motor), and the fly­
wheel would be set in rotation with its original kinetic energy. In the third, the gas 
would compress itself back into its original volume. 
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Everyone realizes that these reversed processes do not happen. But why not 7 
The total energy in each case would remain constant in the reversed process as it 
did in the original, and there would be no violation of the principle of conservation 
of energy. There must be some other natural principle, in addition to the first law 
and not derivable from it, which determines the direction in which a natural process 
will take place. This principle is contained in the second fall' of thermodynamics. The 
second law, like the first, is a generalization from experience and it asserts that 
certain p rocesses, of which the three considered above are examples, are essentially 
one-way processes and will proceed in one direction only. 

The three impossible, reversed processes were chosen as examples because they 
appear at first sight to differ widely from one another. In the first, a composite 
system originally at a uniform temperature would separate spontaneou sly into 
two portions at different temperatures. In the second, there would be a flow of 
heat out of a reservoir and an equivalent amount of kinetic energy would appear. 
In the third, the volume of an isolated sample of gas would decrease and its pressure 
would increase. Many other illustrations could be given. In the field of chemistry, 
for example, oxygen and hydrogen gas in the proper propo rtions can be e nclosed 
in a vessel and a chemical reaction can be initiated by a spark. If the enclosure has 
rigid adiabatic walls the internal energy of the system remains constant. After 
the reaction has taken place, the system consists of water vapor at a high tem­
perature and pressure, but the water vapor will not spontaneously dissociate into 
hydrogen and oxygen at a lower temperature and pressure. 

Can we lind some feature which all of these dissimilar impossible processes 
have in common 7 Given two states of an isolated system, in both of which the 
energy is the same, can we find a criterion that determines which is a possible 
initial state and which is a possible final state of a process taking place in the 
system 7 What are the conditions under which no process at all can occur. and in 
which a system is in equilibrium? These questions could be answered if there 
existed some property of a system, that is, some function· of the state o f a system, 
which has a different value at the beginning and at the end of a possible p rocess. 
This function cannot be the energy, since that is constant. A function having the 
desired property can be fou nd, however. It was devised by Clausius• and is called 
the entropy of the system. Like the energy, it is a function of the state of the system 
only and, as we shall prove, it ei ther remains constant or increases in any possible 
process taking place in an isolated system. In terms o f entropy, the se~ond law 
can be stated: 

Processes in which the entropy of an Isola ted system would decrease d\1 not occur : 
or in every process taking place in an isola ted system the entropy of the system either 
Increases or remains constant. 

Furthermore, if an isolated system is in such a state that its entropy is a maxi· 
mum, any change from that state would necessarily involve a decrease in entropy 

• Rudolph J. E. Clausius, German physicist (1822-1888). 
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and hence will not happen. Therefore the necessary condition for the equilibrium 
of an isolated system is that its entropy shall be a maximum. 

Note carefully that the statements above apply to isolated systems only. It 
is quite possible for the entropy of a nonisolated system to decrease in an actual 
process, but it will always be found that the entropy of other systems with which 
the first interacts increases by at least an equal amount. 

The second law has been stated here without defining entropy. In the next 
sections the concept of entropy is developed by using first the properties of the 
Carnot cycle a nd then by calculating entropy changes durin~ reversible and irre­
versible processes. After a discussion of the physical significance of entropy pro­
duction, equivalent alternative statements of the second Jaw are presented. 

6- 2 THERMODYNAMIC TEMPERATUR E 

Before proceeding to the development of the concept of entropy, we. shall use the 
Carnot cycle to define the thermodynamic temperature. In Chapter I , we intro­
duced the symbol T to represent temperature on the ideal gas thermometer scale, 
with the promise that it would later be shown to equal the thermodynamic tem­
perature. Let us therefore return to the symbol 0, as used in Chapter I , to desig­
nate an empirical temperature defined in terms of an arbitrary thermometric 
property X, such as the resistance R of a platinum resistance thermometer or the 
pressure P of a constant-volume hydrogen thermometer. 

The Carnot cycle for a PYO system is shown in the 0-V plane in Fig. 5-2. 
The shape of the adiabatics varies, of course, from one substance to another. Let 
us first carry out the cycle a-b·c-d·a. In the process a·b there is a heat flow Q, into 
the system from a reservoir at a temperature 01 , and in the process c-d there is a 
smaller heat How Q, out of the system into a reservoir at a temperature 01• The 
heat flows are zero in the adiabatic processes b·c and d-a. Since the system is 
re turned to its initial st;lte at point a, there is no change in its internal energy; 
and from the first law, since AU- 0, the work W in the cycle is 

w ~ IQ,I - IQ.I. 
This is the only condition imposed on Q, and Q1 by the first Jaw: the work Win the 
cycle equals the difference between the absolute magnitudes of Q, and Q1• 

In Section 5-1 the second Jaw was stated in terms of the entropy of a system, 
but since we have not as yet defined this property we must begin with a consequence 
of the second law that does not involve the entropy concept. Thus our starting 
point will be the assertion that for any two temperatures e. and e., the ratio of the 
magnitudes of Q, and Q1 in a Carnot cycle has the same n lue for 111/ systems, 
whatever their nature. That is, the ratio IQ21/IQ11 is u function only of the tem­
peratures 01 and O,: 

IQ,I ~ f(O 0 ). 
IQ,( •• I 

(S- 1) 
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The form of the function f depends on the particular empirical temperature scale 
on which 0, and 01 arc measured, but it does not depend o n the nature of the system 
performing the cycle. 

It should not be inferred that the quantities of heat absorbed and liberated 
in a Carnot cycle have been measured experimentally for all possible syst,cms and 
all possible pairs of temperatures. The justification of the preceding asseltion Hes 
in the co rrectness of all conclusions that can be drawn from it. 

Fig. s-z Carnot cycles represented in 
the 8- Vplane. Curvos a{-d and b·t·c 
are reversible adiabatics. 

The functionf(O,, 01) has a very special form. T o show this, suppose we first 
carry out the cycle a-b-e-fa in Fig. 5-2 in which the isothermal process e-J is at 
some temperature 0, intermediate between 01 and 0,. Let Q, be the heat absorbed 
at temperature 02 and Q, the heat rejected at temperature 01• Then 

JQ,J = f (O 0.). 
IQ,l '' ' 

(5-2) 

Now carry out the cyclefe·C·d-J, between temperatures O, and 01, and let the 
heat Q, absorbed in this cycle, in the processfe, equa l the heat rejected in the 
first cycle in the process e-f. Then if Q1 is the heat rejected a t the temperature 01 , 

JQ,J =J(O 0 ). 
JQ,J " 1 

When Eqs. (5-2) and (5- 3) are multiplied, we get 

JQ,I . I Q,J = IQ,l = f(O IJ.) . f(O. 0 ) 
fQ,l IQal IQal '' ' " 

1
' 

and hence from Eq. (5-1), 
. f(O,, 0,) = f(O,, 0,) · [(01, 01) . 

(5- 3) 
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Since the left side is a function only of 02 and 8., this must be true of the right side 
also. The form of the function f must therefore be such that the product on the 
right does not contain 8, and this is possible only if 

1(8 8) - t/>(8.) 
•• ' - t/>(0,)' 

That is, although/(02 , 8,) is a function of both 8, and IJ, , andf(O,, IJ1) is a function 
of both IJ, and 01 , the functionfmust have the special form such that it is equal to 
the ratio of two functions .p, where t/>(81), t/>(8,), and t/>(IJ,) are functions only of the 
single empirical temperatures IJ2 , IJ,, and 0., respectively. 

Again, the form of the function .p depends on the choice of the empirical 
temperature scale but not on the nature of the substance carried through the Carnot 
cycle. Then for a cycle carried out between any two temperatures 02 and 01, 

IQ,I #..IJ.l 
IQ,I = .p(IJ,). 

(5-4) 

It was proposed by Kelvin that since the ratio t/>(IJJJ.p(IJ,) is independent of the 
properties of any particular substance, the thermodynamic temperature T corre­
sponding to the empirical temperature 8 could be defined by the equation 

T= At/>(8), (5-5) 
where A is an arbitrary constant ." 

Then 

(S-6) 

and the ratio of two thermodynamic temperatures is equal to the ratio of the 
quantities of heat absorbed and liberated when any sysum whattver is carried · 
through a Carnot cycle between reservoirs at these temperatures. In particular, if 
one reservoir is at the triple point temperature T, and the other is at some arbitrary 
temperature T, and if Q, and Q are the corresponding heat ftows, 

and 

.® =:!: 
IQ,I T.. 

T=T.J.m . 
'IQ,I 

(5-7) 

If the numerical value of 273.1 6 is assigned to T,, the corresponding unit ofT is 
1 Kelvin. 

In principle, then, a thermodynamic temperature can be determined by carrying 
out a Carnot cycle and measuring the heat flows Q and Q3, which take the place of 
some arbitrary thermometric property X. 

0 
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Note that the form of the funct ion tf>(O) need not be known to determine T 
experimentally, but we shall show in Section 6-11 how this function can be deter­
mined in terms of the properties of the thermometric substance used to define the 
empirical temperature 6. 

Since the absolute values of the heat flows are necessarily positive, it follows 
from Eq. (5-6) that the thermodynamic or Kelvin temperature is necessarily 
positive also. This is equivalent to stating that there is an absolute uro of thermo­
dynamic temperature, and that the thermodynamic temperature cannot be 
negative.• 

In Section 4-7, we analyzed a Carnot cycle for the special case of an ideal gas. 
Although the results were expressed in terms of thermodynamic temperature T, 
this temperature had not at that point been defined, and, strictly speaking, we should· 
have used the gas temperature 8 defined by Eq. {1-4). Then if we dellne a n ideal 
gas as one whose equation of state is 

Pv- RO, 
and for which 

(~) - 0, au. 
the analysis in Section 4-7 would lead to the result that 

It follows, then, that the ratio of two ideal gas thermometer temperatures is 
equal to the ratio of the corresponding thermodynamic temperatures. This justifies 
our replacing 0 with Tin earlier chapters. 

&-3 ENTROPY 

In the preceding section, the relation between the temperatures T1 and T., and the 
heat flows Q1 and Q, in a Carnot cycle, were expressed in terms of the absolute 
values JQ1 f and JQ1 f. However, since Q1 is a heat flow into the system and Q1 is a 
heat flow out of the system , the heat flows have opposite signs; and hence for a 
Camot cycle, we should write 

or 

• However, sec Section 13-S. 
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Now consider any arbitrary reversible cyclic process such as that represented 
by the closed curve in Fig. 5- 3. The net result of such a process can be approximated 
as closely as desired by performing a large number of small Carnot cycles, all 
traversed in the same sense. Those adiabatic portions of the cycles which coincide 
are traversed twice in opposite flirections and will cancel. The outstanding result 
consists of the heavy zig-zag line. As the cycles are made smaller, there is a more 
complete cancellation of the adiabatic portions but the isothermal portions remain 
outstanding. 

T 

Fig. 5-3 Any arbitrary reversible cyclic 
process can be approximated by a 
number of small Carnot cycles. 

If one of the small cycles is carried out between temperatures T, and T1, and 
AQ1 and llQ1 are the corresponding heat flows, then for that cycle, 

and when all such terms are added, for all cycles, we have 

The subscript "r" serves as a reminder that the result above applied to reversible 
cycles only. 

In the limit, as the cycles are made narrower, the zig-zag processes correspond 

II 
c 
h 
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more and more closely to the original cyclic process. The sum can then be replaced 
by an integral and we can write for the original process, 

f d'Q, 
-~ o. 
T 

(5-8) 

That is, if the heatftow d'Q, into the system at any point is divided by the tern· 
perature T of the system at this point, and these quotients are summed over the 
entire cycle, the sum equals zero. At some points of the cycle d'Q, is positive and 
a t others, negative. The temperature Tis positive always•. The negative contri-
butions to the integral just cancel the positive contributions. I 

Since the integral of any exact differential such as dV or dU around a closed 
path is zero, we see from Eq. (5-8), that al though d'Q, is not an exact differential, 
the ratio d'Q,/T is an exact differential. It is therefore possible to define a property 
S of a system whose value depends only on the state of the system and whose 
differential dS is 

dS !!!! d'Q, . 
T 

(5-9) 

Then in any cyclic process, 

f dS - 0. (5-10) 

Another property of an exact differential is that its integral between any two 
equilibrium states is the same for all paths between the states. Hence for any 
path between states a and b, 

J.'ds - s, - s •. (5- 11) 

The property S is called the entropy of the system. The MKS unit of entropy 
is evidently I joule per kelvin ( I J K- 1). Entropy is an extensive property, and we 
define the specific entropy s as the entropy per mole or per unit mass: 

s 
s- - . 

n 
or 

s 
J --. 

m 

Equations (5-9) or (5-11) define only dijftrenus in entropy. We shall see 
later in Section 7-7 that it is possible to assign an absolute value to the entropy of 
certain systems ; but on the basis of the equations above, the entropy of a system 
is determined only to within some arbitrary constant. 

• However, see Section 13-S. 
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t>-4 CALCULATIONS OF ENTROPY CHANGES IN REVERSIBLE PROCESSES 

In any adiabatic process, d'Q .. 0, and hence in any re~rsible adiabatic process, 

d'Q, = 0 and dS = 0. 

The entropy of a system is therefore constant in any reversible adiabatic process, 
and such a process can be described as isentropic. This explains the use of the 
subscripts in earlier chapters to designate a reversible adiabatic process. 

In a rt~rslble lsotMrmal process, the temperature T is constant and may be 
taken outside the integral sign. T he change in entropy of a system in a finite 
reversible isothermal process is therefore, 

f.• d'Q I f.• Q 
s. - s. = • T = T • d'Q, ~ -:;. (S--12) 

T o carry out such a process, the system is brought in contact wi th a heat reservoir 
at a temperature infinitesimally greater (or less) than that of the system. In the 
first case there is a heat fl ow Into the system, Q, is positive, s. > s •. and the 
entropy of the system Increases. In the second case there is a heat flow out of the 
system, Q, is negative, and the entropy of the system decuases. 

A common example of a reversible isothermal process is a change in phase at 
constant pressure during which the temperature remains constant also. The heat 
flow into the system, per unit mass or per mole, equals the heat o f transformation 
I, and the change in (specific) entropy is simply 

s, - s, = 1/T. (S--13) 

For example, the latent heat of transformation from liquid water to water vapor at 
atmospheric pressure and at the corresponding temperature of (approximately) 
373 K is 1,. - 22.6 x 10' 1 kg-1• The specific entropy of the vapor therefore exceeds 
thai of the liquid by 

• • Ia 22.6 x 10' 1 kg-1 
1 s - s - T - 373 K - 6060 1 kg- K-•. 

In most processes a reversible fl ow of heat into or out of a system is accom­
panied by a change in temperature, and calculation of the corresponding entropy 
change requires a n evaluation of the integral 

Jdi'· 
If the p rocess takes place at constant volume, for example, and if changes in phase 
are excludeb, the heat flow per unit mass or per mole equals c. dT and 

L
T , dT 

(s1 - s,). = c. - . 
,., T 

(5- 14) 

i: 
h 
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If the process is at constant pressure, the heat flow equals Cp dT and 

iT, dT 
(s1 - s.)p - Cp- • 

T, T 
(5- 15) 

To evaluate these integrals for a given system, we must know c. or cp as 
functions ofT. In a temperature interval in which the specific heat capacities can 
be considered constant, 

(s, - s1) . = c. ln(TJ7j), 

(s, - s1)p ~ cp ln(T1/ 7j). 

(5- 16) 

(5-17) 

To raise the temperature from T1 toT, reversibly, we require a large number of 
heat reservoirs having temperatures T1 + dT, T1 + 2 dT, ... , T, - dT, T,. The 
system at temperature T1 is brought in contact with the reservoir at temperature 
T, + dTand kept in contact with this reservoir until thermal equilibrium is reached. 
The system, now at temperature T1 + dT, is then brought into contact with the 
reservoir at temperature T1 + 2 dT, etc., until the system reaches the temperature 
T,. 

For example, the value or cp for liquid water, In the temperature interval from T1 -

273 K (0°C) to r, - 373 K (100°C) is 4.18 x 10' J kg-1 K-• (assumed constant). 
The specific entropy or liquid water at 373 K therefore exceeds that at 273 K by 

r. 373 
(s, - s1)p • cp In T, • 4.18 x 10' J kg-1 K-1 x In 

273 
• 1310 J kg-1 K -1• 

In every process in which there is ·a re~rsible flow of heat between a system 
and its surroundings, the temperatures of system and surro undings are essentially 
equal; and the heat Row into the surroundings, at every point, is equal in mag­
nitude and opposite in sign to the heat Row into the system. Hence the entropy 
change of the surroundings is equal in magnitude and opposite in sign to that of the 
system, and the net entropy change of system plus surroundings is zero. (In an 
isothermal process, the surroundings consist of a single reservoir. In a process in 
which the temperature of the system changes, the surroundings consist of a ll those 
reservoirs at different temperatures that exchanged heat with the system.) Since 
systems and surroundings together constitute a uni~rst, we can say that the 
entropy of the universe remains constant in every change in state in which there is 
only a reversible beat flow into (or o ut of) a system. 

If the boundary of the original system is enlarged so as to include the reservoirs 
with which the system exchanges heat, all heat Rows take place within this composite 
system. There are no heat flows across the enlarged boundary and the process 
is adiabatic for the composite system. Hence we can also say that any reversible 
heat flows within a composite system enclosed by an adiabatic boundary produce 
no net change in the entropy of the composite system. 
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6-5 TEMPERATURE-ENTROPY DIAGRAMS 

Since entropy is a property of a system, its value in any equilibrium state of the 
system (apart from an arbitrary constant) can be expressed in terms of the variables 
specifying \he state of the system. Thus for a PVT system, the entropy can be 
expressed a~ a function of P and V, P and T, or T and V. Then, just as with the 
internal energy, we can consider the entropy as one of the variables specifying the 
state of the system, and we can specify the state in terms of the entropy Sand one 
other variable. If the temperature Tis selected as the other variable, every state of 
a system corresponds to a point in a T-S diagram and every reversible process 
corresponds to a curve in this diagram. 

Fig. 5-4 The temperature-en I ropy 
diagram of a Carnol cycle. 

A Carnot cycle has an especially simple form in such a diagram, since it is 
bounded by two isotherms, along which Tis constant, and two reversible adia­
batics, along which S is constant. Thus Fig. S-4 represents the Carnot cycle 
a-b-e-d-a of Fig. 5-2. 

The area under the curve represenling any reversible process in a T-S diagram is 

so the area under such a curve represents the heat flow in the same way that I he area 
under a curve in a P-V diagram represents work. The area enclosed by I he graph of 
a reversible cyclic process corresponds to the ntt heat flow into a system in lhe 
process. 
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~ ENTROPY CHANGES IN IRREVERSIBLE PROCESSES 

The change in entropy of a .system is defined by Eq. (S--9) for a reversible process 
only; but since the entropy of a system depends only on the state of the system, 
the entropy difference between two given equilibrium states is the same regardless 
of the nature of a process by which the system may be taken from one state to the 
other. We can, therefore, find the change in entropy of a system in an Irreversible 
process by devising some reversible process (any reversible process will do) between 
the end states of the irreversible process. 

Consider first the process in Fig. S- 1 (a) in which the temperature of a body is 
increased from T1 to T1 by bringing it in contact with a single reservoir at a tem­
perature T,, instead of using a series of reservoirs at temperatures between T, and 
T,. The process is irreversible since there is a finite temperature difference between 
the body and the reservoir during the process, and the direction of the heat flow 
cannot be reversed by an infinitesimal change in temperature. The initial and fi nal 
sLates of the body are the same, however, whether the temperature is changed 
reversibly or irreversibly, so the change in entropy of the body is the same in either 
process. Then, from Eq. (S--17), if the process is at constant pressure and fhe heat 
capacity C p of the body can be considered constant, the entropy change of the 
body is 

a.s ... , "" Cp In _!! . 
T, 

Since T, > T,. there is a heat flow into the body, In (TJT,) is positive, and the 
entropy of the body increases. 

How does the entropy of the reserooir change in the process? The reservoir 
temperature remains constant at the value r.; hence its change in entropy is the 
same as in a reversible isothermal process in which the heat flow into it is equal in 
magnitude to that in the irreversible process. Again assuming Cp to be constant, 
the heat flow into the body is 

Q = Cp(T,- TJ. 

The heat flow into the reservoir is the negative of this, and the change in entropy 
of the reservoir is 

Q - Cp 1i - 7; . 
6-Sro.rrvolr - - - -1i r. 

Since T, > T., there is a heat flow our of the reservoir, the fraction (T1 - T1)/T1 

is positive, the entropy change oft he reservoir is negative, and its entropy decreases. 
The total change in entropy of the composite system, body plus reservoir , is 

I r. r.- r., AS- AS,..,+ AS,.,, ... ,,- Cp In----- . 
T, 1i 
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-I 

-2LL~----~----~~----~ 

Fig. 5-S A gtaph of In (T JT J and (T1 - T1)/T1 
as a function or T J T1• 

Figure 5-5 shows graphs of In (T J T J and of (T1 - T1)/T1 , as functions of the 
ratio T JT1• It will be seen that when T, > T., or when T J T1 > I, the quant.ities 
In (TJT J and (T1 - T1)/T1 are both positive, but the former is greater than the 
IaUer. The increase in entropy of the body is then greater than the decrease in 
entropy of the reservoir, and the entropy of the universe (body plus reservoir) 
increases in the irreversible process. 

As an example, suppose that the temperature of liquid water is increased from 273 K 
to 373 K by bringing it in contact with a heat reservoir at a temperature of 373 K. 
We have shown in the preceding ••ample that the increase in specific entropy of the 
water in this process is 13t0 J kg-1 K- 1• The heat How into the water, per kilogram, 
equal to the heat How out of the reservoir, is 

'I • cp(! 1 - TJ 
• 4.18 x J0S J kg-1 K- 1 (373 K - 273 K) 

• 418 X 10' J kg-1• 

The decrease in entropy of the reservoir is 

9 418 X 10' J kg-1 

4S•-r. •- 373 K •-1120Jkg-1 K-1
, 

and tht increase in entropy of the water is greater than the decrease in entropy of the 
reservoir. 

If the body is initially at a higher temperature than the reservoir, heat flows 
out of the body into the reservoir. The entropy of the body decreases and that of 
the reservoir increases. We leave it as a problem to show that in this irreversible 
pro=s the entropy of the universe also increases. Hence the entropy of the uni· 
verse a forays increases in a proctss during which heat floors across a finite temperature 
differenu. 

Consider next the process in part (b) of Fig. 5-I in which a rotating flywheel 
drives a generator which sends a current through a resistor in a heat reservoir. 
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The temperature of the resistor remains constant. Therefore, if the resistor alone 
is considered the system, none of the properties of the system change and there is 
no change in the entropy of the system. We assume that the temperature of the 
resistor during the process differs only slightly from that of the reservoir, so the 
heat/low between resistor and reservoir is reversible; and if Q is the magnitude of 
the heat flow, the entropy of the reservoir increases by Q(T. This is also the entropy 
increase of the composite system, resistor plus reservoir, and again there is an 
increase in entropy of the universe. 

There appears at first sight to be a discrepancy here. If the entropy of the 
reservoir increases as a result of a reversible flow of heat into it, why does not the 
entropy of the resistor decrease by an equal amount, since there is an equal heat 
flow out of it? Nevertheless, the entropy of the resistor does not change since there 
is no change in its state. We can take two points of view. One is that since the 
entropy of the resistor does not change, the performance of dissipative work on it 
results in an increase in its entropy, even in the absence of a heat flow into it. 
The same can be said of dissipative work of any form, such as that done in stirring 
a viscous fluid. Thus the entropy increase of the resistor as a result of the per­
formance of dissipative work on it just balances the entropy decrease due to the 
heat flow out of it. 

The second point of view, as has been stated earlier, is that the performance of 
dissipative work on a system is equivalent to a flow of heat into the system, equal 
in magnitude to the dissipative work. Then the net heat flow into the resistor is 
zero, and there is no change in its entropy; the only heat flow that need be con­
sidered is that into the reservoir. 

If we choose to consider resistor and reservoir together as a single composite 
system, there is no heat flow into it from its surroundings, but dissipative work is 
done on it with a corresponding inctease in entropy. 

Finally, in the irreversible free expansion of a gas in part (c) of Fig. 5-1, there 
are no heat flows within the system and there is no dissipative work. The same final 
state of the gas can be reached, however, by a reversible expansion. In such an 
expansion some external work will be done; and since the internal energy of the 
gas is constant, there will be a reversible heat flow into it, equal in magnitude to 
this work. The entropy of the gas would therefore increase in this reversible process 
and there will be the same increase in entropy as in the original free expansion. 

5-7 THE PRINCIPLE OF INCREASE OF ENTROPY 

In all of the irreversible processes described in the preceding section, it was found 
that the entropy of the Universe increased. This is found to be the case in any 
irreversible process that may be analyzed, and we conclude that it is true for all 
irreversible processes. This conclusion is known as the printiple of lnaease of 
entropy and is considered as a part of the second law of thermodynamics: The 
entropy of the Universe inaeases in every irreversible process. If all systems that 
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inleract in a process are enclosed in a rigid adiabatic boundary, !hey form a com­
pletely isolated syscem and cons1i1u1e cheir own universe. Hence we can also say 
that the enlropy of a complelely isolated syslem increases in every irreversible 
process taking place wilhin the syscem. Since, as discussed in Section 5-4, the 
entropy remains conslant in a revusible process wichin an isolated system, we have 
juscified the statement of the second Jaw in Seclion 5-1 namely, thai in every process 
taking place in an isolated system, tbe entropy of the system either increases or 
remains constant. 

We can now gain a further insight inco the concepts of reversible and irre­
versible processes. Consider again the first example in Seclion 5-1 in which a body 
at a temperature T, eventually comes to thermal equilibrium wilh a reservoir at a 
different temperature T1• This process is irreversible in che sense in which we 
originally defined the term; that is, the direction of the heat ftow between the body 
and the reservoir cannot be reversed by an infinilesimal change in !he temperalure 
of either. This is not to say, however, that che original state of the composite 
system cannot be rnt(Jrd. For example, we can bring the body back to its original 
temperalure, in a reversible process, by making use of a series of auxiliary reservoirs 
at temperatures between T, and T1; and the original slate of che reservoir can be 
rescored by a reversible ftow of heat into or out of itlo an auxiliary reservoir at an 
infinitesimally different !em perature. In these reversible processes, the decrease in 
entropy of the original composite system is equal in magnicude and opposice in 
sign to its increase in !he original irreversible process, so !here is no ouiSianding 
change in its encropy, but che entropy increase of I he auxiliary reservoirs is the same 
as that of I he composice syscem in the firs! process. Hence che original entropy 
increase has simply been passed on to the auxiliary reservoirs. If !he slate of che 
composile syscem is restored by an irreversible process, !he en !ropy increase of the 
auxiliary reservoirs is even greater !han !he enlropy increase in the original process. 
Hence, ahhough a syscem can be rescored to iu o riginal scale afler an irreversible 
process, the entropy increase associaced wilh I he process can never be wiped out. 
AI best, il can be passed on from one syslem 10 anolher. This is the true significance 
of the term, irreversible. The stale of !he Universe can never be complelely 
rescored. 

In mechanics, one of I he reasons that juslifies I he inlroduclion of I he concepts 
of energy, momeniUm, and angular momenlum is thai they obey a conuriJOtion 
principle. Entropy is not conserved, however, excepl in reversible processes, and 
this unfamiliar property, or lack of properly, of !he en !ropy funclion is one reason 
why an aura of myscery usually surrounds the concept of enlropy. When hot and 
cold water are mixed, !he heat flow out of lhe hot wacer equals the heat ftow into 
the cold waler and energy is conserved. Bul lhe increase in enlropy of the cold 
waler is larger than the decrease in entropy of che hot water, and the tolal entropy 
of che system is greater at the end of the process than it was at the beginning. 
Where did this addilional entropy come from 7 The answer is I hat it was created 
in the mixing process. Furthermore, once enlropy has been created, it can never 
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be destroyed. The Universe must forever bear this additional burden of entropy 
(a statement that implies the assumption, which may be questionable, that the 
Universe constitutes an isolated, closed system). "Energy can neither be created 
nor destroyed," says the first law of thermodynamics. "Entropy cannot be 
destroyed," says the second law, "but it can be created." 

The preceding discussion relates to the thermodynamic definition of the entropy 
concept. The methods of slolislics, to be discussed in later chapters, will give 
additional insight into the entropy concept. 

In Section 3- 7, the difference in internal energy between two states of a system 
was defined as equal to the negative of the work in any adiabatic process between 
the slates. It was mentioned at that time that not all states of a syslem could be 
reached from a given initial state by an adiabatic process, but that whenever a 
final stale b could not be reached from an initial state a by an adiabatic process, 
state a could always be reached from state b by such a process. We can now under· 
stand why this should be the case. 

Only those states having the sam~ enlropy as the initial state can be reached 
from this state by a reV<'rsible adiabatic process, along which the entropy is con­
stant. To reach any arbi1rary state one must also make use of an irreversible 
adiabatic process, such as a free expansion or a stirring process, as shown in Fig. 
S-1. But in the irreversible process the entropy always increasu and never decreases. 
Hence the only stales that can be reached from a given initial state by adiabatic 
processes are those in which the entropy is equal to, or greater than, that in the 
initial state. I 

However, if the entropy in some arbitrary Slate is less than that in the initial 
state, the entropy in the initial state is necessarily grealer than that in the arbitrary 
state, and the (original) inilial state can always be reached from the a rbitrary 
state by an adiabatic process. 

In a process in whic.h two bodies at different temperatures are brought in 
contact and come to thermal equilibrium, the net change in tntrgy of the system 
is zero, since the heat flow out of one body equals 1he heat fl ow into the other. 
In what significant way have 1hings changed 7 Who cares whether or not the 
entropy of the system has increased? 

The mechanical engineer is concerned, among other things, with heat engines, 
whose energy input is a flow of heat from a reservoir and whose uuful output is 
mechanical work. At the end of the process above, we have a single system all at 
one temperature, while at the start we had two systems at different temperatures. 
These systems could have been uti lized as the reservoirs of a heat engine, with· 
drawing heat from one, rejecting heat to the o1her, and diverting a part of I he heat 
to produce mechanical work. Once the enlire syslem has come 10 lhe same lem· 
peralure, I his opportun i1y no longer exists. Thus any irreversible process in a heat 
engine, wilh an associa1ed increase in en I ropy, reduces 1he amount of mechanical 
work lhal can be abslracled from a given amounl of heat flowing oul of I he high 
tempera1ure reservoir. What has been " lost" in 1he irreversible process is not 

. . 
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energy, but opportunity-the opportunity to convert to mechanical work a part of 
the internal energy of a system at a temperature higher than that of its surroundings. 

The physical chemist is concerned not so much with the magnitude of the 
entropy increase in an irreversible process as with the fact that a process can take 
place in an isolated system only if the entropy of the system increases. Will two 
substances react chemically or will they not? If the reaction would result in a 
decrease in entropy, the reaction is impossible. However, while the entropy might 
decrease if the reaction were to take place at one temperature and p ressure, it is 
possible that it could increase at other values of temperature and pressure. Hence 
a knowledge of the entropies of substances as functions of temperature and pressure 
is all-important in determining the possibilities of chemical reactions. 

6-8 THE CLAUSIUS AND KELVIN-PLANCK STATEMENTS OF THE SECOND LAW 

We have chosen to consider the second law as a statement regarding possible 
entropy changes during arbitrary processes. Entropy was defined in terms of heat 
ftows into and out of a Carnot cycle. Two other sta tements are often taken as the 
starting point for defining entropy both of which lead, of course, to the same end 
result but by a somewhat more lengthy argument. The Clausius statmrent of the 
second Jaw is: 

No process is possible whose sole result is a beat ftow out of one system at a given 
temperature and a beat flow of the same magnitude into a second system at a bigber 
temperature. 

The Clausius statement seems at first to be a trivial and obvious assertion, 
since heat can flow by conduction only from a higher to a lower temperature. 
However, the mechanism of heat conduction is used to define what is meant by 
" higher" aod "lower" temperatures; numerical values are assigned to temperature 
such that heat ftows by conduction from a higher to a lower temperature. But the 
Clausius statement goes further and asserts that no process ll'lrateoer is possible 
whose s01e result would conflict with the statement. 

The Clausius statement can be seen to be a di rect consequence of the principle 
of increase of entropy. Suppose that the sole result of a process were a heat ftow Q 
out of system A at a temperature T" and a heat ftow of equal magnitude into a 
system B at a higher temperature T1• Such a process would not violate the first 
law, since the work in the process would be zero and the increase in internal energy 
of B would equal the decrease in internal energy of A. The entropy changes of the 
systems would be 

s 
II 
I I 

But T, < T,, so IllS ,..1 > IllS ul and the net result would be a decrease in the It 
entropy of the universe. a 
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It might appear at first sight that the outstanding result of operating a re­
frigerator would contradict the Clausius statement. Suppose for example, that a 
Carnot refrigerator is operated between a reservoir at a temperature T, and a second 
reservoir at a higher temperature T,. In each cycle, there is a heat flow Q1 out of 
the reservoir a t the lower temperature T1 and a heat flow Q1 into the reservoir at 
the higher temperature T2• The magnitudes of the heat flows are not equal, however, 
since QJQ, = T2/ T1, and T1 > T1• Thus, although there is a transfer of heat from 
a lower to a higher temperature, the beat flow out of one reservoir is not equal to 
the heat flow into the other; and the heat flows are not the sole result of the process 
because work, equal in magnitude to JQ,J - JQ1 J, must be done in order to carry 
out the cycle. · 

The Kelvin-Planck statement of the second law is : 

No process Is possible whose sole result is a heat flow Q out or a reservoir at a single 
temperature, and the perrormance or work w equal in magnitude to Q. 

Such a process, if it took place, would not violate the first law, but the prin­
ciple of increase of entropy forbids such a process because the entropy of the 
reservoir would decrease by an amount JQJ/T, with no compensating increase in 
the entropy of any other system. In the operation of any heat engine, there is a 
heat flow out of a high-temperature reservoir and work is done, but this is not the 
sole result of the process because some heat is always rejected to a reservoir a t a 
lower temperature. 

The Clausius statement of the second law can be used to show that there is an 
upper limit to the thermal efficiency of any heat engine, and to the coefficient of 
performance of a refrigerator. Thus let the circle in Fig. 5-6(a) represent a Carnot 
engine operating between two reservoirs at temperatures T2 and T1 , taking in heat 
JQ1J from the reservoir at the higher temperature T2 , rejecting heat IQ11 to the 
reservoir at the lower temperature T., a nd doing work W = IQ2l - IQ1J. The 
thermal efficiency 1J ~ W/JQ11 is about 50%- The rectangle at the right of the 
diagram represents an assumed engine having a higher thermal efficiency than the 
Carnot engine (about 75%). Let primed symbols refer to the assumed higher 
efficiency engine. We assume that the engines are constructed so that each delivers 
the same mechanical work and hence W' = W. The thermal efficiency of the 
assumed engine is 

W' W 
1J' = IQ~I = JQ;J 

Since we assume that 1J' > 1], it follows that JQil < JQ,J. The assumed engine 
therefore takes in a smaller quantity of heat from the high-temperature reservoir 
than does the Carnot engine. It also rejects a smaller quantity of heat to the low­
temperature reservoir, since the work, or the difference between the heats absorbed 
and rejected, is the same for both engines. 
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T, 

7j 

(a) 

Fig. 5--' In part (a}, the circle represents a Carnot engine and the rectangle an 
assumed engine having a higher thermal efficiency. If the assumed engine were to drive 
the Carnot engine in reverse as a refrigerAtor. as in part (b). the result would violate 
the Clausius statement of the second law. 

Because the Carnot engine is reversible (in the thermodynamic sense) it can 
also be operated as a refrigerator with no change in the magnitudes of W,JQ,J, and 
JQ1J. Hence let the assumed engine be connected to the Carnot engine as in Fig. 
~(b). The system will run itself because the work output of the assumed engine 
is equal to the work required to operate the Carnot refrigerator. The assumed 
engine withdraws heat JQIJ from the high-temperature reservoir, while the Carnot 
refrigerato r delivers a larger quantity of heat JQ,J to this reservoir. Also, the as­
sumed engine rejects heat IQil to the low-temperature reservoir while tho Carnot 
refrigerator withdraws from this reservoir a larger quantity of heat JQ1J. 

It should be evident from the diagram that a part of the heat delivered to the 
high-temperature reservoir can be diverted to provide the heat input to the assumed 
engine, and that the heat delivered to the low-temperature reservoir will provide a 
part of the heat removed from this reservoir by the Carnot refrigerator. 

The sol~ result of operating the composite system is then a transfer of heat 
from the low- to the high-temperature reservoir, represented in Fig. S- 6(b) by 
the width of the " pipeline" at the left side of the diagram, in violation of the Clausius 
statement of the second law. I t follows that the assumed engine cannot exist and 
that no engine operaring betn·ttn /11'0 uurvoirs at gi~Nn ttmperarur~s can hav~ a 
higher thermal tfficitnq than a Carnot tngint operaring bttwttn the samt pair of 
r~s~rvoirs. 

The same reasoning as that above shows that no refrigerator can have a higher 
coefficient of performance than a Carnot refrigerator, for two reservoirs at given 
temperatures. 

The statement of the second law in terms of entropy as stated in Section S-1 
was used directly to verify the Clausius and Kelvin-Planck statements of the second 
Jaw. The Kelvin· Planck statement can be used to show that the ratios of heat 
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flows in and out of a Carnot cycle depend only on the temperatures of the reser­
voirs between which the cycle operates. (&e Problem S-33.) This property o f the 
Carnot cycle was used to define entropy and thermodynamic temperature. 

PROBLEMS 

5-1 Suppose a temperature scale is defined in terms of a substance A such that the 
efficiency of a Camot engine operating between the boiling and melting points of this 
substance (at a pressure of I aim) is exactly SO%. One degree on this new scale is equal to 
two degrees on the Fohrenheil scale and there are 7S A-degrees between the melting and 
boiling points of the substance. Determine the melting- and boiling-point temperatures of 
the substance on the Kelvin scale. 

S-2 Analyze a Camot cycle for the special case of an ideal paramagnet to show that the 
rdtio of two empirical temperatures defined by Curie's law, 01 - Cc£'/M1, is equal to 
the ratio of the corresponding thermodynamic temperatures. The internal energy of an 
ideal paramagnet depends on T alone; and during an adiabatic process Jt'/01 remains 
constant. 

v, v, 

Figure 5-7 

5-3 Find the change in entropy of the system during the following processes: (a) I kg 
of ice at 0°C and I atm pressure melts at the same temperature and pressure. The latent 
heal of fusion is 3.34 x 10' J kg-1• (b) I kg of steam at 100•c and one atm pressure 
condenses to water at the same temperature and pressure. The latent heal of vaporization 
is 2.26 x 10' J kg-1• 

5-4 A system is taken reversibly around the cycle a-b-r-<1-a shown in Fig. S-7. The 
remperatures 1 are given in degrees Celsius. Assume that the heat ca~cities are indepen· 
dent of temperature and Cv - 8 J K- 1 and C1• - 10 J K- 1• (a) Calculate the heat flow 
f ci'Q into the system in each portion of the cycle. According to the first law, what is the 
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significance or the sum or these heat flows? (b) I f V1 ~ 9 x to-• m' and v, - 20 x 

fd'Q 
tO-• m•, calculate the pressure difference (P, - P, ). (c) Calculate the value or T 
along each portion of the cycle. According to the second law, what is the significance o r 
the value of the sum of these integrals? (d) Suppose that a temperature r' were defined as 
the Celsius temperature plus some value other than 273.15. Would it then be true that 
J.d'Q j T' - 0? Explain. 

5-5 A 50-ohm resistor carrying a constant current or 1 A is kept at a constant tempera­
tureof270C by a stream of cooling water. In a time interval or 1 s, (a) what is the change 
in entropy of the resistor? (b) what is the change in entropy of the universe? 

5-6 A Carnot engine operates on 1 kg of methane, which we shall consider to be an ideal 
gas. The ratio of the specific heat capacities y is 1.35. If the ratio or the maximum volume 
to the minimum volume is 4 and the cycle efficiency is 25%. lind the entropy increase of 
the methane during the isothermal expansion. 

Figure 5-8 

5-7 The circle in Fig. 5-8 represents a reversible engine. During some integral number or 
complete cycles the engine absorbs 1200 J from the reservoi r at 400 K and performs 200 J 
of mechanical work. {a) Find the quantities or heat exchanged with the other reservoirs, 
and state whether rhe reservoir gives up or absorbs hear. (b) Find the change in entropy 
of each reservoir. (c) What is the change in entropy of the univer>e? 

s-8 One kilogram or water is heated rever>ibly by an electric hearing coil from 20°C to 
so•c. Compute the change in entropy or (a) the water, (b) the universe. (Assume that 
the specific heat capacity of water is a constant.) 

5-9 A thermally insulated SO-ohm resistor carries a current or I A for 1 s. The initial 
temperature of the resistor is 10°C, its mass is 5 g, and its specific heat capacity is 
850 Jkg· • K- 1• (a) What isthechange in entropy of the resistor? (b) What isthechange 
in entropy or the universe? 

5-10 The value or ~1• for a certain substance can be represented by ~I' - a + bT. (a) 
Find the heat absorbed and the increase in entropy or a mass m of the substance when its 
temperature is increased at constant pressure from T1 to T1• (b) Using this equation and 
Fig. 3- 10, lind the increase in the molal specific entropy of copper, when the temperature 
is increased at constant pressure from 500 K to 1200 K. 

5-ll A body of finite mass is originally at a temperature T,, which is higher than that of 
a heat reservoir at a temperature T1• An engine operates in infinitesimal cycles between 
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the body and the reservoir un til it lowers the temperature of the body from rJ to T1• In 
this process there is a heat ftow Q out of the body. Prove that the maximum work obtain· 
able from the engine is Q + T1(S1 - S2), where S1 - s, is the decrease in entropy of the 
body. 

5-12 On a singleT-S diagram, sketch curves for the following reversible processes fo r an 
ideal gas starting from the same initial stale: (a) an isothermal expansion, (b) an adiabatic 
expansion, (c) an isochoric expansion, and (d) an isochoric process in which heat is added. 

g:~_o_ 
I I 
I I 
I I 
I I 
I I 

R R ' 
2 

Figure 5-9 

5-13 A system is taken reversibly around the cycle a·l>-c-d-a shown on the T-S diagram of 
Fig. S-9. (a) Does the cycle a-1>-c-d·a operate as an engine or a refrigerator ? (b) Calculate 
the heat transferred in each process. (c) Find the efficiency of this cycle operating as an 
engine graphically as well as by direct calculation. (d) What is the coefficient o f perfor­
mance of this cycle operating as a refrigerator? 

5-14 Show that if a body at temperature T1 is brought in contact with a heat reservoir at 
temperature T, < T1, the entropy of the universe increases. Assume that the heat capacity 
of the body is constant. 

5-I S Suppose the heat capacity of the body discussed in Section S-6 is 10 J K - 1 and 
T1 - 200 K. Calculate the changes in entropy of the body and of the reservoir if (a) 
T2 - 400 K, (b) T, - 600 K, (c) T2 • 100 K. (d) Show that in each case the entropy of 
the universe increases. 
5-16 (a) One kilogram of water at o•c is brought into contact with a large heat reservoir 
at 100°C. When the water has reached I00°C, what has been the change in entropy of the 
water, of the heat reservoir, and of the universe? (b) If the water had been heated from 
o•c to I00°C by first bringing it into contact with a reservoir at so•c and I hen with a 
reservoir at 100°C, what would have been the change in entropy of the universe? (c) 
Explain how thewdter might be heated from o•c to too•c with no changeinlheentropyof 
the universe. 
5-17 Liquid water having a mass of 10 kg and a temperature of20°C is mixed with 2 kg 
of ice at a temperature of -s•c at I atm pressure until equilibrium is reached. Compute 



144 ENTROPY AND THE SECOND LAW OF THERMODYNAMICS 

the final temperature and the change in entropy of the system. [<1.(water) = 4.18 x 
10' Jkg-• K- 1; c1.(ioe) - 2.09 x 10' J kg-1 K- 1; and /11 - 3.34 x 10' Jkg-1.] 

5-18 Construct a reversible process to show explicitly that the entropy increases during a 
free expansion of an ideal gas. 

5-19 What a re the difficulties in showing explicitly that the entropy of an ideal gas must 
increase during an irreversible adiabatic compression. 
5-lO Two identical finite systems of constant heat capacity C1• are initially at tempera­
tures T1 and T, where T, > T1• (a) These systems are used as the reservoirs of a Camot 
engine which does an infinitesimal amount of work d' Win each cycle. Show that the final 
equilibrium temperature of the reservoirs is (T1 T ,)112. (b) Show that the final temperature 
of the systems if they are brought in contact in a rigid adiabatic enclosure is (T1 + T z)/2. 
(c) Which fina l temperature is greater? (d) Show that the total amount of work done by 
the Carnotengine in part (a) is C1,(r;" - r:''>'· (e) Show thatthetotal work available 
in the prooess of part Cb) is zero. 

5-21 A mass m of a liquid at a temperature T1 is mixed with an equal mass of the same 
liquid at a temperature T1• The system is thermally insulated. Show that the entropy 
change of the universe is 

2 
I (T, + T2 l/2 

mcp n V T,T, ' 

and prove that this is neoessarily positive. 

5-22 One mole of monatomic ideal gas initially at temperature T1 expands adiabatically 
against a massless piston until its volume doubles. The expansion is not necessarily 
quasistacic or reversible. It can be said, however, that the work done, the internal energy 
change, and the entropy change o f the system, and the entropy change of the universe 
must fall within oertain limits. Evaluate the limits for these quantities and describe the 
process associated with each limit. 

5-23 When there is a heat fl ow out of a system during a reversible isothermal process, 
the entropy of the system decreases. Why does I his not violate the second law? 

5-24 Show that ( ast an. > 0 for all processes where X is an arbitrary intensive or 
extensive property or the system. 

5-25 Use Fig. S- 10 to show that whenever a system is taken around a closed cycle, the 
sum of the heat flow Q1 divided by the reservoir temp<rture T1 fo r each process is less than 
or equaJ to zero; i.e. , 

(S-18) 

This is the Clausius in•qua/ity. [Hint: Arrange for Q1,1 = Q1 and Q, = Q"' and use the 
Kelvin-Planck statement of the second law.] 

5-16 (a) In the operation of a refrigerator, there is a heat flow out of one reservoir at a 
lower temperature and a heat flow into a second reservoir a t a higher temperature. 
Explain why this process does not contradict the Clausius statement of the second law. 
(b) In the operation of a heat engine, there is a heat flow Q out of a reservoir, and 
mechanical work W is done. Explain why this process does not violate the Kelvin-Planck 
statement of the second law. 
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Figure S-10 

5-27 An inventor claims to have developed an engine that takes in 101 J at a temperature 
of 400 K, rejc<:ts 4 x 10° J a t a temperature of 200 K, and delivers 3.6 x 10' 1 of 
mechanical work. Would you advise investing money to put this engine on the market ? 
How would you describe this engine? 

S- 28 Show that if the Kelvin-Planck statement of the second law were not true, a vio­
lation of the Clausius statement would be possible. 

S-29 Show that if the Clausius statemen t of the second law were not true, a violation of 
the Kelvin-Planck statement would be possible. 

5-30 Assume tha t a certain engine has a greater efficiency than a Camot engine operating 
between the same pair or reservoirs, and that in each cycle both engines reject the same 
qu•ntity or heat to the low-temperature reservoir. Show that the Kelvin-Planck state­
ment of the second law would be violated in a process in which the assumed engine drove 
the Carnot engine in the reversed direction as a refrigerator. 

p 

Figure S-11 



148 ENTROPY AND THE SECOND LAW OF THERMODYNAMICS 

5-31 Show that no refrigerator operating between two reservoirs at given temperatures 
can have a higher coefficient or performance than a Camot refr igerator operating between 
the same two reservoirs. 

5-31 In Fig. 5-11, abed represents a Carnot cyde, bounded by two adiabatics and by 
two isotherms altho temperatures T1 and T1, where T1 > T1• The oval figure is a revers· 
iblecycleforwhkh T1and T1are, respectively, the maximum and minimum temperatures. 
In this cyde, heat II absorbed at temperatures less than or equal to T1 and is rejected at 
temperatures greater than or equal to T1• Prove that the efficiency or the second cycle is 
less than that or the Carnot cycle. (Hint: Approximate the second cycle by a large number 
or small Carnot cydes.) 

5-33 Starting from either the Kelvin-Planck or tho Clausius statement of the second law, 
show that the ratio IQ11/IQ11 must be the same for all Carnot cycles operating between the 
same pair of reservoirs. (Hint: Arrange for a heat flow Q from a Carnot engine to a reservoir 
in n cycles and have tho same heat flow into a Camot refrigerator operating between the 
same reservoin in m cycles where nand mare integers.) 
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6-1 INTRODUCTION 

We now combine the first" and second laws to obtain several important thermo­
dynamic relations. The analytical formulation of the first Ia w of thermodynamics, 
in differential form, is 

d'Q = dU + d'W. (6-J) 

The second law states that for a reversible process between two equilibrium states, 

d'Q, = TdS. 

Also, the work in a reversible process, for a PVTsystem, is 

d'W=PdV. 

It follows that in any infinitesimal reversible process, for a PVT system, 

TdS ~ dU + PdV. 

(6-2) 

(6-3) 

(6-4) 

Equation (6-4) is one formulaiion of the combined first and second laws for a PVT 
system. For other systems, such as a stretched wire o r a surface film, the ap­
propriate expression for the work replaces the term P dV. 

Although Eqs. (6-2) and (6-3) are true only for a reversible process, it is 
important to realize that Eq. (6-4) is not restricted to a process at all, since it 
simply expresses a relation between the properties of a system and the differences 
between the values of these properties, in two neighboring equilibrium states. 
That is, although we made use of a reversible process to derive the relation between 
dS, dU, and dV, once we have determined what this relation is it must be true for 
any pair of neighboring equilibrium states, whatever the nature of a process between 
the states,1o r even if no process at all takes place between them. 

Suppose a system undergoes an irreversible process between two equilibrium 
states. Then both Eqs. (6-1) and (6-4) can be applied to the process, since the 
former is correct for any process, reversible or not, and the latter is correct for any 
two equilibrium states. However, if the process is irreversible, the term T dS in 
Eq. (6-4) cannot be identified with the term d'Q in Eq. (6-1), and the term P dV 
in Eq. (6-4) cannot be identified with the term d' W in Eq. (6-1). As an example, 
consider an irreversible process in which adiabatic stirring work d'W is done on a 
system kept at constant volume. The entropy of the system increases soT dS 'I" 0, 
but d'Q - 0 because the process is adiabatic. A lso, P dV = 0 because the process 
is a t constant volume, while d ' W 7" 0. 

A large number of thermodynamic rela tions can now be derived by selecting 
T and v, T and P, or P and v as independent variables. Furthermore, since the 
state of a pure substance can be defined by any two of its properties, the partial 
derivative of any one property with respect to any other, with any one of those 
remaining held constant, has a physical meaning, and it is obviously out of the 
question to attempt to tabulate all possible relations between all of these deriva­
tives. However, every partial derivative can be expressed in terms of the coefficient 

t. 

c 
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of volume expansion p = ( lfv)(iJvjiJT)p, the isothermal compressibility K­

-(1/v)(iJvjiJPh, and cp, together with the properties P, v, and T themselves, so 
that no physical properties of a substance other than those already discussed need 
be measured. A derivative is said to be in standard form when it is expressed in terms 
of the quantities above. 

Once the partial derivatives have been evaluated, the results can be collected 
in a systematic way devised by P. W. Bridgman•, so that when a particular deriva­
tive is needed, it is not necessary to calculate it from first principles. The procedure 
is explained in Appendix A. 

We next demonstrate the general method by which the derivatives are evaluated, 
and work out a few relations that will be needed later. 

6-2 T AND v INDEPENDENT 

Let us write our equations in terms of specific quantities, so that the results arc 
independent of the mass of any particular system and refer only to the material of 
which the system is composed. From the combined first and second laws, we have 

ds = !cau + P dv), 
T 

and considering u as a function ofT and v, 

du = (
0
") dT + (~) dv. 

iJT . OV .. 
Therefore 

ds = .!.(iJ") dT + .!.[(~) + PJ do. 
T iJT . T iJv T 

But we can also write, 

ds = (E!.) dT + (E!.) dv. 
iJT • iJv T 

(6-5) 

(6-6) 

Note that one could not carry out a corresponding procedure on the basis of 
the first law alone, which states that 

d'q = du + d'w. 
One cannot write 

d'q = ( iJq ) dT + (~) dv, 
iJT • iJv T 

because q is not a function of Tand v, and d'q is not an exact differential. It is only 
because ds is an exact d ifferential that we can express it in terms of dT and dv. 

• Percy W. Bridgman, American physicist (1882-1961). 
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Since dT and du are independent, their coefficients in the preceding equations 
must be equal. Therefore 

(as) 1 (a") ar.· r ar.' (6-7) 

(£!.) "'.!.[(~) + P]. av r T av r (6-8) 

Furthermore, as shown in Section 2-10, the suond derivatives of s and u with 
respect to T and u (the "mixed" second-order partial derivatives) are independent 
of the order of differentiation. Thus: 

[a (as)] [a (as) ] a•s a•s au ar • r = aT a; r • • au i!T = arao . 
Hence from Eqs. (6-7) and (6-8), differentiating the first partially with respect 

to v and the second with respect to T, we obtain 

~ a:~r- Ma~~. + (:;).]-f. [(~)r + P J. 
which simplifies to 

(~) = r( al'\ - p .., T{J - P. au I' arJ. IC 
(6-9) 

The dependence of internal energy on volume, at constant temperature, can there­
fore be calculated from the equation of state, or from the values of {J, K, T, and P. 

Since (au/aT) •... c., Eq. (6-5) may now be written: 

du = c. dT + [ r(;;).- P J dv. (6-10) 

Hill and Lounasmaa have measured the specific heat capacity at constant volume and 
the pressure of liquid He' as a function of temperature between 3 and 20 K and for a 
range or densities. • The data for •• and P arc shown on Figs. 6-1 (a) and 6-1 (b), 
plotted as a function or a reduced density Pr whkh is the ratio or the actual density of 
He' to its density at the critkal point, taken by them to be 68.8 kg m-•. The molal 
specific volume is, then, 0.0582/ p, m' kilomoJe- •. 

For example, at a temperature or 6 K and a pressure of 19.7 atm, p, • 2.2, 
thus o • 2.64 x JO-• m' kilomote· •. The isothermal compressibility of He' at 6 K 
and 19.7 atm can be found to be 9.42 x I~ m1 N·• by measuring the slope of the 
6 K isotherm at 19.7 atm and dividing by p, • 2.2. The value of the expansivity 
p • S.3S x 10· • K- 1 is calculated by dividing the fractional change of the reduced 
density along the 19.7 atm isobar as the temperature i.t varied by :1::1 K and dividing 
by the temperature change. 

• R. W. Hill and 0. V. Lounasmaa, Philosophical Tronsoctions of the Royal Soc/tty of 
LAndon, lSlA, (1960): 357. Actually (aP/aT). was also directly measured, making it 
possible to calculate all the thermodynamic properties of He' except c I' to an accuracy of 
I Yo by direct numerical integration of the data. Data used by permission. 
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Reduced density , p, Reduced density, Pr 

Fig. 6-1 (a) The specific heat capacity at constant volume and (b) the pressure of He' as a 
function of reduced density at temperatures between 3 and 20 K. Each curve is marked 
wi th the temperature in kelvins. The reduced density p, is I he ratio of the actual density of 
He' to 68.8 kg m-•. The dashed lines are the tangents to the 6 K isotherm at P. - 2.2. The 
experiments were performed by Hill and Lounasmaa. (These figures are reprinted by 
permission from 0. V. Lounasmaa's article, "The Thermodynamic Properties of Fluid 
Helium, Philosophical Transactions of tht Royal Socit ty of London 252A (1960): 357 
(Figs. 4 and 7).) 

These data can be used to calculate (~u/~)T by Eq. (6-9): 

(~u\ T{J (6)(5.35 X 10-') avfT - -; - P - 9.42 x 10_, - 19.7(1.01 x 10') - 1.42 x IO' IJ m-o. 

By using values of (auf ~v)T and c., determined at various temperatures and densities, 
Eq. (6-5) can be integrated numerically to obtain values of the change in internal 
energy. 

In Section 4-2, using the first law alone, we derived the equation 

(6-11) 

Making use of Eq. (6-9), we see that 

Cp- c. -r(al'\ ( av) ~ P'Tv. 
ai'J. aTP K 

(6-12) 
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Thus the difference cp - c. can be calculated for any substance, from the equation 
of state or from p and K . The quantities, T, v, and K are a lways posi tive, and 
although p may be positive, negative, or zero (for water, it is zero at 4°C and is 
negative between o•c and 4°C), fJ' is always positive or zero. It follows that cp 
is never smaller than c •. 

Using the data for He' given above, 

(S.JS X t()-"1) 1(6)(2.64 X IO-' ) . _
1 

_
1 Cp - c. • 

9
.
42 

x to-• • 48t0 J kdomolc K . 

Since c. is measured to be 99SO J kilomotc-• K - 1 at 6 K and p, • 2.2, 

cp • t4,760 J kilomolc- • K- 1• 

Even at these low temperatures (cp - c.)fc. = 48 percent. 

Let us now return to the expressions for (osfoT). and (osfov)r in Eqs. (6-7) 
and (6-8). Using Eq. (6-9) and the fact that (oufoT). - c., 

(:~). = ~ (6-13) 

and 

(~t = (:;).. (6-14) 

Therefore from Eq. (6-6), 

or 

ds = - dT + - dv, c. (0~ 
T iJT. 

Tds = c.dT + r(iJP)dv. 
iJT. 

For liquid He' at 6 K and t9.7 aim, 

and 

(as) 99SO ar • - -6- - 1.66 X tO' J kilomoJc- • K- 1
, 

(~\ • S.JS x to-' _ _1 -a 
au}r 9.42 x to-• - 5.68 x 10' J K m . 

(6-15) 

Using the values of these quantit ies determined at various temperatures and densities, 
Eq. (6-6) or Eq. (6-IS) can be numerically integrated to yield values of the entropy as 
a funct ion of temperature and volume. 

Finally equating the mixed partial second derivatives o f s with respect to v 
and T, we get 

-2 -T-(iJc) (iJ'Q 
iJu T- iJT1 ; 

(6-16) 
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For any subslance for which the pressure is a linear function of temperature at 
constant volume, (CJlPfoT'). = 0 and c. is independent of volume, alt~ough it 
may be dependent on temperature. 

The value ror (~c./~u)T ror He' is calculated by measuring the slope or the 6 K iso· 
tberm on Fig. 6-J(a) at p,- 2.2. The slope, (~cJ~p,)T, is related to (~cJau)T by 

(k.\ (k•\ (a,,\ (ac•) ,: "' _, -• 
IUJT - a,,/T IUfT- - a,, TO.OS82 - 1.7 x lv~ JK m · 

The value ror (a•ptartJ. ror ric' is estimated by calculating values ror the change in 
pressure as the temperature is changed by I K, keeping p, constant a t 2.2, and 
measuring the slope or the curve obtained by plotting these values or llP/I>T versus 
T. This process yields a value of T(atPtart), which is close to 1.7 x 10' J K- 1 m-•. 

6-3 T AND P INDEPENDENT 

In terms of the enthalpy h = u + Pv; the combined first and second laws can be 
written, 

ds =.!. (dh- vdP), 
T 

and considering h as a function ofT and P, 

dh - (oh) dT + (!.!!) dP. 
oT P oPT 

Therefore 

ds- .!.(oh) dT + .!.[(!.!!) - v] dP. 
T oTp T oPT 

But 

ds = ( os) dT + (2!.) dP, 
oT p oPT 

and hence 

Equating the mixed second-order partial derivatives of s, we find that 

(!.!!) - -r(0") ~ v- -P•T + v, 
oPT ar p 

(6-17) 

(6-18) 

(6-19) 

(6-20) 

(6-21) 
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which is the analogue of Eq. (6-9). The dependence of enthalpy on pressure, at 
constant temperature, can therefore be calculated from the equation of state, o r 
from p, v, and T . 

Since (ohfoT)p a cp, Eq. (6-17) can be written, 

dh = Cp dT - [ r(;;t- v] dP. (6-22) 

Using Eq. (6-21) and the fact that (ohfoT)p = cp, the partial derivatives of s 
with respect to T and P are 

( as) = ~ 
aT P T' (6-23) 

(~)T- -{:;t. (6-24) 

Hence 

r dS - c P dT - r( 0") dP, or. p (6-25) 

and 

(ocp) _ - r( o'v) oP T or• p. (6-26) 

Continuing with our example of liquid He' a t 6 K and 19.7 a tm 

(~!. • (2.64 x .IQ-1)[ -(S.3S X IQ-' )(6) + I) • 1.79 x IQ-1 m' kilomole-1• 

Similarly 

(~. \ .14760 
~T }p • - 6- • 2460 J kilomole K- 1, 

and 

f-4 P AND Y INDEPENDENT 

It is len as an exercise to show tha t if P and v are considered independent, we can 
write 

(6-27) 

(6-28) 

(6-29) 
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For liquid He•, 

(a·') "iP • • 2.92 x 10· • m' kilomoJe-1 K- 1, 

and 

f-5 THE T ds EQUATIONS 

The three expressions for T ds derived in the preceding sections are collected 
below: 

Tds - c, dT + r(i1P\dv, 
arJ. 

T ds = cp dT - r( 11•) dP, 
i)Tp 

T ds - cp(~~/D + c,( ~~),dP· 

(6-30) 

(6-31) 

(6-32) 

These are called the " T ds" equations. They enable one to compute the heat 
fl ow d'q, .. T ds in a reversible process; and when divided through by T, they 
express ds in terms of each pair of variables. They also provide relations between 
pairs of variables in a reversible adiabatic process in which s is a constant, and 
dJ- 0. 

The increase in temperature of a solid or liquid when it is compressed adia­
batically can be found from the first T ds equation. In terms of {J and "• we have 

{JT 
T ds -= 0 = c, dT, + - dv,. 

" 
{JT 

dT,-- -dv,. 
KC, 

(6-33) 

If the volume is decreased, dv, is negative and dT, is positive when {J is positive, 
but is negative when {J is negative. Thus while ordinarily the temperature of a 
solid or liquid increases when the volume is decreased adiabatically, the tempera­
ture of water between o•c and 4°C decuasn in an adiabatic compression. 

If the increase in pressure, rather than the decrease in volume, is srlecified, 
the temperature change can be found from the second T ds equation: 

Tds- 0 = cpdT,- {JvTdP,, 

dT, • {JvT dP,. (6-34) 
Cp 
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If fJ is positive, the temperature increases when pressure is applied. Hence if 
it is desired to keep the temperature constant, there must be a heat How out of the 
system. This heat How can a lso be found from the second T ds equation, setting 
dT - 0 and T ds - d'qr. Thus 

d'qT = -{JvT dPT. (6-35) 

Comparison of Eqs. (6-34) and (6-35) shows that for a given change in pressure 
the heat How in an isothermal process equals the temperature rise in an adiabatic 
process, multiplied by the specific heat capacity at constant pressure. 

Consider an adiabatic compression or 10- • kilomole of liquid He• which decreases the 
volume by 1%. Assume that for He4

, p, T, -c, c. and cp remain essentially constant 
during the compression. Then by Eq. (6-33) 

1 _ _ (5.35 x to-•)(6)(2.64 x 10-•> _ _ , 
dT, - (9.42 X J0-1)(9.95 X 10') ( .OI) 9 X to- K. 

Similarly if the pressure on to-• kilomole of He' is increased by 1 %. by Eq. (6-34) 

(5.35 X t0- 2)(2.64 x to-5)(6)(19.7)(1.01 x 10')(.0 1) 
0 dT, - 1.48 X IO' - 1.1 X to- K. 

Helium is.a rather soft solid, for which fJ is large and • is small. Even so, the tempera­
ture changes during adiabatic processes are very small. For gases the temperature 
changes during an adiabatic process can become significant. 

The heat which must ftow out of the same sample of He4 in order to keep the 
temperature constant during an isothermal process for the same change in volume is 

, (ap) (6)(5.35 x to-2)(2.64 " 10 ... )(.01) . 
d qT - T aT • dvT - - 9_42 " 10... - -0.9 J kilomote-1

• 

For an isothermal increase in pressure, 

d'qT - -(5.35 + JQ- ')(2.64 " to-')(6)(19.7)(1.01 " JO')(.Ot) 
- -0.17 J kilomole-•. 

The pressure needed to decrease the volume of a substance adiabatically is 
found from the third T ds equation: 

T ds = 0 = "c• dP, + ~ dv,. 
fJ {Jv 

and hence 

_!(~) - 1(.5!., 
v oP , Cp 

(6-36) 

It will be recalled that the compressibility" is the isolherma/ compressibility, de­
fined by the equation 
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The left side of Eq. (6-36) defines the adiabatic compressibility, which we shall 
write as K,. (To be consistent, the isothermal compressibility should have been 
written K.,; we will continue to use K, however.) Oc:noting the ratio cpfc. by y, Eq. 
(6-36) becomes 

(6-37) 

Since Cp is always greater than (or equal to) c., y is always greater J}lan (or 
equal to) unity even for a solid o r liquid, and the adiabatic compressibility is 
always less than (or equal to) the isothermal compressibility. This is natural, 
because a n increase in pressure causes a rise in temperature (except when p = 0) 
a nd the expansion resulting from this temperature rise offsets to some extent the 
contraction brought about by the pressure. Thus for a given pressure increase 
dP, the volume change dv is less in an adiabatic than in an isothermal compression 
and the compressibility is therefore smaller. 

When a sound wave passes through a substance, the compressions and rare­
factions are adiabatic rather than isothermal. The velocity of a compressional 
wave, it will be recalled, equals the square root of the reciprocal of the product of 
density and compressibility, and the adiabatic rather than the isothermal com­
pressibility should be used . Conversely, the adiabatic compressibility can be deter· 
mined from a measurement of the velocity of a compressiomil wave and such 
measurements provide the most precise method of determining the ratio cpfc •. 

For our example of liquid He', y - 14160/9950 • 1.48 and p • 4/2.64 x w-• • 
162 kg m-->. Therefore the velocity or sound is given by 

[ 
1.48 J'fl 0 • 162(9.43 x 10)-o • ).II X lOS m s-t. 

This is about lOY. lower than an extrapolation of sound velocity data taken at20 arm 
below 4.5 X would yield. 

f-8 PROPERTIES OF A PURE SUBSTANCE 

The general relations derived in the preceding sections can be used to compute the 
entropy and enthalpy of a pure substance from its directly measurable properties, 
namely, the P-v-T data and the specific heat capacity at constant pressure cp. 
Since temperature and pressure are the quantities most readily controlled experi· 
mentally, these are the variables usually selected. We have, from the second T d.r 
equation, Eq. (6-31), 

ds =-dT - - dP Cp ( ~·) 
T ~T P ' 

and from Eq. (6-22), 

dh "' Cp dT + [v - r(;;t] dP. 
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Let s0 and h0 represent the entropy and enthalpy in an arbitrary reference 
state P0 , v0 , and T,. Then 

and 

S -lT ~dT-JP(ov) dP + s0, 
x, r P, ar p 

h =lTcpdT + ([v- r(.£!'.)] dP + ho· 
T, )p, oTp 

Fig. 6-2 Integration paths used in evaluation of 
entropy. 

(6-38) 

(6-39) 

Since sand hare properties of a system, the difference between their values in 
any two equilibrium states depends only on the states and not on the process by 
which the system is taken from the first state to the second. Let us therefore evaluate 
the first integrals in each of the preceding equations at the constant pressure P0 , and 
the second integrals at a constant temperature T. The paths of integration are 
illustrated in Fig. 6-2. The vertical height of point a above the P· Tplane represents 
the entropy s0 at the reference pressure P0 and the reference temperature T0 • 

Curve ab is the first integration path, at the constant pressure P0• The first integral 
in Eq. (6-38) is represented by the length of the line segment be. Curve bd is the 
second integration path, at the constant temperature T, and the second integral is 
represented by the length of the line segment be. The vertical height of point d 
above the P·T plane represents the entropy sat the pressure P and temperature T. 
The chang~ in entropy of the system as it is taken from state a to state dis just the 
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difference in the vertical heights of a and d above the P-Tplane. In practice, other 
integration paths are olten used because they simplify the treatment of experi­
mental data. 

In evaluating the first integral, we must use the specific heat capacity at the 
reference pressure P,, or cp,. This, of course, must be expressed as a function of 
temperature. The coefficient o f dP in the second integral must be expressed as a 
function of P, at the constant temperature T, 

Experimental data on cp are often available only at a pressure P different from 
the reference pressu re P0• Equation (6-26) can then be used to compute cp, from 
cp and the P-v-Tdata. Integrating Eq. (6-26) at the constant temperature T, we get 

Cp0 = Cp + T ((:i-t dP. (6-40) 

Thus the entropy and enthalpy of a system can be determined from a knowledge 
of its equation of state and of its specific heat capacity as a function of temperature, 
both of which can be measured experimentally. 

8--7 PROPERTIES OF AN IDEAL GAS 

The integrals in Eqs. (6-38), (6-39), and (6-40) are readily evaluated for an ideal 
gas. We have 

v- RT/P, (oufoT)p ... R/P, (o'ufoT')p - o. 
Hence, from Eq. (6-40) lhe value of cp is the same at all pressures, and Cp is a 
function of temperature only. The entropy and enthalpy are then 

i2' Cp p 
s - - dT - R In- + s0, 

r, T P0 

(6-41) 

h - f rcpdT + h0• 

JT, (6-42) 

Over a temperature range in which cp can be considered constant', these 
simplify further to 

s- cpln!. - Rtn!. + s0, 
7i Po 

(6-43) 

h = cp(T - T,) + h,. (6-44) 

The quantities s0 and h, arc arbitrary values that may be assigned to sand h in the 
reference state T0, P0• 

The entropy as a function of temperature and volume, or of pressure and 
volume, can now be obtained fro m the equation of state, or by integration of the 

I 
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first and third T ds equations. We give the results only for a range of variables in 
which the specific heat capacities can be considered constant: 

s- c,lni. + Rln~ + s0 , 
T0 v, 

s- c,ln!... + cp ln ~ + s0 • 
Po Vo 

The internal energy u, as a function o f T and P, is 

u- h- Pv 

= ( rcpdT + h0 - RT. J,., 
Since for an ideal gas, Cp - c, + R, this can be written 

" = r" '· dT + "•· J,.. 

(6-45) 

(6-46) 

(6-47) 

where u0 is the internal energy in the reference s tate. This equation could have been 
obtained more simply by the direct integration of Eq. (6-10). The method above 
was used to illustrate how u can be obtained from h and the equation of state. 
Since for an ideal gas, c,. (like cp), is a function of temperature only, the internal 
energy is a function of temperature only. If c, can be considered constant, then 

u - c,(T - T0) + u0• (6-48) 

To find the equation of a reversible adiabatic process, we can sets = constant 
in any expression for the entropy. Thus from Eq. (6-46), 

c, In P + cp In o = constant 

In P'• + In v'• = constant 
Puc,tc. - constant, 

a familiar result. 
The heat absorbed in a reversible process can be found from any of the T ds 

equations, setting T ds - d'q. Thus in a reversible isothermal process, from the 
firs t T ds equation, 

d'q,. = Pdv,.. 

6-8 PROPERTIES OF A VAN OER WAALS GAS 

We next make the same calculations as in the preceding section, but for a van der 
Waals gas. These serve to illustrate how the properties of a real gas can be found 
if its equation of state and if its specific heat capacity are known. A van der Waals 
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gas has been selected because of its relatively simple equation of state, 

(p + ;.)(u- b)= RT. 

The expressions for the properties of a van der Waals gas arc simpler if T and v, 
rather than Tand P, arc selected as variables. From the first T ds equation, 

ds = - dT + - du. c. ( q~ 
T oT • 

From Eq. (6-16), 

(oc.) = r( o'~ = o, 
ou T oi'J. (6-49) 

since Pis a linear function ofT. That is, c. is a function of temperature obly and 
docs not vary with the volume at constant temperature. 

From the equation of state, 

(oP) R 
or .= v- b' 

Then if s0 is the entropy in a reference state P,, v0 , T0 , we have 

s = (T ~ dT + R In( u - b) + s
0

• 
JT, T v1 - b 

If c. can be considered constant, 

s = c. ln I + R In( u - b) + s0• 
To •• - b 

The internal energy is obtained from Eq. (6-10), 

du = c.dT + [r(;;).- P] du 

- c. dT +;do. 
v 

If u0 is the energy in the reference state, 

u - (T c. dT - a(! - .!.) + u,, 
JT• V Vt 

and if c. is constant, 

u = c.(T - T,) - a(! - .!.) + u0• 
u •• 

(6-SO) 

(6-51) 
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The internal energy of a van der Waals gas therefore depends on its specific volume 
as well as on its temperature. Note that only the van der Waals constant a appears 
in the energy equation. The reason is that this constant is a measure of the force 
of attraction between the molecules, or of their mutual potential energy, which 
changes as the specific volume changes and the intermolecular separation increases 
or decreases. The constant b is proport ional to the volume occupied by the mole­
cules themselves and docs not affect the internal energy. It does, however, enter 
into the expression for the entropy because the entropy of a gas depends on the 
volume throughout which its molecules are dispersed, and the fact that the 
molecules themselves occupy some space makes the available volume less than the 
volume of the container. 

The difference between the specific heat capacities, from Eq. (6-12), is 

P'Tv 
Cp - c., = -- - R . 

1< 
1 

_ 2a(v - b)' 

RTv' 

The second term in the denominator is a small correction term , so in this term we 
can approximate (v - b) by v, and assume that Pv - RT. Then, approximately, 

( 
2aP) 

Cp - c. ,., R 1 + R'T' . (6-52) 

The constant a for carbon dioxide is 366 x 10' 1m' kilomole- 1; and at a pressure 
of I bar • 10' N m-• and a temperature of 300 K, 

2DP • 
R2T 1 "' to-' 

so that within I percent, cp - c. - R. 

The relation between Tand u, in a reversible adiabatic process, is obtained by 
settings - constant. If we assume c. ~ constant, then from Eq. (6-50), 

c. In T + R In (v- b) - constant, 
or 

T(v - b)R1•· - constant. (6-53) 

T~e h~,t absorbed in a reversible isothermil process, from the first T ds 
equatton, rs 

d'q-r = RT....E!!._. 
v-b 

Since the change in internal energy is 

j 
I 
i 
i 
I 

I 
I 
I 

II 
p 
(I 
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the work d'w, from the fi rst law, is 

( 
RT a) d'wT • d'qT - duT = u _ b - ;;; dv = P dv; 

and in a finite process, 

v, - b (' ') wT - RT In-- + a - - - . 
v,. - b •• v, 

(6-S4) 

1- 9 PROPERTIES OF A LIQUID OR SOLID UNDER HYDROSTATIC 
PRESSUJIE 

The expressions for the properties o f a liquid or solid under hydrostatic p ressure 
can be obtained by introducing p, "• and cp in the general equations as functions 
of T and P, Tand v, or P and v. We shall, however, consider only the special case 
in which p and "can be assumed constant. 

Let us first obtain the equation of state of a solid or liquid under hydrostatic 
pressure. We have 

dv - ( 
00

) dT + (~) dP - {Jv d T - "u dP. ar p oPT 
Therefore 

where v0 is the specific volume at the temperature T0 and the pressure P1 • The 
first integral is evaluated at the pressure P1 and the second at the temperature T. 
Because of the small values of p and 1< for liquids and solids, the specific volume u 
will change only very slightly, even with large changes in T and P. Hence only a 
small e rror will be !'lade if we assume v to be constant in the integrals and equal 
to v0• Then if p and K are constant also, we have the approximate eq uation of state 

v- v0 [1 + P(T - TJ- K(P- P0) ] . (6-SS) 

The entropy as a function o f T and P can be fou nd from the second T ds 
equation : 

s = ( T ~ d T - fp( ov) dP + s
0

• 

JT, r P, ar p 
(6-S6) 

Following the procedure described in Section 6-6 and Fig. 6-2, we evaluate 
the first integral a t the pressure P1 (so that Cp "' cp) and the second at the tern· 
perature T. If cp has been measured a t atmospheric pressure P, then from Eq. 
(6-40) 

fP( o'v) 
Cp0 - Cp + P ort PdP . . 
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From the approximate equation of stale, given in Eq. (6-.S5), 

{:;t = Pvo. {:~t = 0. 

Hence, to within the approximation that p can be considered constant, we can 
assume that cp, is equal to its value cp at atmospheric pressure, and can be taken 
outside the integral sign in Eq. (6-56). 

Replacing (iJvfiJ7jp in Eq. (6-56) by the constant Pv0 , which can also be taken 
outside the integral sign, we have the approximate expression for the entropy: 

s = Cp In!. - Pv0(P - P0) + s0• (6-.S7) 
T, 

The enthalpy can be calculated from Eq. (6-39), replacing (iJvfiJT)p by Pv0• 

The difference Cp - c, is 

For copper at 1000 K, 

P'Tv 
Cp - ' • a::-- • 

I( 

~ex 6 X to-• K- 1, v <>< 7.2 x to-• m1 kilomole-1, 

and hence 
cp - c, "" 4300 J kilomole- • K-• 

which equals O.S2R and is in good agreement with the graphs of cp and c. in Fig. 
3-10. At lower temperatures, both ~ and Tare smaller, and below about 350 K, 
cp and c, are practically equal. 

6-10 THE JOULE AND JOULE·THDMSON EXPERIMENTS 

The experiments of Gay·Lussac and Joul~, and of Joule and Thomson, were 
described in Section 4-.S where, on the basis of the first law alone, we derived the 
equations 

( iJT) I (iJu) 
'1 a iJv • = - ~ a;; T' 

fl a (~~.=- t(:;)T. 
We have now shown from the combined fi rst and second laws that the quantities 

(ouf iJv}T and (iJh/iJP)T can be calculated from the equation of state of a system 
through Eqs. (6-9) and (6-21): 

(~) = r(iJP) - P, 
iJv T iJT • 

(E!!) = - r( 0") + v. 
iJP T iJT p 
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For a van der Waals gas, 

(
iJu) a Fur=;.· 

(£!!) = RTv'b - 2av(o - b)
1

• 

iJP T RTv' - 2a(v - b)' 

Hence io a Joule expansion of a van der Waals gas, 

'I= (iJT) = - ~. av • c.v 
and in a finite change in volume (dropping the subscript u for simplicity) 

r, - r, - !!.(.!. - .!.) . 
C., Vt VI 

(6-58) 

Thus for a given change in specific volume, the expected temperature change is 
proportional to the van der Waals constant a, which is a measure of the attractive 
force between the molecules. For an ideal gas, a ~ 0 and the temperature change 
is zero. Because v, is necessarily larger than o,, T, is less than T, for all real gases. 

In a Joule-Thomson expansion of a van der Waals gas I 

(
iJT) I RTv1b - 2av(o - b)2 

I'= iJP •- - ~ RTv'- 2a(v- b)' . 
(6-59) 

The in~rsion cur~ in Fig. 4-4(b) is the locus of points at which (iJTfiJP). - 0, 
and the temperature at such a point is the in~rsion t~mperature, T1• l-Ienee, 
setting (iJTfiJP), - 0 in Eq. (6-59), we obtain the equation of the inversion curve 
of a van der Waals gas, 

To 2a(v - b)' 
1 = Rv'b 

(6-60) 

The relation between T1 and the corresponding pressure P, is obtained by 
eliminating v between this equation and the equation of state. The resulting curve 
has the same general shape as those observed for real gases, although the numerical 
agreement is not close. 

When the Joule-Thomson effect is to be used in the liquefaction of gases, the 
gas must first be cooled below its maximum inversion temperature, which occurs 
when the pressure is small and the specific volume is large. We can then ap­
proximate (v - b), in Eq. (6-60), by v, and for a van der Waals gas, 

T,(max) = la . (6--61) 
Rb 

Reference to Table 2- 1 will show that the values o f b (which is measure of 
molecular siu) are nearly the same for all gases, so that maximum value o f T1 for 
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a van der Waals gas is very nearly proportional to a. Table 6-1 list values of 
'lo/ Rb for carbon dioxide, hydrogen, and helium; and for comparison, the observed 
values of T1 are also given. The agreement is surprisingfy good. ln order to be 
cooled in a J oule-Thomson expansion, hydrogen must be precooled to about 
200 K, which is usually done with the aid of liquid nitrogen. Helium must be 
cooled to about 40 K and that can be accomplished with liquid hydrogen or by 
allowing the helium to do adiabatic work. 

Table 6-1 Calculated and observed values of the maximum inversion 
temperature 

Gas 
a b 

2a/Rb T1 (max) 
(J m' ldlomoJe-•) (m' kilomore-'J 

co, 366 x ro• .0429 2040 K -rsooK 
H, 24.8 .0266 224 K 200K 
He 3.44 .0234 3S K -40K 

6-11 EMPIRICAL AND THERMODYNAMIC TEMPERATURE 

ln Section 5-::l, thermodynamic temperature Twas defined by the equation 

T- A<f>(O), (6-62) 

where A is an arbitrary constant and <f> (8) is a function of the empirical tempera· 
ture 0 as measured by a thermometer using any arbitrary thermometric property. 
The form of the function <f>(8) need not be known, however, to determine the tem­
perature T of a system, because it follows from the definition above that the ratio 
of two therl"odynamic temperatures is equal to the ratio of the quantities of heat 
absorbed arid rejected in a Carnot cycle. ln principle, then, the thermodynamic 
temperature of a system can be determined by measuring these heat flows; and, in 
fact, this procedure is sometimes followed in experiments at very low temperatures. 

We now show how the function <f>(8) can be determined fo r any gas ther­
mometer filled to a specified pressure P, at the triple point, so that T can be found 
from Eq. (6-62) without the necessity of extrapolating to zero pressure P, as in 
F ig. 1-4. We assume that the equation of state of the gas, and its energy equation, 
have been determined on the empirical temperature scale 8 defined by the gas, so 
that P and U are known experimentally as functions of Y and 8. We start with Eq. 
(6-9), 

(au) = r(oP) _ P. av T or, 

I 

i 

I 
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Because T is a function of I! o nly, constant T implies constant I! and 
(oOfoT)y = dOfdT. Therefore we can write, 

(au\ = r(~) dli _ P, 
av/, ao YdT 

or 

dT (oPfoli)., ao. 
r P + cauJoV), 

(6-63) 

Since the left side of this equation is a function ofT only, the right side must 
be a function of I! only. If we rep resent the coefficient of dli by g(O), 

then 

and 

() ~ (oP/OO)v 
g( > - P + cauJaV), • 

dT = g(O)dO; 
T 

In T =J g(O)dO + In A', 

T - A' ex{J g(O) dO]. (6-64) 

where A' is an integration constant. Comparison with Eq. (6-62) shows that the 
function r/>(0) is 

(6-65) 

if .A = A'. Since g(O) can be found experimentally, the thermodynamic tempera­
ture T, corresponding to any empirical temperature 0, can be calculated from Eq. 
(6-64). 

As an example, suppose the gas is a "Boyle's law" gas, for which we have 
found by experiment that the product PV is constant at constant temperature. 
We choose the product PYas the thermometric property X and define the empirical 
temperature 8 as 

I! - 8 _IT_ (6-66) 
- '(PV),' 

where (PV), is the value of the product PVatthe triple point and 01 is the arbitrary 
value assigned to () at the triple point. Then 

and 

p = (PV),! 
o, v 

(~) ~ (PV),. 
ao " o,v 
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If, in addition, we have found from the Joule experiment that the internal 
energy of the gas is independent of its volume and is a function of temperature 
only, 

and 

Then 

and 1inally 

(ou) = 0 ov. 

Jc(O)dO =J ~=In 0, 

,P(O) = expU g(O) do] = exp(Jn 0) = 0, 

T=AO. 

In this case, the function ,P(O) equals 0 and the thermodynamic temperature 
T is directly proportional to the empirical temperature 8. But a gas which obeys 
Boyle's law and whose internal energy is a function of temperature only is an ideal 
gas, and the empirical temperature 8 is the ideal gas temperature. This is in agree· 
ment with the result obtained earlier when we analyzed a Carnot cycle carried out 
by an ideal gas. 

It may be noted that if the only condition imposed on the gas is that it obeys 
Boyle's law, the empirical temperature defined by Eq. (6-66) is not directly pro­
portional to the thermodynamic temperature. Only if in addition (oUfoV), = 0 
will g(O) reduce to l fO. 

6-12 MULTlVARlABLE SYSTEMS. CARATHEODORY PRINCIPLE 

Thus far, we have considered only systems whose state can be defined by the values 
of t~·o independent variables such as the pressure P and the temperature T. The 
volume Vis then determined by the equation of state, and the internal energy U 
by the energy equation. For generality, let X represent the extensive variable 
corresponding to the volume V, and Y the associated intensive variable corre­
sponding to the pressure P. The work d'W in an infinitesimal reversible process is 
then Y dX and the first law states that in such a p rocess 

d'Q, = dU + d'W = dU + YdX. (6- 67) 

If we choose U and X as the independent variables specifying the state of the 
system, then from the equation of state and the energy equation we can find Y 
as a function of U and X and Eq. (6-67) expresses the inexact differential d'Q, in 
terms of U and X and their differentials. 

i 
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It is shown in textbooks of mathematics Lhat any equation expressing an inexact 
differential in terms of two independent variables and their differentials always 
has an inttgrating dtnominator, and when the equation is divided through by this 
denominator, the ten side becomes an ~xact differential. But we have shown that 
d'Q,/T is the exact differential dS, so that in this case the integrating denominator 
is the thermodynamic temperature T and 

d'Q, = dS - 1. dU + X dX 
T T T ' 

or 
TdS-= dU + YdX. (6-68) 

Now consider the more general case of a multivariablt system, for which the 
values of more than two independent variables are necessary to specify the state. 
It will suffice to consider a 3-variable system (that is, three indt~ndtnt variables). 
An example is a paramagnetic gas in an external magnetic field Jtf', whose state 
can be specified by its volume Y, its magnetic moment M, and its temperature T. 
The work d' Win a reversible process undergone by such a system is 

d'W- P dY- Jtf' dM. (6-69) 

Let X1 and X, represent the two extensive variables (corresponding to Y and 
- M) and Y1 and Y, the associated intensive variables (corresponding to P and 
Jtf'). Then in general 

d'W- Y1 dX1 + Y, dX, ; 
and from the first law, 

d 'Q,-dU+d'W=dU+ Y,dX1 + Y,dX,. I (6-70) 

If we choose U, X1 , and X, as the independent variables specifying the state 
of the system, this equation expresses the inexact differential d'Q, in terms of thrtt 
independent variables and their differentials. Unlike the corresponding Eq. (6-67) 
for a 2-variable system, an equation such as Eq. (6-70), expressing an inexact 
differential in terms of the differentials of three (or more) independent variables, 
does not necessarily have an integrating denominator, although it may have one, 
and indeed does have one if the variables are those defining a thermodynamic 
system. 

To show Lhat this is true, we return to the assertion in Section S-2 that when 
any systtm whatevtr is carried throughout a Carnot cycle, the ratio IQ,I/JQ11 bas 
the same value, for the same pair of reservoir temperatures. Hence regardless of 
Lhe complexity of a system, we can still define thermodynamic temperature by the 
equation 
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and by exactly the same reasoning as in Section 5-3, the entropy change of a multi­
variable system can be defined as 

dS = d'Q,. 
T 

Hence when Eq. {6-70) is d ivided through by T, the len side becomes the exact 
differential dS and the thermodynamic temperature Tis an integrating denominator 
for d'Q,, regardless of the complexity of a system. Equation {6-70) can therefore 
be written 

~- ds~.!(dU+ Y1 dX1 + Y1 dX1], 
T T 

or 

{6-71) 

Since the entropy Sis a property of any system, it can be considered a function 
of any three of the variables specifying the state of a 3-variable system. Thus if we 
consider X,. X,, and the temperature T as independent variables, the entropy 
equation of a system is 

S "' S(T, X,, XJ. 

If Sis constant, the preceding equation is the equation of a surface in a three­
dimensional T-X,-X, space. That is, all isentropic processes carried out by the 
system, and for which S has some constant value, say S,, lie on a single surface 
in a T-X,-X, diagram. All processes for which S has a constant value s, lie on a 
second surlrace, and so on. These isentropic surfaces are generalizations of the 
isentropic curves for a 2-variable system. Similarly, all isothermal processes at a 
given temperature lie on a single surface which, in a T-X,-X, diagram, is a plane 
perpendicular to the temperature axis. In general, for a system defined by m 
independent variables, where m > 3, isothermal and isentropic processes lie on 
hypcrsurfaces of {m - I) dimensions, in an m-dimensional hyperspace. 

It is of interest to considerthe geometrical representat ion, in a T·X,-X, diagram, 
of the possible Carnot cycles that can be carried out by a 3-variable system. 
Figure 6-3 shows portions of two isothermal surfaces at temperatures T1 and T1, 

and of two isentropic surfaces a t entropies S, and S1, where S1 > S,. 
Suppose we start a Carnot cycle a t a point at which T - T, and S - S,. 

Then any curve in the plane T - T,, from the intersection of this plane with the 
surface S = S1 to its intersection with the surface S - S,, is an isothermal process 
at temperature T1 in which the entropy increases from'S1 to S1 • The process might 
start at any one of the points a,, a,, a,, etc., and terminate at any one of the points 
b., b., b,, etc. Even a process such as a,-a,-b,-b, satisfies the conditions. {Any 
process represented by the line of intersection of an isothermal and an isentropic 
surface, such as processes a1-a, and b1-b,, has the interesting property of being 
both isothermal and isentropic.) Thus in contrast to a 2-variable system, for which 

a 
li 
t. 
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only one isothermal process between entropies S1 and s, is possible at a given 
temperature, there are in a 3-variable system (or in a multivariable system) an 
infinite number of such processes. 

The next step in the cycle could consist of any curve on the isentropic surface 
S = S,, from any point such as b., b., b1 , etc., to any point such as c., c,, c1 , etc. 
The cycle is completed by any process in the planeT= T1 to the surfaceS - S1, 

and a final process in this surface to the starting poinL 

x, 

Flg. 6-3 Any process such as a1-b1-c1-d1-a1 is a 
Carnol cycle ror a 3-variablc syslcm. 

Note that the heat flow Q is the same in all reversible isothermal processes at 
a given temperature between the isentropic surfaces S1 and S1, since in any such 
process Q - T(S1 - S1). 

When any one of the cyclic processes described above is represented in the r-S 
plane, it has exactly the same form as that for a 2-variable system, namely, as 
shown in Fig. S-4, a rectangle with sides parallel to the T· and S-axes. 

We have pointed out earlier that the o nly sta tes of a 2-variable system that 
can be reached from a given state by an adiabatic process are those for which the 
entropy is equal to or greater than that in the initial state. All adiabatically 
accessible states then either lie on the isentropic curve through the given state, or 
lie on the same side of that curve. The same is true for a 3-variable system, except 
that the accessible states either lie on the isentropic surface through the given 
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state, or lie on the same side of that surface, namely, that side for which the entropy 
is greater. States for which the entropy is less than that in the initial state lie on the 
other side of the surface and a re adiabatically inaccessible from the given state. 

Caratheodory• took the property of adiabatic inacctssibillty as the starting 
point of the formulation of the second law. The Carathc!odory principle asserts 
that io the immediate vicinity of every equilibrium state of a thermodynamic system, 
tbere are other states that cannot be reached from the given s tate by an 1diabatic 
process. Caratheodory was then able to show, by a lengthy mathematical a rgument, 
that if this is the case, an expressio n like Eq. (6-70), in three (or more) independent 
var iables, necessarily does have a n integrating denominator. The mathematics is 
not easy to follow and we shall not pursue the matter further. 

Starting with the Caratheodory principle, one can deduce the existence of 
thermodynamic temperature and the entropy function . We have reversed the 
argument and, by starting with a statement regarding the quantities of heat ab­
sorbed and liberated in a Carnot cycle, together with the principle of increase of 
entropy, have shown that the Carathc!odory principle is a necessary consequence. 

PROBLEMS 

6-1 Express (auf aF)1' in standard form by (a) the method used to o btain Eq. (6-9) and 
(b) the method devised by Bridgman. (c) Find (auf ap)1' for a n ideal gas. 

6-Z (a) Find the difference Cp - c, for mercury at a temperature oro•c and a pressure or 
I aim taking the values or fJ and • from Fig. 2- 17. The density of mercury is 13.6 x 100 
kg m4 and the atomic weight 1$ 200.6. (b) Determine the ratio (cp - c,)fJR. 

6-3 Thcequationofstatcofacertaingasis(P + b)u- RT. (a)Findcp- c,. (b) Find 
the entropy change in an isothermal process. (c) Show that c, is independent of u. 

6-4 The energy equacion or a subsc·ance is given by u - aT2v, where a is a constant. 
(a) What information can be deduced about the entropy of the substance? (b) What a rc 
the limitations on the equation or state of the substance? (c) What other measurements 
must be made to determine the entropy and the equation of state? 

6-S The equation of state o f a substance is given as (P + b)o - RT. What information 
can be deduced about the entropy, the internal energy, and the enthalpy of the substance? 
What other experimental measurement(s) must be made to determine all of the properties 
or the substance? 

6-6 A substance has the properties that (auJao)r - 0 and (ahJaP)T - 0. (a) Show that 
the equation of state must be T - APu where A is a constant. (b) What additional infor­
mation is necessary to specify the entropy of the substance? 

6-7 Express (ahfau)T in standard form by (a) the method used to derive Eq. (6-21) and 
(b) by the method devised by Bridgman. (c) Find the value of (allfau)r for an ideal gas. 

• Constantin Caratheodory, Greek mathematician (1873- 1950). 
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6-8 Show that r(:i).- 1 ~ ~r· 
6-9 Show that (~L (~- - ~ . apJ• aji J, cp 
6-10 D erive (a) Eq. (6-21), (b) Eq. (6-27), (c) Eq. (6-28), and (d) Eq. (6-29). 
6-11 Derive Eq. (6-27} by the Bridgman method. 
6-12 Derive Eq. (6-12), the relation for cp - c., from the Tds equations. 
6-13 Show that the difference between the Isothermal and adiabatic compressibilities is 

TJf'o 
K - 1t1 - ---;;· 

6-14 Show that (ahJao), - r/•. 
6-15 Can the equation of state and cp as a function ofT be determined for a substance 
If s(P, T)and h(P, T)are known? If nol , what additional information is needed? 
6-16 Hill and Lounasmaa slate that all the thermodynamic properties of liquid helium 
can be calculated in the temperature range 3 to 20 Kand up 10 100 atm pressure from their 
measurements of c., ( aPJ aT). and P as a function of T for various densities of helium. 
(a) Show that they are correct by deriving expressions for u, s, and h in terms of the 
experimentally determined quantities. (b) Which of the measurements are not absolutely 
necessary in order to completely specify all the properties of He' in the temperature and 
pressure range given? &plain. 
6-17 Use the data of Figs. 6-l(a) and 6-l(b) to calculate the change of entropy of lo-" 
kilomoles of He' as its temperature and reduced density are changed from 6 K and 2.2 to 
12 K and 2.6. 
6-18 (a) Derive Eqs. (6-4S) and (6-46). (b) Derive expressions for h(T, o) and h(P, •l 
for an ideal gas. 
6-19 Assume that cp for an ideal gas is given by cp -a + bT, where a and b are 
constants. (a) What is the expression for c. for this gas? (b) Use the expression for cp 
in Eqs. (6-41) and (6-42) 10 obtain expressions for the specific entropy and enthalpy of 
an ideal gas in terms of the values in some reference state. (c) Derive an expression for 
the internal energy or an ideal gas. 
6-20 One kilomole of an ideal gas undergoes a throttling process from a pressure of 
4 atm to I atm. The initial temperature of the gas is S0°C. (a) How much "fOrk could 
have been done by the ideal gas had it undergone a reversible process to the ~arne final 
state at constant temperature? (b) How much does the entropy of the universe increase as 
a result of the throttling process? 
6-21 Show that the specific enthalpy of a van der Waals gas is given by c.T- 24/o -
RTu/(o - b) + constant. 
6-22 The pressure on a block of copper at a temperature of o•c is increased isothermally 
and reversibly from I atm to 1000 atm. Assume that~. •· and pare constant and equal 
respectively to S x 10_. K- 1, 8 x JO-•• N- 1 m1, and 8.9 x 10' kg m- •. Calculate (a) 
the work done on the copper per kilogram, and (b) the heat evolved. (c) How do you 
account for the fact that the heat evolved is greater than the work done? (d) What would 
be the rise in temperature of the copper, if the compression were adiabatic rather than 
isothermal? &plain approximations made. 
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6-13 For a solid whose equation or state is given by Eq. (6-SS) and for which cp and c. 
are independent or T, show that the specific internal energy and specific enthalpy arc given 
by 

and 

h - cp(T- T0) + v0(P - Po)[l - PT0 - i (P - Po)] + 110 • 

6-24 Figures 2-16, 2-17, 3-10 and 3-11 give data on copper and mercury. Are these 
data sufficient to determine all or the properties or copper and mercury between 500 and 
1000 K 7 Ir so, determine expressions for the entropy and enthalpy. Ir not, specify the 
information needed. 

6-25 The table below gives the volume of I g or water at a number of temperatures at a 
pressure of I atm. 

t{"C) V(cm') t ("C) V(cm') 

0 1.00013 20 1.00177 
2 1.00003 so 1.01207 
4 1.00000 1S 1.02576 
6 1.00003 100 1.04343 

10 1.00027 

Estimate as closely as you can the temperature change when the pressure on water in a 
hydraulic press is increased reversibly and adiabatically from a pressure or I atm to a 
pressure of 1000 atm, when the initial temperature is (a) 2°C, (b) 4°C, (c) so•c. Make 
any reasonable assumptions or approximations, but state what they are. 

6-26 The isothermal compressibility or water is SO x 10- • atm- 1 a nd cp - 4.18 x 
10' J kg-1 K-'. Other properties or water are given in the previous problem. Calculate the 
work done as the pressure on I g of water in a hydraulic press is increased reversibly from 
1 atm to 10,000 atm (a) isothermally, (b) adiabatically. (c) Calculate the heat evolved in 
the isothermal process. 

6-27 Sketch a Carnot cycle in the h·s plane for (a) an ideal gas, (b) a van der Waals gas, 
(c) a solid. Make reasona ble approximations but state what they are. (See Problem 6-21 
and 6-23 for expressions for the specific enthalpy.) 

6-28 Compute ~and p. for a gas whose equation of state is given by (a) P(v - b) - RT 
and (b) (P + b)v - RT, where b is a constant. Assume that c. and cp are constants. 

6-;lg Assuming that helium obeys the van der Waals equation of state, determine the 
change in temperature when one kilomole or helium gas undergoes a Joule expansion at 
20 K to atmospheric pressure. The initial volume of the helium is 0.12 m' . (See Ta bles 
2-1 and 9-1 for data.) Describe approximations. 

6-30 Carbon dioxide at an initial pressure or 100 atm and a temperature or 300 K under­
goes a n adiabat ic free expansion in which the final volume is ten times the original volume. 
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Find the change in temperature and the increase in specific entropy, assuming that CO, is 
(a) an ideal gas, (b) a van der Waals gas. (Use Tables 2- 1 and 9-1 and make any other 
assumptions tha t seem reasonable.) 1 
6-31 Beginning with the van der Waals equation of state , derive Eqs. (6-S9) and (~). 

6-3% Assuming tha t helium is a van der Waals gas, calculate the pressure so that the 
inversion temperature of helium is 20 K. (See Table 6-1 for data.) 

6-33 The helium gas of Problem 6-29 undergoes a thrott ling process. Calculate the 
Joule-Thomson coefficient at (a) 20 K and (b) ISO K. (c) For each process calculate the 
change of the temperature of the helium if the final pressure is I atm, assuming I' is 
independent of P and T. 
6-34 Calculate the muimum inversion temperature of helium. 

6-35 Show that if P and 8 a rc chosen as independent variables, the relation between 
thermodynamic temperature T and empirical temperature 8 on the scale of any gas 
thermometer is 

6-36 (a) Show tha t on the empirical temperature scale 8 of any gas thermometer, 

'!! _ (aP{a8), dB _ (ao{a8)p dB 

T p - 'IC, D + I'Cp • 

where ~ and I' are, respectively, the Joule and Joule-Thomson coefficients of the gas. 
(b) Show also that 

dT ( l Pf a8), dB 
T- (cp- c,)(lB{lv)p · 

6-37 For a paramagnetic substance, the specific work in a reversible process is - Jl' dm. 
(a) Consider the state of the substance to be defined by the magnetic moment per unit 
volume m and some empirical temperature 8. Show that 

dT c aJt'f as). 
T - Jf' - (luflm), dB. 

(b) It is found experimentally that over a range of variables which is not too great, the 
ratio (Jf'/m) is constant at constant temperature. (This corresponds to the property or a 
" Boyles' law" gas that PV is constant at constant temperature.) Choose the ratio (Jf'/m) 
as the thermometric property X, and define an empirical temperature Bin the usual way. 
Show that the thermodynamic temperature T is directly proportional to 8 only if the 
internal energy u is independent of m at constant temperature. 

6-38 (a) On a T-V-M diagram sketch two surfaces of constant entropy fo r an ideal gas 
obeying Curie's law. (b) Using the two surfaces of part (a) together with two isothermal 
surfaces, sketch two possible Carnot cycles for this system. (c) Derive the relation be­
tween M and V for processes which are both isothermal and isentropic. Sketch the process 
in the V-M plane. 
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6-39 On Fig. 6-4, the states a and b lie on a line of constant x 1 and x •. (a) Show that 
both a and b cannot be reached by isentropic processes from the state i by proving that 
the cycle i-a-b-i violates the Kelvin-Planck statement of the second law. 

.. 
Figure 6-4 

I 

~' 
I ' I ' 

'\ 



7 

Thermodynamic potentia Is 

7-1 THE HELMHOLTZ FUNCTION ANO THE GIBBS FUNCTION 

7-2 THERMODYNAMIC POTENTIALS 

7-3 THE MAXWELL RELATIONS 

7-4 STABLE AND UNSTABLE EQUILIBRIUM 

7-5 PHASE TRANSITIONS 

7-lS THE CLAUSIUS·CLAPEYRON EQUATION 

7-7 THE THIRD LAW OF THERMODYNAMICS 



178 THERMODYNAMIC POTENTIALS 7-1 

7-1 THE HELM HOLTZ FUNCTION AND THE GIBBS FUNCTION 

In addition to the internal energy and the entropy of a system, several other useful 
quantities can be defined that are combinations of these and the state variables. 
One such quantity, already introduced, is the enthalpy, H, defined for a PYT 
system as 

H- U+PY. (7-1} 

There arc two other important quantities, the Helmholtz• function F and the 
Gibbst function G, which arc now defined. 

From the first law, when a system performs any process, reversible or irre­
versible, between two equilibrium states, the work Win the process is 

I W • (U1 - U,} + Q; 

that is, the work is provided in part by the system, whose internal energy decreases 
by (U, - U,}, and in part by the heat reservoirs with which the system is in 
contact and out of which there is a heat flow of magnitude Q. 

We now derive expressions for the maximum amount of work that can be 
obtained when a system undergoes a process between two equilibrium states, for 
the special case in which the only heat flow is from a single reservoir at a tempera­
ture T and the initial and final states arc at this same temperature. From the 
principle of the increase of entropy, the sum of the increase in entropy of the 
system, (S1 - SJ, and that of reservoir, M 8 , is equal to or greater than zero: 

(S, - S,) + AS8 ~ 0. 

The entropy change of the reservoir is 

Hence 

(S1 - S1) - g ~ 0. 
T 

and 
T(S,- SJ ~ Q. 

Therefore from the first law, 

W.,. !5: (U, - UJ - T(S1 - SJ. (7-2} 

Let us define a property of the system caUed its Htlmholtz function F, by the 
equation 

FeU- TS. 

• Hennan L. F . Helmholtz, German physicist {t 821- 1894). 
t Josiah Willard G ibbs, American physicist (1839-1903). 

(7- 3) 
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Then for two equilibrium states at the same temperature T, 

(F, - FJ = {U1 - UJ - T(S1 - S,), 

and from Eq. (7-2), 
(7-4) 

That is, the decrease in the Helmholtz function of a system sets an upper limit to 
the work in any process between two equilibrium states at the same temperature, 
during which there is a heat ftow into the system from a single reservoir at this 
temperature. If the process is reversible, the total entropy of system plu~ reservoir 
is constant, Q = T(Sa - SJ, and 

(7-S) 

The equality sign then holds in Eq. (7-4) and the work is a maximum. If the process 
is irreversible, the work is less than this maximum. 

Because its decrease equals the maximum energy that can be " freed" in a 
process and made available for work, the quantity F is sometimes called the free 
energy of a system. However, since the same term is also applied to another 
property to be defined shortly, we shall use the term "Helmholtz function" to 
avoid confusion. Note, however, that although the decrease in the Helmholtz 
function of a system equals the maximum work that can be obtained under the 
conditions above, the energy converted to work is provided o nly in part by the 
system, the remainder coming from heat withdrawn from a heat reservoir. 

Equation (7-2) is perfectly general and applies to a system of any nature. The 
process may be a change of state, or a change of phase, or a chemical reaction. 
In general, the work in a differential process will be given by P dV plus a sum of 
terms such as -8 dZ or _ JI{' dM, but for simplicity we assume only one additional 
term which will be represented by Y dX. The total work in any finite process is 
then the sum of the "P dV" work and the "Y dX" work. Let us now represent the 
former by W' and the latter by A. The work in any process is then W' + A a nd 
Eq. (7-4) becomes 

(7-6) 

In a process at constant volume, the "P dV" work W' = 0 and in such a 
process, 

(7-.7) 

The decrease in the Helmholtz funct ion therefore sets an upper limit to the "non­
p dV" work in a process at constant t~mp~rature and volume. If the process is 
reversible, this work equals the decrease in the Helmholtz function. If both V 
and X are constant, then A = 0 and 

0 ~ (F1 - F,) 
or 

Fa~ F1• (7-8) 
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That is, in a process at constant volume for which A = 0 and T is constant, the 
Helmholtz function can only decrease or, in the limit, remain constant. Con­
versely, such a process is possible only ifF, .s; F, . 

Consider next a process at a constant external pressure P. The work W' in 
such a process is P(Y, - YJ, and from Eq. {7-6), 

A.,,,. _s; (F1 - FJ + P( Y, - Y.) 

A.,,,. _s; (U1 - UJ - T(S1 - SJ + P(Y1 - V.). 

Let us define a functi on G called the Gibbs function by the equation 

G • F + PY • H- TS = U- TS + PY. (7-9) 

Then for two states at the same temperature T and pressure P, 

G1 - G,"' (U1 - UJ- T(S1 - S1) + P(V1 - V.), 

and 
(7-10) 

The decrease in the Gibbs function therefore sets an upper limit to the "non­
p dV" work in any process between two equilibrium states at the same temperature 
and pressure. If the process is reversible, this work is equal to the decrease in the 
Gibbs function. Because its decrease in such a process equals the maximum energy 
that can be "freed" and made available for " non-P dY'' work, the G ibbs function 
has also been called thefrtt energy of a system, but as stated earlier, we shall use 
the term "Gibbs function" to avoid confusion with the Helmholtz function. 

If the variable X is constant in a process, or if the only work is "P dY'' work, 
then A - 0 and 

G, .s; G,. {7-11) 

That is, in such a process the Gibbs function either remains constant or decreases. 
Conversely, such a process is possible only if G, is equal to or less than G,. 

In Sections 6-7 and 6-8, we derived expressions for the specific enthalpy and 
entropy of an ideal gas and of a van der Waals gas. Making use of Eqs. (6-41) 
and (6-42), the specific G ibbs function g = u - Ts + Pu • h - Ts for an ideal 
gas, selecting Tand Pas independent variables, is 

L., f" dT P g = c,.dT- T Cp- + RTin - + h0 - s0T. 
• "• T P0 

(7-12) 

If c1, can be considered constant, 

I T p 
g = cp(T- 10)- CpT In - + RT In - - s0(T - T0) + g0, (7- 13) 

T0 P0 
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which can be written more compactly as 

g = .RT(JnP + 9), (7-14) 
where 

RT9 = cpi.,T - T0) - cpT In!_ - RT In P, - s0(T - 70) + g0 • (7- 15) 
To 

Note that 9 is a function or T only. 
We see that while s, u, and h are indeterminate to within arbitrary const0111s 

s0 , u0, and h,, the Gibbs function is indeterminate to within an arbitrary lin~ar 
function of th~ /tmptraturt, h0 - s,T. 

It is left as a problem to show that the specific Helmholtz function f = u - Ts 
for an ideal gas, selecting Tand v as the independent variables, is 

I- c.(T - T0) - c.T In!. - RT ln ~ - s0(T - 10) + lo· (7-16) 
To v, 

For a van der Waals gas 

I= c.(T - T,) - c.T In- - a - - - - RT ln -- - s0(T - T,) + lo T (I 10 (v- b) 
To v v V0 - b 

(7- 17) 
which is seen to reduce to the ideal gas expression when a = b - 0. 

7- 2 THERMODYNAMIC POTENTIALS 

The differences between the values of the Helmholtz and Gibbs functions in two 
neighboring equilibrium states of a closed• PVT system are 

Since 

dF - dU - T dS - S dT, 

dG - dU - T dS - S dT + P dV + V dP. 

dU ~ TJS- PdV, 

we can eliminate dU between Eqs. (7- 18) and (7- 19), obtaining 

dF- -SdT- PdV, 

dG = - SdT + VdP. 

Also, from the definition of enthalpy, 

dH = TdS + VdP. 

• No molter crosses the boundary of a closed system. 

(7- 18) 

(7- 19) 

(7- 20) 

(7-21) 

(7- 22) 

(7- 23) 
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The coefficients of the differentials on the right sides of the four preceding equa­
tions can be identified with the partial derivatives of the variable on the left side. 
For example, considering U as a function of Sand V, we have 

dU - (~U) dS + (~U) dV. 
~s v ~v s 

(7-24) 

I 
Comparison with Eq. (7-20) shows that (~Uf~S}y - r and (~Uf~V)8 = - P. 

Similar relations can be written for dF, dG, and dH. It follows that 

(au) ~ T 
~s " . 

(~u) - -P 
~v s ' 

(7- 25) 

( a~= - s ~T, y ' 
( ~~ = -P av r ' 

(7-26) 

(~G) - -s, ar, p 
(~G)= V 
~p T ' 

(7-27) 

(~H) - T 
~s P , 

(~H) - V. 
~p s 

(7-28) 

I t will be recalled that the intensity E of an'electrosta tic field is, at every point, 
equal to the negative of the gradient of the potential </> at that point. Thus the 
components of E are 

E - -(~) 
II: ax ' E = -(~) • ~y • E, ~ -(~)· 

Because the properties P, V, r, and Scan be expressed in a similar way in 
terms or the partial derivatives of U, F, G, and H, these quantities can be described 
as thermodynamic potentials, although the term is more commonly applied to F 
and G only. But to avoid confusion as to which of these is meant by the term 
" thermodynamic potential," we shall refer to F simply as the Helmholtz function, 
and to Gas the Gibbs function. 

Although there are mnemonic aids to remembering Eqs. (7-20) to (7-23}, 
there is a certain useful symmetry to these equations which can also be used to 
remember them. The differential of each thermodynamic potential is expressed 
in terms of the differentials of the "characteristic variables" for that potential; 
Sand Vfor the potential U; rand Vfor the potential F; rand P fo r the potential 
G; and Sand P for the potential H. Furthermore, dS and dP always appear with 
the plus sign and dTand JV always appear with the minus sign. Also, each term 
in the expressions for the differentials must have the d imensions or energy. 

It was pointed out earlier that the properties or a substance are not completely 
specified by its equation of state alone, but that in addition we must know the energy 
equation of the substance. Suppose, however, that the expression for any thermo­
dynamic potential is known in terms of its characteristic variubles. That is, suppose 

E 

s: 
" h 

T 

w 

Tt 
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U is known as a function of Sand V, or F is known as a funct ion of Tand V, or G 
is known as a function of Tand P, or that His known as a function of Sand P. 
If so, then all thermodynamic properties can be obtained by differentiation of the 
thermodynamic potential, and the equation for the thermodynamic potential in 
terms of its characteristic variables is known as the charactuistic equation of the 
substance. 

For example, suppose that the Helmholtz function F is known as a function 
of Tand V. Then from the second of Eqs. (7-26) we can calculate Pas a function 
of V and T, which is the equation of state of the substance. The entropy Scan be 
found from the first of these equations, and from the definition ofF we then have 
the energy equation. Thus 

P ... -(oF\ 
oVlT' 

s _-(oF) 
oTv' 

U- F + TS"" F- r( oE\ . oT-J, 
In the same way, if G is known as a fu nction of Tand P, then 

v - (i!Q\ oP)T' 

s = -(oG) 
or/ 

H - G + TS - G - r(oG) . 
oTP 

Equations (7- 29) and (7- 30) are known as the Gibbs-Helmholtz equations. 

(7-29) 

(7- 30) 

All of the preceding equations can be written for systems other than PVT 
systems. Suppose, for example, that the system is a wire in tension for which the 
work in a differential reversible process is -.F dL. Then considering the Helm­
holtz function F = U - TS as a function ofT a nd L, we would have 

The Gibbs function for the wire is defined as 

G- U- TS- !FL, 

where the product §' L is preceded by a minus sign because the work dW equals 
- !F dL. Then 

( oG) = -L. 
o.F T 

Jhe preceding equations are the analogues of the second of Eqs. (7-26) and (7-27). 
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We now consider a multivariable closed system, but limit the discussion to one 
whose state can be described by its temperature T, two extensive variables X1 and 
X,, and the corresponding intensive variables Y1 and Y1• The work in a ditferen. 
tial reversible process is 

d'W ~ Y1 dX1 + Y, dX,, 

and the combined first and second laws take the form 

dU = T dS - Y1 dX1 - Y, dX1• (7-31) 

Because the system has two equations of state, the equilibrium state of the system 
can be considered a function of T, and either of the two extensive variables X1 

and X,. or the two intensive variables Y1 and Y,, or one extensive variable X1 and 
the other intensive variable Y1• We could equally well let Y1 and X1 represent these 
variables. 

We first consider the state of the system to be expressed as a function of T, 
X1 , and X,. The Helmholtz function F is defined, as for a system described by two 
independent variables, as 

F= U- TS, 
so that 

dF ~ dU - T dS- S dT, 

and eliminating dU between this equation and Eq. (7-31), we have 

dF - -SdT- Y1 dX1 - Y,dX1 • 

The coefficient of each differential on the right side of this equation is the corre· 
sponding partial derivative of F, with the other variables held constant. Thus 

( iJF) - -S, (iJF) = - Y., (oF.\ - -Y1• (7- 32) 
iJT x •. x. iJX, T.x. ax,Jr.x, 

The Gibbs function o f the system is defined as 

G - U - TS + Y1X1 + Y,X,. 
When the expression for dG is written o ut, and dU eliminated, making use of Eq. 
(7- 31), the result fs 

dG - - SdT+ X 1 dY1 + X,dY,. 
It follows that 

( iJG) = -S, ( iJG ) = X., ( iJG) = X,. 
iJT Y o. Yo iJY, T.Yo oY, T. Y o 

(7-33) 

In the special case in which Y, is the intensity of a conservative force field 
(gravitational, electric, or magnetic), the system has a potential energy£,. = Y,X,, 
and its total energy £is 

£ = U + E,, = U + Y,X,. 
We then define a new function F• as 

£0 "' E - TS = U - TS + Y,X,. (7-34) 
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The function F* = E - TS can be considered a generalized Helmholtz function, 
corresponding to F = U - TS for a system whose total energy equals its internal 
energy only. Proceeding in the same way as before, we find that 

(oF•) = - S; (oF•) "" _ Y, ; (oF•) = +X,. oT X 0. Yo oX1 2'.Y0 oY, 2'.x, 
(7-35) 

It is leO as a problem to show that if X1 and X, are selected as variables, we have 
the generalized Gibbs-Helmholtz equation, 

u- F- r(oF\ . 
arlx,.x, 

(7-36) 

The enthalpy H is defined as 

H - U + Y1X1 + Y,X,, 
and we find that 

H - G- r(oG) . ar r, .r, 
(7-37) 

If Y is the intensity of a conservative force field, 

E - F• - r(oF•) . oT x,.r, 
(7-38) 

From the purely thermodynamic viewpoint, we are at liberty to consider 
either X1 and X., Y, and Y,, or X, and Y1 as independent, in addition to T. We 
shall show later that the methods of statistics lead directly to expressions for F, 
G, or F*, in terms of the parameters that determine the energy of the system. All 
other thermodynamic properties can be calculated when any one of these is known. 

7- 3 THE M AXWELL RELATIONS 

A set of equations called the Maxwellt relations can be derived from the fact that 
the differentials of the thermodynamic potentials are exact. In Section 2- 10 it was 
pointed out that if 

dz - ·M(x,y)dx + N(x,y)dy, 
dz is exact when 

(~~.= (~~),. (7-39) 

t James Clerk Maxwell, Scouish physicist (1831-1879). 
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Applying J!q. (7-39) to Eq. (7-20) through (7-23) we have 

and 

(:~)8- -(¥st· 
(~)T ~ (;;t, 
(~)T- -(:;t 
(~~)8= (~iL 

7-4 

(7-40) 

(7-41) 

(7- 42) 

(7-43) 

These equations are useful because they provide expressions for the entropy ehange 
in terms of P, V, and T, and they are called the Max 11·ell relations. These equations 
can also be derived from the fa ct that the mixed part ial derivatives of U, F, G, and 
H are independent of the order of differentiation. 

Note that in each of the Maxwell relations the cross product of the differen­
t ials has the dimensions of energy. The independent variable in the denominator 
of one side of an equat ion is the constant on the other side. The sign can be argued 
from considering the physics of the process for a simple case. As an example, 
consider Eq. (7-41). During an isothermal expansion of an ideal gas, heat must be 
added to the gas to keep the temperature constant. Thus the right side of Eq. 
(7-41) has a value greater than zero. At constant volume, increasing the tempera­
ture of an ideal gas increases the pressure, and the left side of Eq. (7-41) also has a 
value greater than zero. 

Maxwell relations can also be written for systems having equations of state 
which depend on thermodynamic properties other than P and V. 

7-4 STABLE AND UNSTABLE EQUILIBRIUM 

Thus far, it has been presumed that the "equilibrium state" of a system implies a 
state of stablt equilibrium. In some circumstances, a ~ys tem can persist for a long 
period of time in a state of metastable equilibrium, but eventually the system trans­
forms spontaneously to a stable state. We now consider the necessary condition 
that a state shall be one of stable equilibrium. 

Our earlier definitions of the properties of a subs!ance were restricted to states 
of stable equilibrium only, and according to these defi nitions it is meaningless to 
speak of the entropy, Gibbs function etc., of a system in a metastable state. How­
ever, since a substance can remain in a metastable state for a long period of time, 
its directly measurable properties, such as pressure and temperature, can be 
determined in the same way as for a system in a completely stable state. We simply 
assume that the entropy, Gibbs function, etc., are related to the directly measurable 
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properties in the same way as they are in a stable equilibrium state. The assumption 
is justified by the correctness of the conclusions drawn from it: 

Figure 7-1 is a schematic diagram of the P·V-Tsurface representing the states 
of stable equilibrium of a pure substance. Suppose the substance is originally 
in the vapor phase at point a and the temperature is decreased at constant pressure. 
In the absence of condensation nuclei such as dust particles or ions, the tempera­
ture can be reduced considerably below that at point b, where the isobaric line 
intersects the saturation line, without the appearance of the liquid phase. The 
state of the vapor is then represented by point c, which lies above the P- V-Tsurface. 
If no condensation nuclei are present, it will remain in this state for a long period 
of time and is in metastable equilibrium. It is in mechanical and thermal equi­
librium, but not in complete thermodynamic equilibrium. If a condensation 
nucleus is introduced, and if pressure and temperature are kept constant, the vapor 
transforms spontaneously to the liquid phase at point f. The vapor at point c is 
said to be supercooled. 

A supercooled vapor can also be produced by the adiabatic expansion of a 
saturated vapor. In such a process, the volume increases and the pressure and tem­
perature both decrease. If no condensation nuclei are present, the state of the 

Fig. 7-1 The P-V-T surface representing slates of stable 
equilibrium for a pure substance. 
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vapor again lies at some point above the equilibrium surface. This is the method 
used to obtain a supercooled vapor in the Wilson cloud chamber. When an ionizing 
particle passes through the chamber, the ions it forms serve as condensation nuclei 
and liquid droplets are formed along its path. 

The temperature of a liquid can also be reduced below that at which it is in 
stable equilibrium with the solid, and the liquid is also described as supercooled. 
Thus if a molten metal in a crucible is cooled slowly, it may remain in the liquid 
phase at temperatures well below the normal freezing point. The converse does not 
seem to happen-as the temperature of a solid is increased , it starts to melt 
promptly at the normal melting point. 

If the substance is originally in the liquid phase at point fi n Fig. 7-1, and if 
the temperature is increased at constant pressure, the vapor phase may not form 
when pointe is reached, and the liquid may be carried to the state represented by 
point d, which lies below the equilibrium surface. This is also a metastable state, 
and the liquid is said to be superheated. • A slight disturbance will initiate a spon­
taneous vaporization process, and if pressure and temperature are kept constant 
the system transforms to the vapor phase at point a. 

In the bubble chamber, a superheated liquid (usually liquid hydrogen) is pro­
duced by an adiabatic reduction of pressure on a saturated liquid. Small bubbles 
of vapor are then formed on ions produced by an ionizing particle passing through 
the chamber. 

We now consider the specific conditions that determine which of two possible 
states of a system is the stable state. If a system is completely isolated from its 
surroundings, a spontaneous process from one state to another can take place only 
if the entropy of the system increases, that is, if the entropy (Su)2 in the second 
state is greater than the entropy (Su)1 in the first state. The final state of stable 
equilibrium is therefore that in which the entropy is larger, that is, when (Su)2 > 
(Su),. 

Very o[ten, however, we wish to compare two states of a system that is not 
completely isolated. Suppose fi rst that the volume of the system is constant, so 
that the work in a process is zero, but the system is in contact with a heat reservoir 
at a temperature T, and we wish to compare two states at this temperature. By 
Eq. (7- 8), under these conditions, a spontaneous process from one state to another 
can occur only if the Helmholtz function fo r the system decreases. The final state 
of equilibrium is that in which the Helmholtz fun ction is the smaller, that is, 
(FT.Y)o < (FT.Y),. 

Finally, let us remove the restriction that the volume of the system is constant, 
but assume that the system is subjected to a constant external pressure P. The 
system is in contact with a heat reservoir at a temperature T and its pressure is P 

* The term "superheated" as used here does not have the same significance as when one 
speaks of "superheated steam" in a reciprocating steam engine or turbine. See Section 
8-9. 
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in tlie initial and final states of a process. By Eq. {7-ll) a spontaneous process 
can only occur under these conditions if the Gibbs funct ion decreases. The state 
of stable equilibrium is that in which the Gibbs function is smaller, that is, 
(GT.P)t < (GT.P),. 

As a corollary of the preceding conclusions, if a completely isolated system can 
exist in more than one state of stable equilibrium , the entropy S must be the same 
in all such states. If a system at constant volume and in contact with a single heat 
reservoir can exist in more than one state of stable equilibrium, the Helmho ltz 
function F must be the same in all such states; and if a system, in contact with a 
single heat reservoir and in surroundings at constant pressure, can exist in more 
than one stable state, the Gibbs function G must be the same in all such s tates. 

The preceding discussion referred to a system whose initial state was a mtta­
stabl~ one. But we assumed it possible to assign values to the entropy, H elmholtz 
function, and so on to this state, even though strictly speaking these properties are 
defined only for states of stab/~ equil ibrium. From the definition of a state of stable 
equilibrium as one in which the properties of a system do not change with time, 
it is evident that no spontan~ous process can take place from an initial state of 
stable equilibrium. Such processes can occur, however, if some of the constraints 
imposed on a system are changed . For example, suppose a system enclosed in a 
r igid adiabatic boundary consists of two parts a t different temperatures, separated 
by an adiabatic wall. Each of the parts will come to a sta te of stable equilibrium, 
but they will be at different temperatures. The adiabatic wall separating them 
then constitutes a constraint that prevents the temperatures from equalizing. 

As a second example, suppose that a system in contact with a reservoir at a 
temperature Tis divided internally by a partition. Each portion of the system con-· 
tains a gas, but the pressures on opposite sides of the partition are different. Both 
gases are in a state of equilibrium, and the partition constitutes a constraint that 
prevents the pressures from equalizing. 

As a third example, suppose that on opposite sides of the partition in the pre­
ceding case there are two di.ffrrtnt gases, both at the same pressure. If the partition 
is removed, each gas will diffuse into the other until a homogeneous mixture results, 
and the partition constitutes a constraint that prevents this from happening. 

If now the adiabatic wall in the first example is removed, or if the partition 
in the next two examples is removed, the state immediately following the removal 
of the constraint is no longer one of stable equilibrium, and a spontaneous process 
will take place until the system settles down to a new state of stable equilibrium. 
During the process, while the temperature, pressure, or composition of the gas 
mixture is not uniform, the system is in a nonequilibrium state. The entropy, 
Helmholtz function, e tc., are undefined and no definite values can be assigned to 
them. However, if we compare the initial state of stable equilibrium, b~fore the 
removal of the constraint, with the final equilibrium state aftu its removal, all of 
the results derived earlier in the section wi ll apply. Thua in the first example, in 
which the system is completely isolated, the final entropy is greater than the 
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initial entropy. In the second example, if the volume of the system is kept constant, 
the final value of the Helmholtz function is smaller than its initial value. In the 
third example, if the pressure is kept constant, the final value of the Gibbs function 
is less than its initial value. 

7- 5 PHASE TRANSITIONS 

Suppose we have a system consisting of the liquid and vapor phases of a substance 
in equilibrium at a pressurePand a temperature T. In Fig. 7- 2(a), the total specific 
volume of the system is v1• The number of moles in the liquid phase is n; and the 
number of moles in the vapor phase is n~. The state of the system corresponds to 
point b1 in Fig. 7-2(c). In Fig. 7-2(b), the total specific volume of t.he system is v1 , 

and the numbers of moles in the liquid and vapor phases arc respectively n; and 
n~. The state of the system corresponds to point b1 in Fig. 7- 2(c). 

p p 

~ !I I 
~·- .r •• •1 r 

(a) (b) (<) 

Fig. 7-2 The equilibrium between a liquid and its vapor at the two different molal 
volumes shown in (a) and (b) is represented on the portion of the P-v diagram in (c), 

The states of the liquid and vapor portions of the system shown in Figs. 
7-2(a) and 7-2(b) are represented in _Fig. 7-2(c) by points a and c respectively, 
and the states differ only in the relative numbers o f moles of liquid and vapor. 
If g" and g• arc the specific Gibbs functions of the liquid and vapor phases, the 
Gibbs functions of the two states are, respectively, 

G1 a: n~g· + n';'g"'. 

a. = n;g• + n;'g-. 

Since the total number of moles of the system is constant, 

n~ + n': = nj + n; ; 
and since both s tates are stable, 

a,- a •. 
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It follows from these equations that 

(7-44) 

that is, the specific Gibbs function has the same value in both phasn. The same result 
holds for any two phases in equilibrium. At the triple point, the specific Gibbs 
functions of all three phases are equal. 

L------------------T 
Fig. 7-3 The specific Gibbs function of the 
vapor and liquid in processesa·b·< and d·t:f 
or Fig. 7-1. 

Let us now return to a consideration of the stable and metastable states illus­
trated in F ig. 7-1. Figure 7-3, which is lettered to correspond to Fig. 7-1 f shows 
graphs of the specific Gibbs functions of the vapor and liquid in the processes 
a·b·c and d·e:f of Fig. 7-1. Since 

( i)g:) - -·· aiJP • 
where s• is the specific entropy of the vapor phase, the curve abc has a negative 
slope, of magnitude equal to the specific entropy s•. Similarly, the curve def also 
bas a negative slope, equal to the specific entropy s• of the liquid. The difference 
between the entropies s• and s• equals the latent heat of transformation , 1.,, 
divided by the temperature T: 

,. - s•- !!!. 
T 

Since 1,, is positive, s• > s• and the magnitude of the slope of the curve abc is 
greater than that of the curve def The curves intersect at point b, e whereg• = g•. 
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Points c and f represent two possible states of the system at the same tem­
perature and pressure, but the G ibbs function in state c is greater than that in 
state f We have shown that in a spontaneous process between two states at the 
same temperature and pressure, the Gibbs function must decrease. Hence a 

. spontaneous transition from state c to state f is possible, while one from state f 
to state cis nol Statefis therefore the state of stable equilibrium, while the equi­
librium at state c is metas table. 

Similarly, states d and a are at the same temperature and pressure, but the 
Gibbs function at dis greater than that at a. State a is stable and stated is meta­
stable. 

At points b and e, where the Gibb~ functions are equal , the equilibrium is 
neutral. At this temperature and pressure the substance can exist indefinitely, in 
either phase, or in both. 

If the substance in Fig. 7-1 is taken from the stable liquid state at pointfto 
the stable vapor state at point a, in the processf-t-b-a which does not carry it into 
a metastable state, the curve representing the process in Fig. 7-3 consists only of 
the segmentsfe and ba. The phase transition from liquid to vapor, in the process 
e-b, is called a jirst-Qrder transition because although the specific Gibbs function 
is itself continuous across the transition, its first derivative, equal to -s· or - s• 
and represented by the slopes of the curvesfe and ba, is discontinuous. 

In principle there should also be phase transitions in which both the specific 
G ibbs function and its first derivative are continuous, but the second derivative 
changes diSfontinuously. In such transitions the latent heat of transformation is 
zero and the specific volume does not change for PoT systems. But, since 

(o•g) _ -(i!s) = -~. 
iiTP iiTP T 

(7-45) 

the value of Cp must be different in the two phases. Examples of such transitions 
would be the liquid-vapor transition at the critical point, the transition of a super­
conductor from the superconducting to the normal state in zero magnetic field, 
ferromagnetic to paramagnetic transitions in a simple model, order-disorder trans­
formations, etc. Very careful experiments have been do ne on many systems, 
some to within one-millionth of a degree of the phase transi tion. It appears that 
the superconducting transition may be the only true second-order transition. 

An example of a third type of transition, known as a lambda-transition, is that 
between the two liquid phases of He•, ordinary liquid helium He I, and superftuid 
helium He If. This transition can take place at any point along the line separating 
these two liquid phases in Fig. 2-13. A graph of cp versus T for the two phases 
has the general shape shown in Fig. 7-4, and the transition takes its name from the 
resemblance of this curve to the shape of the Greek letter A. The value of c P does 
uot change discontinuously, but its variation with temperature is different in the 
two phases. 
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Fig. 7-<4 The lambda transition for 
liquid He'. 

7-4$ THE CLAUSIUS-CLAPEYRON EQUATION 

The Oausius-Ciapeyron • equation is an important relation describing how the 
p ressure varies with temperature for a system consisting of two phases in equi­
librium. Suppose a liquid and its vapo r are in equilibrium at a pressure P a nd a 
temperature T, so that under these cond itions g• - g"'. At a temperature T + dT, 
the vapor pressure is P + dP and the Gibbs functions are respectively g• + dg• 
and g• + dg•. But since the liquid and vapor are in equilibrium at the new tern· 
perature and pressure, it follows that the changes dg• and dg"' are equal. 

We have shown that 

dg • - S(/T + vdP. 

The changes in temperature and pressure are the same for both phases, so 

- I' dT + v• dP - -I" dT + v• dP, 
or 

(s'" - s")dT- (v'" - v")dP. 

But the difference. in specific entropies, (s• - s"), equals the heat of vaporiza­
tion Ia divided by the temperature T, and hence 

( ~p). 1., 
~T •• == T(v• - v•)' 

(7-46) 

which is the Clausius-Clapeyron equation for liquid-vapor equilibrium. Geo­
metrically speaking, it expresses the slop~ of the eq uil ibrium line between the 

• Benoit-Pierre-Emile Oapeyron, French chemist (1799-1864). 



194 THERMODYNAMIC POTENTIALS 7~ 

liquid and vapor phases in a P-T diagram such as Fig. 2- S(a), in terms of I he heat 
of transformation, the temperature, and the specific volumes of the phases. 

When the same reasoning is applied to the solid and vapor, or solid and liquid 
phases, we obtain the corresponding equations 

(dP) 110 

dT 11 = T(v"' - v')' (dP) 1, 
dT II= T(ll" - •'). 

(7-47) 

Although the latent heat of any transformation varies with temperature, it is 
always positive (except for He' below 0.3 K), as is the temperature T. Also, the 
specific volume of the vapor phase is always greater than that of ei ther the liquid 
or solid phase and the quantities (v• - v' ) and (v• - v') are always positive. 
The slopes o f the vapor pressure curves and sublimation pressure curves arc there­
fore always positive. The specific volume of the solid phase, however, may be 
greater or less than that of the liquid phase, and so the slope of the solid-liquid 
equilibrium line may be either positive or negative. We can now understand more 
fully why the P-v-Tsurface for a substance like water, which expands on freezing, 
differs from that for a substance which contracts on freezing. (See Figs. 2-6 and 
2-7). The term (v' - v') is negative for a substance that expands on freezing and is 
positive for a substance that contracts on freezing. Therefore the solid-liquid 
equilibrium surface, or its projection as a line in the P-T plane, slopes upward to 
the left for a substance like water that expands and upward to the right for a sub­
stance that contracts. Projections of the liquid-vapor and solid-vapor surfaces 
always have positive slopes. 

An examination of Fig. 2-10 will show that Icc I (ordinary icc) is the only 
form of the solid phase with a specific volume greater than that of the liquid phase. 
Hence the equilibrium line between lee land liquid water is the only o ne that slopes 
upward to the left in a P-Tdiagram; all others slope upward to the right. 

For changes in temperature and pressure that are not too great, the heats of 
transformation and the specific volumes can be considered constant, and the slope 
of an equilibrium line can be approximated by the ratio of the finite pressure and 
temperature changes, t:.PfllT. Thus the latent heat at any temperature can be 
found approximately from measurements of equilibrium pressures at two nearby 
temperatures, if the corresponding specific volumes are known. Conversely, if the 
equilibrium pressure and the latent heat are known at any o ne temperature, the 
pressure at a nearby temperature can be calculated. In calculations of this sort we 
usually assume that the vapor behaves like an ideal gas. 

To integrate the Clausius-Clapeyron equation and obtain an expression for 
the pressure itself as a function o f temperature, the heats of transformation and the 
specific volumes must be known as functions of temperature. This is an important 
problem in physical chemistry but we shall not pursue it further here except to 
mention that if variations in latent heat can be neglected, and if one of the phases 
is a vapor, and if the vapor is assumed to be an ideal gas, and if the specific volume 
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of the liquid or solid is neglected in comparison with that of the vapor, the integra· 
t ion can be readily carried out. The resulting expression is 

(;~,. = T(~;/P)' 
dP l.,dT 
p-=Jir•' 

In P = - ..!!!. + In constant. (7-48) 
RT 

The Clausius-Clapeyron equation can also be used to explain why the triple­
point temperature of water, T3 = 273. 16 K, should be higher than the ice-point 
temperature T, = 273.15 K. This appears puzzling at fi rst, since at both tempera­
tures ice and water are in equilibrium. 

The triple-point temperature T, is defined as the temperature at which water 
vapor, liquid water, and ice are in equilibrium. At this temperature, the vapor 
pressure of water equals the sublimation pressure of ice and the pressure of the 
system equals this pressure, P,, which has a value of 4.58 Torr. Water a t its triple 
point is represented in Fig. 2-9(a). 

The ice point is defined as the temperature at which pure ice and ai r-saturated 
water are in equilibrium under a total pressure of I atm. There is air in t he space 
above the solid and liquid, as well as water vapor, and air is also dissolved in the 
water. The total pressure P is I atm and by definition the temperature is the ice­
point temperature T,. Thus the triple-point temperature and the ice-point tem­
perature differ for two r~asons; one is that the total pressure is different, and the 
other is that, at the ice point, the liquid phase is not pure water. 

Let us first neglect any effect of the dissolve!! air and find the equilibrium tem­
perature of ice and pure water when the pressure is increased from the triple point 
to a pressure of I atm. From Eq. (7-47), we have for the liquid-solid equilibrium, 

dT = T(v" - v') dP. 
1, 

The changes in temperature and pressure are so small that we can assume that 
all terms in the coefficient of dP are constant. Let r ; represent the equilibriym tem­
perature of ice and pure water. Integrating the left side between T,and r;, land the 
right side between P, and atmospheric pressure P, we have 

r; - T, = T(v" - v' ) (P - P,). 
1,. 

To three significant figures, T = 273 K, v' = 1.09 x to-• m• kg-1, v• = 1.00 x 
to-• m' kg-1,/12 = 3.34 x 10' J kg- •, and P - P, = 1.01 x 10' N m- •. Hence 

T; - T, = -0.0075K. 
That is, the ice-point temperature r; is 0.0075 K belo~r the temperature of the triple 
point. 
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The effect of the dissolved air is to lower the temperature at which the liquid 
phase is in equilibrium with pure ice at atmospheric pressure by 0.0023 K below 
the equilibrium temperature for pure water. Hence the ice-point temperature T1 

lies 0.0023 K below r;, or 0.0023 + 0.0075 = 0.0098 K below the triple-point 
temperature T1 • In other words, the triple-point temperature is 0.0098 K or 
approximately 0.01 K above the temperature of the ice point. Then since a tem­
perature of exactly 273.16 K is arbitrarily assigned to the triple point, the tem­
perature of the ice point is approximately 273.15 K. 

7-7 TH E THIRD LAW OF T HERMODYNAMICS 

The principle known ·as the third law of thermodynamics governs the behavior 
of systems, which are in internal equilibrium, as their temperature approaches 
absolute zero. Its history goes back more than one hundred years, having its origin 
in attempts to find the property of a system that determines the direction in which 
a chemical reaction takes place; and, of equal importance, to find what deter­
mines whqn no reaction will take place and a system is in chemical equilibrium as 
well as in lhermal and mechanical equilibrium. 

A coinpl~te discussion of this problem would take us too far into the field of 
chemical thermodynamics, but the basic ideas are as follows. Suppose that a 
chemical reaction takes place in a container at constant pressure, and that the con­
tainer makes contact with a reservoir at a temperature T. If the temperature of 
the system increases as a result of the reaction, there will be a heat flow to the reser· 
voir until the temperature of the system is reduced to its original value T. For a 
process at constant pressure the heat flow to the reservoir is equal to the change of 
enthalpy of the system. If the subscripts 1 and 2 refer to the initial and final states 
of the system, before and after the reaction, then 

t:.H = H,- H, = -Q, (7-49) 

where -Q, the heat flow out of the system, is the heat of reaction. The components 
and products of the reaction will of course be different chemical substances. Thus 
if the reaction is 

Ag + HCI +!: AgCI + jH,, 
then H1 is the enthalpy of the silver and hydrochloric acid and H, is the enthalpy 
of the silver chloride and hydrogen. 

Before the second law of thermodynamics was well understood, it was assumed 
that all of the heat generated in a chemical process at constant pressure should be 
available to perform useful work. All spontaneous processes would proceed in a 
direction so that heat flows to the reservoir and the speed of the reaction would 
depend upon the heat of reaction. Many experiments were done by Thomsen• and 
by Berthelott. They found some spontaneous processes which absorb heat during 

*H. P. J. Julius Thomsen, Danish chemist (1826-1909). 
t Pierre M. Berthelot, French chemist (1827-1907). 
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the reaction. Thus the heat of reaction cannot always be used to determine the 
direction in which a process takes place. 

On the basis of the second law we have shown in Section 7-4that a spontaneous 
process can occur in a system subjected to a constant pressure and i~ contact 
with reservoir at a temperature T if the Gibbs function, and not the enthalpy, 
decreases. The two are related by Eq. (7-30), the Gibbs-Helmholtz equation. 
The change in the Gibbs function can be related to the change in enthalpy by 

(
it[G, - G,]) 

G, - G, = H, - H, + T itT p' 

which can be rewritten as 

AG = till + r(itt.G) . 
t.T P 

(7-50) 

Thus the change in enthalpy and the change in Gibbs fu nction arc equal only when 
T(i1t.G{i1T)p approaches zero. 

~-------------------- T 

Fla. 7-5 The temperature dependence or 
the cllange in the Gibbs function and 
in the enthalpy for an isobaric process. 

Ncrnst• noted from the results of the experiments by Thomsen a nd by 
Berthelot and careful experiments with galvanic cells, that ina reactiont.G generally 
approached t.H more closely as the temperature was reduced, even at q uite high 
temperatures. In 1906, he therefore proposed as a general principle that as the 
temperature approached zero, not only did t.G and t.H approach equality, but 
their rates of chang• with temperature both approached zero. That is. 

lim (a 110) = o, lim (a t.H) = o. (7-51) 
T- o itT P T-o itT P 

In geometric terms this means that the graphs of t.G and t.H as a functio n of T 
both have the same horizontal tangent at T- 0 as shown in Fig. 7-5. 

• Walter H. Nernst, German chemist (1864-1941). 
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The first of Eq. (7-51) can be written as 

lim (ii(G, - G1)) = lim [(iiG,) _ (iiG,) J = O. 
T~o iJT p T~o oT 1' oT P 

But (oG/oT)1• - -s so that 

lim(S1 - SJ = 0. (7-52) 
T~o 

This is the Nernst heat theorem which states that: 

in the neighborhood of absolute zero, all reactions In a liquid or solid in Internal 
equilibrium take place with no change in entropy. 

Planck, in 1911, made the further hypothesis that not only does the entropy 
diff~r~nct vanish as T-+ 0, but that: 

the entropy of uery solid or liquid substance in internal equilibrium at absolute 
zero is Itself zero, 

that is 
limS= 0. 
T~o 

(7-53) 

This is known as the third law of thermodynamics. Then if the referenoe tempera­
ture in the thermodynamic definition of entropy is taken at T, = 0, the arbitrary 
constant S0 - 0, and the arbitrary linear function of the temperature appearing 
in the expressions for the Gibbs and Helmholtz functions for an ideal gas is zero. 

If the substance is heated reversibly at constant volume or pressure from T - 0 
to T ~ T, its entropy at a temperature Tis 

LT dT J.T dT 
S(V, T) = C.,-, S(P, T) = Cp - . 

• o T o T 
(7-54) 

Sinoe the entropy at a temperature T must be finite, the integrals may not diverge; 
and Cv and c,. must approach zero as the temperature approaches zero: 

lim c., = lim C p = 0. {7-55) 
2" ... 0 7'-0 

We leave it as a problem to show, however, that Cp/T = (oS/oT)p may in fact 
diverge as T approaches 0 K (Problem 7-29). 

The Nemst theorem implies that the change in entropy is zero in any prooess 
at 0 K. For example, 

lim(~) "" lim (as) - o. 
T-o i)p T T-o oV T 

Using the Maxwell relations (Section 7-3), we obtain 

lim (av) =lim (iiP) ~ 0; 
T~• oT p r~o oT " 

{7-56) 

(7-57) 
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and since V remains finite as T--+ 0, we can also write 

limp= 0. (7-58) 
2'~0 

Reference to Figs. 3-10 and 2-16, which show what is typical of all solids, will 
show in fact that the specific heat capacities and the expansivities do approach zero 
at T- 0. The methods of statistics, as will be shown in Chapter 13, predict that 
at very low temperatures the specific heat capacities do approach zero. Statistical 
methods also lead to an expression for the entropy at absolute zero, and in certain 
systems the entropy does become zero in agreement with the Planck hypothesis. 

The third law also implies that it is impossible to reduce the temperature of a 
aystem to absolute zero in any linile number of operations, as we shall see. The 
most efficient method for reaching absolute zero is to isolate the system from its 
surroundings and reduce its temperature below that oft he surroundings in an adia· 
batic process in which the work is d one by the system solely at the expense of its 
internal energy. Co nsider a reversible adiabatic process which takes a system in a 
s tate I to state 2 by a path which changes a property X and the temperature Tof 
the system. It follows from Eq. (7-54) that 

J.
2', c 

s,(x •• r.> - ~ dT 
' T 

and 

J.
"•C 

S,(X,, T.,) = .2.! dT. 
• T 

In a reversible adiabatic process, 

S,(X., T.,)- S1(X,, T,) ; 
and therefore, 

If the process continues until T, ~ 0, since each of the integrals converges, 

("• Cx, dT = 0. 
Jo T 

(7-59) 

However, Cx, is greater than zero for r. not equal to zero and Eq .. (7-59) cannot 
be true. Therefore the absolute zero of temperature cnnnot be attained. This is 
sometimes called the unauainability statement of the third law. Mathematically 
the unattainability statement can be stated as 

(oTfoX)s = 0 at T - 0 K. I (7-60) 

Temperatures of to-> K have been reached in the laboratory. In fact the nuclei 
of copper have been cooled to almost 10-• K butt he poor thermal contact between 
the nuclear spin system and the lattice prevented the entire latt ice from reaching 
such low temperatures. 
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PROBLEMS 

7-1 Derive Eqs. (7-!6) and (7-17). 

7-2 D raw a careful skelch of a Carnor cycle or an ideal g•s on a g-s diagram. Label each 
process and show I he direcrion rraversed if rhe cycle is rhar of a refrigeraror. A55ume rhat 
s is larger than c1 •• 

7-3 Show that ifF is known as a function of V and T, 

H • F- r(aF) - v(!!.. ) ar " av T 
and 

7-4 Use Eq. (7- 16) to derive (a) the equation of slate, (b) the energy equation, (c) the 
Gibbs function, and (d) the enrha lpy or an ideal gas. 

7- 5 Derive I he equal ion of slate and the energy equal ion for a van der Waals gas from 
Eq. (7-17). 

7--6 The specific Gibbs funcrion of a gas is given by 

g • RTln (P/P,) - AP, 

where A is a function of T only. (a) Derive expressions for the equation or stare of the 
gas and irs specific entropy. (b) Derive expressions for rhe or her thermodynamic poten­
t ials. (c) Derive expressions for cp and c.. (d) Derive expressions for the isothermal 
compressibility and rhe exp3nsivity. (e) Derive an expression for the Joule-Thomson 
coefficienr. 

7-7 The specific G ibbs function or a gas is given by 

g • - RTln (v/v0) + Bv, 

where B is a function of T only. (a) Show explicitly that this form of the Gibbs function 
does not co mpletely specify the properties of the gas. (b) What further information is 
necessary so that the properties of the gas can be completely specified? 

7-8 D oes the expression 
/ • RT ln (vofv) + CT'v, 

where Cis a positive constanl, result in a reasonable specification of the properries or a 
gas ar normal temperatures and pre55ures? 

7-9 Derive Eqs. (7- 36), (7-37), and (7- 38). 

7- 10 Let us define a property or a sysrem represenred by~ which is given by rhe equation 

U +PV 
~ - s---r-· 
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Show thai 

v- -r(:;)T. 
u- r[r(:;t + P(:;)J 

and 

s- ~ + r(:;t. 
7-11 The work necessary 10 stretch a wire is given by Eq. (3-6). (a) Derive expressions 
for the differentials of the thermodynamic potentials. (b) Derive the four Maxwell 
relations for this system. (c) Derive the T dS equations. 

7-12 (a) Derive the thermodynamic potentials and their differentials for an &ZTsyslem. 
(b) Derive the Maxwell relations and (c) the T dS equations for the system. 

7-13 The work d' Win a reversible process undergone by a paramagnetic gas is given by 
Eq. (6-69). (a) Write expressions for dE, dU, dH, dF, dG, and dF• for this system. (b) 
Use the expressions of part (a) to derive Maxwell relations for this system. (c) Write the 
T dS equations for a paramagnetic gas. 
7-14 Give an example of a change in the constraint imposed on a system which will 
cause its properties to change if the system is (a) completely isolated, (b) at constant 
temperature and pressure, (c) at conslantlemperature and volume. 

7- IS Show that the in ternal energy of a system at constant entropy and volume must 
decrease in any spontaneous process. 

7-16 If the Gibbs function of a system must decrease during any spontaneous processes 
in which the temperature and pressure remain constant, show that the entropy of an 
isolared system must increase during a spontaneous process. [Hint: Show that (6G)T.I' 
must increase for any process that includes a stage in which (6S)u decreases.] 

7-17 By the same method as used in the previous problem, show that if the Gibbs 
function of a system must decrease during any spontaneous process in which the tempera­
ture and pressure remain constant, (a) the Helmholtz function must also decrease in any 
spontaneous process at constant volume and temperature; and (b) the enthalpy must 
decrease in any spontaneous proec:ss at conslant pressure and entropy. 
7-18 What can be stated about the change of Gibbs funct ion during a spontaneous 
process of a completely isolated system? 

7- 19 Sketch qualitative curves in ag-P and •&· Tplane of the phases of a substapce which 
sublimates rather than melts. 
7-20 Sketch qualitative curves which represent the solid, liquid, and vapor phase of pure 
water in (a) theg-P plane at T - -l0°Cand (b) the g-T plane at P - 2 aim so that the 
transitions from one phase to the oth<r can be indicated. 

7-21 Sketch graphs of g and its first and second derivatives as a function of T and P for 
(a) a first-order and (b) a second-order phase transition. 

7-22 The specific Gibbs function of the solid phase and of the liquid phase of a substance 
are ploued in Fig. 7-6 as a function of tempenuure at a constant pressure of 10' N m·•. 
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At higher pressures the curves oft versus Tare parallel to those shown. The molal volume 
of the solid a nd of the liquid are respectively 0.018 and 0.020 m' kilomole-•. (a) Sketch, 
approxim~tely to scale, curves of g versus P for the solid and liquid phases. Justify your 
curves. (~ If one kilomole of the liquid is supercooled to 280 K and then transformed to 
solid isothermally and isobarically at 10' N m-'calculateAG, AS, AH, AU, and Mforthc 
system and AS for the universe. 

Ttrnpe_raturt(K) 

Figure 7-9 

7-23 (a) Calculate the slope of the fusion curve of Icc, in (N m-• K- 1), a t the normal 
melt ing point. The heat of fusion at this temperature is 3.34 x 10' J kg-• and the change 
in specific volume on melting is -9.05 x 10-• m' kg- •. (b) Icc at -2°C and atmospheric 
pressure is compressed isothermally. Find the pressure at which the icc ~tartS to melt. 
(c) Calculate (~P/~n. for ice at -2°C. (/1 - 15.7 x 10- • K- 1 and • • 120 x 10- 11 
m• N- 1) . (d) Icc at - 2°C and atmospheric pressure is kept in a container at constant 
volume, and the temperature is gradually increased. Find the temperature and pressure 
at which the icc sta rt51o melt. Show th is process and tha t in part (b) on a J'-Tdiagram like 
the one in Fig. 2-9(a), and on a P·V·Tsurfacc like the one in Fig. 2-7. Assume that the 
fusion curve and the rate of change of pressure with temperalure, at constant volume, are 
both linear. 
7-14 Prove that in the P·V plane the slope of the sublimation curve at the triple point is 
greater tha n that of the vaporization curve at the same point. 
7- 25 The vapor pressure of a particular solid and of a liquid of the same material are 
given by In P • 0.04 - 6/T •nd In P • 0.03 - 4/ T respectively, where P is given in 
atmospheres. (a) Find the temperature and pressure of the triple point of this ma terial. 
(b) F ind the values of the three heats of transformation at the triple point. State approxi· 
rna lions. 
7-26 An idealized diagram fort he entropy of the solid phase and the entropy of the liquid 
phase of He> are shown in Fig. 7-7 plotted against temperature at the melt ing pressure. 
(He' docs not liquefy at atmospheric pressure.) The molal volume o f the liquid is greater 
than the molal volume of the solid by 1(}-' m' kilomole-• throughout the temperature 
range. (a) Draw a careful and detailed plot of the melting curve on a P·T diagram. The 
melting pressure a t 0.3 K is 30 atm. (b) Discuss processes to freeze He' below 0.2 K. 
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Figure 7-7 

7- l7 (a) Liq uid He" at 0.2 Kat a pressure just below the melting pressure is adiabatically 
compressed to a pressure just above the melting pressure. Use F ig. 7-7 to calculate the 
change in temperatureof the He'. Explain approximations. (b) How can thiseft'ect be used 
as a refrigerator at low temperatures 7 

7-28 I n a second-order phase transition 11 - s1 or v1 - v1 a t a particular temperature 
and pressure where [and i denote the final a nd initial phase. Show that in these cases the 
Clausius-Clapeyron equation can be written as 

or 

respectively. [Hilrl : Begin with an appropriate TdS relation.) 

7-29 A low temperature physicist wishes to publish his experimental result tha t the heat 
capacity of a nonmagnetic dielectric material between O.OS and O.S K varies as AT1fl + 
BT'. As editor of the journal, should you accept the paper for publication ? 

7-30 Show that the Planck statement of the third law can be derived from the unattain­
ability s tatement. 

7-31 The Planck statement of the th ird law states that one isentropic surface covers the 
T • 0 K plane. Derive Eq. (7-60) by showing that if this surface had a branch to higher 
temperatures, the specific heat capacity at constant X would have to be negative. 

7-32 A polymer , held a t constant tension shrinks as the temperature is increased. Sketch 
a curve of the length of t he polymer as a function of temperature near 0 K and give 
reasons for all pertinent parts of your sketch. 

7-33 (a) Show tha t Curie's law for an ideal paramagnet and the van der Waals equation of 
state cannot be valid near 0 K. (b) Show that there can be no first-order phase t ransition 
at OK. 
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gases, and both occupy the same volume Y at the same temperature T, 

p,V 
"• = RT • 

PY n- - · 
RT ' 

and hence 

p, 
xa=-p· 

Then 

and 
In p1 = In P + In x., lnp1 = lnP + ln x1 , 

Kv "" RT(In P + t/>1 + In x,), g.,- RT(In P + t/>1 + lnxJ. 

The chtm/cal pottntia/ p. of each gas in the mixture is defined as 

p e RT(In P + </> + ln x) 

., RT(ln p + </>) 

""K + RTln x, 

(8-2) 

(8-3) 

where g is the specific Gibbs function at temperature T and total pressure P. The 
fina l Gibbs function of the system is therefore 

G1 = n,,.., + n.,..,. 
The change in the Gibbs function in the mixing process is 

G1 - G, = n1(f.'1 - g1) + n1(p1 - g,) 

= RT(n1 In x1 + n, In x1). (8-4) 

The expression in parenthesis is necessarily ntgatiL•t, since x1 and x, are both 
fractions, less than I; and hence the Gibbs function dtcuas•s in the irreversible 
mixing process, which we have shown is always the case in any such process at 
constant temperature and pressure. 

As an example, consider a container of volume V divided into two parts by a 
parti tion. On the left side are 2 kilomoles of helium gas and on the right side is I 
kilomole of neon gas. Both gases have a temperature of 300 Kanda pressure oft atm. 
After the partition is removed, the gases diffuse into each other and a new equi· 
librium Slate is reached. The mole fraction of each of the gases in the mixture is 
given by Eq. (8-1) : 

2 2 
xu. - 2 +I ~ J 

and their partial pressures are 

Puo - 0.67 aim 

The chemical potential of each gas is 

I'll• - .l'uo + R(300) In 0.67; 

and 

and p"• - 0.33 atm. 

!'"'' - g,.,, + R(300) In 0.33 , 
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wheretuo and[Ne are I he specific Gibbs funclions of lhe separaled gas allhe same 
1empera1ure and pressure. The chemical polenlial of each consliluenl of I he gas iJ a 
linear funclion of lemperalure and depends upon lhe naaural logarilhm of lhe mole 
fraclion of a hal consaiauenl in lhe gas. 

The change in lhe Gibbs fuoca ion in I he mixing process is 

IJ.G - G1 - 01 - RT(21n 0.67 + I In 0.33), 

- -s x JO' J. 

The change in enlropy during lhe mixing process can be calculaled from lhe first 
of Eq. (7-27): 

lJ.S- - (~a~)P - - R(n1 1nx1 + n11n x.J, 

- 2R, 
- 16.6 X J0> J K- 1• 

We have introduced the concept of chemical potential through the simple 
example of a mixture of two ideal gases. The concept has a much wider significance, 
however, and is basic to many problems in physical chemistry. It is applicable to 
solutions as well as gases, to substances that can reacl chemically, and to systems 
in which more than one phase is present. In the next seclion we prove that a system 
is in chemical equilibrium when the chemical potential of each constituent has the 
same value in each phase. , 

The general relation between p and g, for any constituent in any phase, has 
the same form as Eq. (8-3): 

p .. g + RTin:c, 

where :c is the mole fraction of the constituent : 

n, 
x, =In,· 

If a phase consists of only one constituent, x = I, In ;c - 0, and 

p-g. 

In this case, the chemical potential equals the specific Gibbs function. 

(8-5) 

The problem ofliquid-vaporequilibrium discussed in Seclion 7- 5 is an example. 
In this case there is only one constituent, p = g, and, as we have shown, the specific 
Gibbs functions g" and g• are equal in the stale of stable equilibrium. 

For a system consisting of a single pure substance, the concept of chemical 
potential can be arrived at in a different way. The combined first and second laws 
fo r a closed PVT system lead to the result that 

dU .. T dS - P dV. 
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Considering U as a function of Sand V, we can also write 

dU = (a![\ dS + (dU) dV, as/.- oV s 
(8-6) 

from which it follows that 

( oU) = T 
as .. • ( oU) = -P. 

av s 
{8-7) 

The internal energy U is an extensive property and is proportional to the number 
of moles included in the system. It is implied in Eq. (8-6) that we are considering 
a closed system for which the number of moles n is constant. If, however, the system 
is open, so that we can add or remove material, the internal energy becomes a 
function o f n as well as of Sand V, and 

dU = ( oU) dS + ( oU) dV + ( oU) dn. 
oS .-.. oV s.. on s . .-

(8-8) 

For the special case in which dn = 0, this must reduce to Eq. (8-7), and hence 

( oU) = T 
as .... • (au) ... -P 

av s.. · 
(8-9) 

The additional subscript n on the partial derivatives simply makes explici t what 
is implied in Eqs. (8-7), namely, that in ihese equations n is assumed constant. 
The coefficient of dn in Eq. (8-8) is now defi ned as the chemical potential f': 

I 
,.. = (~~t; (8- 10) 

that is, the chemical potential is the change of internal energy per mole of substance 
added to the system in a process at constantS and V; and Eq. (8-8) can be written 

dU = TdS- PdV + f'dn. (8-11) 

This equation is the general form of the combined first and second laws for 
an open P VTsystem. More generally, if X represents any extensive variable corre­
sponding to the volume V, and Y the intensive variable corresponding to the 
pressure P, the work in a differential reversible process is Y dX and 

d U = T dS - Y dX + f' dn. (8-12) 

The chemical potential can be expressed in a number of different ways. If we 
write Eq. (8-12) as 

dS = .!_ dU + ~ dX- e_ dn 
T T T ' 

and considerS as a function of U, X, and n, it follows that the partial derivatives 
of S with respect to U, X, and n, respectively, the o ther two variables being held 
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constant, are equal to the coefficients of the differentials dU, dX, and dn. Therefore 

,. = -r(M.) . 
iJn u.x 

(8- 13) 

The difference in the Helmholtz function F = U - TS, between two neigh· 
boring equilibrium states, is 

dF = dU - T dS - S dT; 

and when dU is eliminated between this equation and Eq. (8- 12}, we have for an 
open system, 

dF = - SdT - Y dX + pdn, 

from which it follows that 

(oF) p- -
- On T.X· 

(8- 14) 

In the same way, the difference in the Gibbs function G = U - TS + YX, 
for an open system, is 

dG- -SdT+XdY+ pdn (8-15) 
and 

(oG) p= -
On T.Y· 

(8- 16) 

This equation is equivalent to the definition of p for the special case discussed 
earlier in this section. For a single constituent, G - ng and hence 

fJ = (~) =g. 
on T.Y 

In summary, we have the following expressions for the chemical potential: 

,. - -r(M.) - (££) - (~) 
iJn U.X- iJn T,X- iJn T.Y· 

8-2 PHASE EQUILIBRIUM AND THE PHASE RULE 

The discussion of the previous section can be easily extended to the case of a phase 
composed of k constituents rather than just one. The internal energy of the phase is 

U = U(S, V, n1, n,, . .. , nJ, (8-17) 

where n, is the number of motes of the ith constituent present in the phase. Equa-
tion (8-8) can be rewritten as · 

dU = ( iJU) dS + ( oU) dV + ( iJU) dn + · · · + (iJ~\ dn oS Y.• oV 8,o iJn1 8.Y.•' 1 on)s.Y.•' •• 
(8-18) 
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where the subscript n' signifies that the number of moles of all constituents is con­
stant except for the constituent appearing in the derivative. 

Equation (8-JJ) can be written as 

dU = TdS- PdV + f'l dn1 + · · · + p.dn•, (8-19) 
where 

p, = ( 11~\ , etc. (8-20) 
on/s:li'.•' 

The last equation defines the chemical potential of the ith constituent in the phase. 
Similarly, the difference in the G ibbs function between two states at the same 

temperature and pressure for an open system of k constituents is 

dG - dU- T dS + P dV. 

Comparison with Eq. (8-19) yields 

dG - p1 dn, + · · · + ~'• dn., (8-21) 
and 

(oG) p,-= - . 
On1 P.'l'.n' 

(8-22) 

It now remains to be shown that the chemical potential of a consti tuent is not 
dependent on the size of the phase, but is specified by the relative composition, 
the pressure, and'the temperature. Consider the phase to consist of two parts which 
are equal in every respect. If t..n, moles of constituent I are added to each half of 
the phase without changing the pressure or the temperature of either half, the 
pressure and the temperature of the whole phase do not change and we can write 
for each half 

For the two halves, we get 

AG p,--. 
An, 

2AG AG 
f'< = 2An

1 
=An,· 

Hence the chemical potential p is independent of the size of the phase. 
Now assume that we have a phase a t temperature T, pressure P, and Gibbs 

function G0, and that we add mass which is at the same temperature and pressure. 
As a result of the above discussion , Eq. (8-21) can now be written 

a - a, = p,n, + · · · + p,n.. (8-23) 

Therefore we can also write 

U - TS - PV + p1n1 + · · · + p,n• + a0, 

H .., TS + p1n1 + · · · + p,n• + a0, 

F"" -PV + p1n1 + · · · + p,n0 + a0• 

(8- 24) 
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It was shown in Section 1-S that if two phases of a pure substance are in equi­
librium at constant temperature and pressure, the specific Gibbs function has the 
same value in both phases. From this consideration we were able to derive the 
Clausius-Clapeyron equation. We now consider equilibrium in a system composed 
of more than one phase. 

It is clear that only one gaseous phase can exist, since constituents added to 
this phase will diffuse until a homogeneous mixture is obtained. However, more 
than o ne liquid phase can exist because the immiscibility of certain liquids precludes 
the possibility of homogeneity. Generally speaking, mixtures of solids do not form 
a homogeneous mixture except in special circumstances. For example, a mixture 
of iron filings and sulfur, or the different types of ice, must be regarded as forming 
separate solid phases. On the other band, some metal alloys may be considered 
to comprise a single solid phase. 

Our previous observation that the specific Gibbs function has the same value 
in each phase for equilibrium between phases of a single constituent requires modi­
fication when more than one constituent is present in the system. We consider a 
closed system consisting of" phases and k constituents in equilibrium at constant 
temperature and pressure. As before, a constituent will be designated by a sub­
script I= 1,2,3, ... ,k, and a phase by a superscript (j) = 1,2,3, ... •"· 
Thus the symbo1J"l'1 means the chemical potential of constituent I in phase 2. 

The Gibbs function of constituent i in phase j is the produ~t of the chemical 
poten\ial J"l" of that constituent in phase j, and the number of moles n:" of the 
constituent in phase j. The total Gibbs function of phase j is the sum of all such 
products over all constituents, that is, it equals 

·-· ~l"l"nl". 
·-· Finally, the total Gibbs function of the entire system is the sum of all such sums over 

all phases of the system, and can be written 
J-.. 1-Jt 

G = ~ ~ J"!"nl". (8-25) 
J-li-1 

We have shown in Section 7-1 that the necessary condition for stable equi­
librium of a system at constant temperature and pressure is that the Gibbs function 
of the system shall be a minimum. That is, when we compare the equilibrium state 
with a second state at the same temperature and pressure, but differing slightly 
from the equilibrium state, the first variation in the Gibbs function is zero: 
dGr.P = 0. 

In the second state, the numbers of moles nl11 of each constituent in each 
phase are slightly different from their equilibrium values. Then since the chemical 
potentials are constant at constant temperature and pressure, we have from Eq. 
(8-25), 

1-•1-t 

dGr,p • ~ ~Ill" dnl" = 0, (8- 26) 
1• 11·1 
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If the number of variables is one greater than the number of equations, an 
arbitrary value can be assigned to one of the variables and the remainder are com­
pletely determined. The system is then called monovariant and is said to have a 
variance of I. 

In general, the variance I is defined as the excess of the number of variables 
over the number of equations, and 

1- [,.(k- I)+ 2)- [k('IT - 1)), 
or 

(No chemical reactions) (8-30) 

This equation is called the Gibbs phase rule. 
As an example, consider liquid water in equilibrium with its vapor. There is 

only one constituent (H10) and k - I. There are two phases, ., - 2, and the 
number of equations of phase equilibrium is 

k(1T- I)- I. 

This single equation states simply that, as we have previously shown, the chemical 
potential ,. has the same value in both phases. 

The number of variables is 

w(k - I) + 2 = 2. 

These variables are the temperature T and pressure P, since in both phases the 
mole fraction of the single constituent must be I. The variance 1 is therefore 

l=k-w+2 - l, 

which means that an arbitrary value can be assigned to t ither the temperature T 
or the pressure P, but not to both. (Of course, limitations are imposed on these 
arbitrary values since they must lie within a range in which liquid water and water 
vapor can exist in equilibrium.) Thus if we specify the temperature T, the pressure 
P will then be the vapor pressure of water at this temperature and it f8nnot be 
given some arbitrary value. If we make the pressure greater than the vapot pressure, 
keeping the temperature constant, all the vapor will condense to liquid as shown in 
the isotherm in Fig. 2-9. If we make the pressure less than the vapor pressure, all 
the liquid will evaporate. 

At the triplt point of water, all three phases are in equilibrium and ., = 3. 
Then k(1r - I) ... 2, and there are tii'O equations of phase equilibrium stating 
that the chemical potential in any one phase is equal to its value in each of the other 
phases. The number of variables is ,.(k - I) + 2 ~ 2, which is equal to the 
number of equations. The variance is 

1 - k- rr + 2 = 0, 

and the system is therefore inooriant. We cannot assign an arbitrary value to 
either the temperature or the pressure. Once a system such as the triple point cell 
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in Fig. 1-3 has been set up in any laboratory, its temperature is nec~ssorily that of 
the triple point of water, and its pressure is the vapor pressure at this temperature. 
I t is for this reason that the temperature of the triple point o f water has been chosen 
as the single fixed point of the thermodynamic temperature scale; it can be repro­
duced precisely at any point and at any time. Of course, the triple point of any 
other pure substance would serve, but water was chosen because of its universal 
availability in a pure state. 

II can be readily shown that if a constituent is absent from a phase, the number 
of variables and the number of equations are each reduced by one. Hence the 
original restriction that every constituent be present in every phase can be removed, 
and Eq. (8-30) remains valid. 

If chemical reaction takes place within the system, the constituents are not 
completely independent. Let us suppose that the four constituents A, B, C, and 
D undergo the reaction 

n4 A + n0B~ncC + n0 D, 

where the n's are the number of moles of the constituents. We now have an addi­
tional independent equation, so that the total number of independent equations 
is k(11- I)+ I. The number of variables is 11(k - I)+ 2, as before. Therefore 
the number o f degrees of freedom is 

I 1- (k- I)- 1T + 2. 

But it is possible to conceive of a system where a number of chemical reactions 
could take place, and accordingly we express the phase rule in the more general 
form 

J~ (k- r)- 11 + 2 (with chemical reaction), (8- 31) 

where r is the number of independent reversible chemical reactions. 

8-3 DEPENDENCE OF VAPOR PRESS URE ON TOTAL PRESSURE 

As an application of the concepts developed in the last two sections, we consider 
the dependence of the vapor pressure of a liquid on the total pressure. Figure 
8-1 (a) represents a liquid in equilibrium with its vapor. The total pressure in the 
system is the vapor pressure. An indifferent gas (that is, one that does not react 
chemically with the liquid or its vapor), as represented by open circles in Fig. 
8-1 (b), is pumped into the space above the liquid, thereby increasing the total 
pressure. The question is : Will the vapor pressure be changed when this is done at 
constant temperature? 

We make use of the condition that the chemical potential of the original sub­
stance must have the same value in the liquid and gas phases. Since the liquid phase 
consists of a single constituent, the chemical potential in this phase equals the 
specific Gibbs function of the liquid: 

p." - g". 
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The gas phase can be considered a mixture of ideal gases and we can us~ the results 
of Section 8- 1: 

p." = RT(Inp + ~). 
where p." is the chemical potential of the vapor and pis the vapor pressure. 

(•) (b) 

Fls. 8- 1 A liquid in equilibrium with its vapor 
(a) at the vapor pressure, (b) at a higher pressure 
caused by the presence of an indifferent gas. 

Let P represent the total pressure, and suppose that a small additional amount 
of the indifferent gas is pumped in, at constant temperature, increasing the total 
pressure from P to P + dP and changing the vapor pressure from p top + dp. 
Since the system is also in equilibrium at the new pressure, the changes af'• and dp." 
must be equal. For the liquid, 

ap.• = dg• = - s• dT + v• dP = v• dP, 
since the temperature is constant. Also, since ~ is a fu nction of temperature only, 

Therefore 

or 

dp.•- RT dp. 
p 

odP = RT~. 
p 

~ "" ~ dP. (8-32) 
p RT 

Let p0 be the vapor pressure in Fig. 8-l (a), when no indifferent gas is present. 
In this case, the total pressure P equals p1. We now integrate Eq. (8-32) from this 
state to a final state in which the vapor pressure is p and the total pressure is P. 
The volume v• can be considered constant, so 

and 

!!P- - dP f.. d v' J.l' 
., p - RT •• ' 

In!_ = ~ (P - p0). 

Po RT 
(8-33) 
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It follows that when the total pressure P is increased, the vapor pressure p 
increases also. That is, as more of the indifferent gas is pumped in, more of the 
liquid evaporates, contrary to what field might be expected. However, the partial 
pressure of the vapor phase by itself is unaffected by the addition of the indifferent 
gas, and only the liquid phase feels the additional pressure causing it to evaporate. 

The change in vapor pressure, Ap - p - p., is very small since •"/RT is small. 
For water, v• • 18 x lo-' m' kilomole-• and p0 • 3.6 x 10' N m-• at300 K. If the 
total pressure over the water is increased to 100 atm and none of the indifferent gas 
dissolves in the water, then 

p 18 X 14)-1 
In Po • (8.315 X I0')(300) (1.01 X 10' - 3.6 X 10') 

and 

lop+ Ap • Ap • 1.29 x IQ- 1, 

P• Po 
since In (I + x) • x for x « I. 

1-4 SURFACE TENSION 

The phenomena of surface tension and capillarity can be explained on the hypo­
thesis that at the outer surface of a liquid there exists a surface layer, a few molecules 
thick, whose properties differ from those of the bulk liquid within it. The surface 
film and the bulk liquid can be considered as two phases of the substance in equi· 
librium, closely analogous to a liquid and its vapor in equilibrium. When the 
shape of a given mass of liquid is changed in such a way as to increase its surface 
area, there is a transfer of mass from the bulk liquid to the surface film, just as 
there is a transfer of mass from liquid to vapor when the volume of a cylinder 
containing liquid and vapor is increased. 

It is found that in order to keep the temperature of the system constant when 
its surface area is increased, heat must be supplied. Let us define a quantity l, 
analogous to the latent heat of vaporization, as the heat supplied per unit increase 
of area at constant temperature: 

d'QT ~ A dAT. (8-34) 

If a film of liquid is formed on a wire frame as in Fig. J.-6, the inward force 
exerted on the frame as indicated by the short arrows originates in the surface 
layers as if they were in a state of tension. The force per unit length of boundary 
is called the surface tension 11, and we have shown in Section 3-3 that the work, 
when the slider is moved down a short distance dx and the area of the film increases 
by dA, is 

d'W~ -u dA. 

Although the area of the film increases, the surface tension force is found 
to remain constant if the temperature is constant. That is, the surface tension a 
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does not depend on the area but only on the temperature. Thus the film does not 
act like a rubber membrane, for which the force would increase wilh increasing 
area. As the slider is moved down , molecules move from the bulk liquid into the 
film. The process does not consist of stretching a film of constant mass, but rather 
of creating an additional area of film whose properties depend only on the tem­
perature. 

If the temperature of the system is changed, however, the surface tension 
changes. Thus surface tension is analogous to vapor pressure, remaining constant 
for two phases in equilibrium if the temperature is constant, but changing with 
changing temperature. Unlike the vapor pressure, however, which increases with 
increasing temperature, the surface tension decreases with increasing temperature, 
as shown on Fig. 8-2, and becomes zero at the critical temperature, where the prop­
erties of liquid and vapor become identical. 

Temperature (K) 

Fig. 8-2 Surface tension 11, "latent heat" A, and 
surface energy per unit area U/A, for water, as a 
function of temperature. 

Consider an isothermal process in which the area of a surface film increases 
by dAT. The heat ftow into the film is d'QT ~ A dAT, the work is d 'W,. = 
-a dAT , and the increase in internal energy, which in this case is t~e surfac~ 

~n~rgy, is 

Therefore 

dUT = (11!!:\ ,. A + a. 
dAT 11AJT 

(8-35) 

Since the work in a process is - adA, a surface film is analogous to a P VT 
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system, for which the work is P dV. The surface tension" corresponds to-P, and 
the area A to the volume V. Hence we can write, by analogy with Eq. (6-9}, 

( oU) = <1 - T d" 
oAT dr' 

where (oqfoT).,. has been replaced with d<!/dT, since " is a function ofT only. 
From the two preceding equations, 

.<"' - T d" (8-36) 
dT' 

which relates the "latent heat" .< to the surface tension"· Figure 8-2 also shows a 
graph of .< versus T. (Because" is a function of temperature only , the same is true 
of X) 

Suppqse the area of the film is increased isothermally from zero to A, by 
starting .Jith the slider in Fig. 3-6 at the top of the frame and pulling it down. 
Since U = 0 when A = 0 , the surface energy, when the area is A, is 

U = (.l +<!)A = ( <1- T :~)A ; (8-37) 

that is, the surface energy is a function of both T and A. The surface energy per 
unit area is 

!:!. = .< + " = " - T du . 
A dT 

A graph of U/A is also included in Fig. 8- 2. Its ordi nate at any temperatu re is 
the sum of the ordinates of the graphs of .< and o. 

By analogy with the heat capacity at constant volume of a PVT system, the 
heat capacity at constant area, c.,, is 

c = (ou) 
A oT .,· 

From Eq. (8-37), 

and hence, 
(oU) = A[d" _ Td'o _ du] = -Ar d'o 
or ... dT dT' dr dT' • 

d'o c.,= -AT tiT'. 

The specific heat capacity c., is the heat capacity per unit area: 

"'" c.., = -T dT'. 

(8-38) 

The internal energy U and Helmholtz function Fare related by the equation 

u = F - r(EI). 
OT A 

I 
I 
I 
I 

I 
I 
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Comparison with Eq. (S-37) shows that the Helmholtz function fo r a su rface 
film is 

F - aA; 
and hence 

a=~; (8-39) 

that is, the surface tension equals the Helmholtz function per unit area! 
The entropy of the film is 

S = -(EI) = -Ada 
a~" dT' 

and the entropy per unit area is 
da 

,s:;;;:~:--. 

dT 
(8-40) 

8-S VAPOR PRESSURE OF A LIQUID DROP 

The surface tension of a liquid drop eauses the pressure inside the drop to exceed 
that outside. As shown in Section S-3, this increased pressure resul ts in an increase 
in vapor pressure, an effect which has an important bearing on the condensation 
of liquid drops from a supercooled vapor. 

Consider a spherical drop of liquid of radius r , in equilibrium with its vapor. 
Figure S-3 is an "exploded" view of the drop. The vertical arrows represent tbe 
surface tension forces on the lower half of the drop, the total upward force being 

211ra. 

Fig. 8-3 Surface tension 
forces in a spherical 
drop. 
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Let P1 be the internal pressure and P. the external pressure. The resultant 
downward force on the lower half of the drop due to these pressures is 

(P1 - P.)rrr2 ; 

and for mechanical equilibrium, 

(P1 - P .)rrr2 = 2rrru, 

or 

P,- P. = ~. 
r 

The pressure P1 in the liquid therefore exceeds the external pressure P. by 
2ufr. The smaller the radius of the drop, the greater the pressure difference. 

For complete thermodynamic equilibrium, the pressure P. must equal the 
vapor pressure p. We can use Eq. (8-33) to find the vapor pressure p, which will 
be larger than the vapor pressure p0 at a plane surface. In Eq. (8-33), the symbol P 
represented the total pressure of the liquid, which in the present problem is the 
pressure P 1 • P. + 2ufr = p + 2ufr, since P. = p when the system is in equi· 
librium. Hence 

JnR - ~[(p- Po)+ ~J. 
Po RT r 

In all cases of interest, the difference (p - p0) between the actual vapor pressure 
p and the vapor pressure p0 at a flat surface is small compared with 2ufr and can 
be neglected. Then 

In .E.= 2uv• ' 
Po rRT 

or 

2au" 
(8-41) r = RT In (p/p0 ) ' 

and a liquid drop of this radius would be in equilibrium with its vapor at a pressure 
P. - p. The equilibrium would not be stable, however. Suppose that by the chance 
evaporation of a few molecules the radius of the drop should decrease. Then the 
vapor pressure p would increase, and if the actual pressure P, of the vapor did not 
change, the vapor pressure would exceed the pressure of the vapor. The system 
would not be in thermodynamic equilibrium, and the drop would continue to 
evaporate. On the other hand, if a few molecules of vapor should condense on the 
drop, its radius would increase, the vapor pressure would decrease, the pressure 
of the vapor would exceed the vapor pressure, and the drop would continue to 
grow. 

The distinction between "vapor pressure p" and "pressure P. of the vapor" 
can be confusing. The term "pressure P. of the vapor" means the actual pressure 
exerted by the vapor surrounding the drop. The term "vapor pressure p" is the 

I 
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particular value that the "pressure P0 of the vapor" must have for thermodynamic 
equilibrium. 

For water at 300 K, a"" 70 >< to-> N m-•, p0 ""27 Torr ""3.6 >< tO' N m-1, 
and v• "" t8 x to-• m' kilomole- 1• It is found that the pressure P0 of water vapor 
can be increased to at least S times the vapor pressure p0 over a Hat surface before 
drops of liquid start to form. Stuingp/p0 - S, we lind from the values above that 

r ""'6 >< to-10 m ""6 >< to-> em. 

A drop of this radius contains only about twelve molecules, and there is some 
question as to whether it is legitimate to speak of it as a sphere with a definite 
radius and surface tension. However, if a group of this number of molecules should 
form in the vapor it would continue to grow once it had been formed. 

8-8 THE REVERSIBLE VOLTAIC CELL 

It was shown in Section 3-3, that when a charge tiZ flows through a voltaic cell of 
emf G, the work is 

d'W- - 8 t1Z. 

If there are gaseous products of reaction, P dV work must be included also, 
but we shall neglect any changes in volume and treat the cell as an 8ZT system, 
corresponding to a PVT system. We also assume, as is nearly true in many cells, 
that the emf is a function of temperAture only, so that 

Every real cell has an internal resistance R, so that dissipative work at a rate 
I' R is done within the cell when there is a current in it. Let the terminals of the 
cell be connected to a potentiometer. If the voltage across the potentiometer is 
made just equal to the emf of the cell, the current in the cell is zero. By making 
the voltage slightly larger or smaller than the emf, the reaction in the cell can be 
made to go in either direction. Further, since the dissipative work is proportional 
to the squar~ of the current, while the electrical work is proportional to the first 
power, the former can be made negligible by making the current very small. Hence 
the cell can be operated as a reversible system in the thermodynamic sense. 

It is found , however, that even when the current I is very small so that T' R 
heating is negligible, there may still be a heat flow into or out of the cell from its 
surroundings in an isothermal process. Let us define a quantity 'I' as the heat flow 
per unit charge, so that in an isothermal process, 
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The change in internal energy is then 

dUr = d'Qr- d'Wr =('I'+ tf)dZr, 
and 

!!!!.r = (au) = , + s. 
dZr oZ T 

(8-42) 

By analogy with Eq. (6-9), 

(
oU) = ,f _ T dtf 
az r dr' 

(8-43) 

and therefore 

(8-44) 

Since t1 is a function of T only, the same is true of 'I'· T he heat flow in an iso­
thermal process is therefore 

d'Qr = vdZr = -T dS dZ. 
dT 

(8-45) 

When the cell "discharges" and does electrical work on the circuit to which it 
is connected, dZ is a negative quantity. Hence if the emf increases with tempera­
ture, d.f/dT is positive, d'Qr is positive, and there is a heat flow inlo the cell from 
its surroundings. On the other hand, if dtf/dT is negative, then d'Qr is negative 
when the cell discharges and there is a heat flow oul of the cell , even in the absence 
of any 12R heating. 

The isothermal work is 
d'Wr ~ -dUr + d'Qr. 

Thus if d'Qr is positive, the work is greater than the decrease in internal energy; 
and if d'Qr is negative, the work is less than the decrease in internal energy. In 
the former case, the cell absorbs heat from its surroundings and "converts it into 
work." Of course, there is no conflict with the second law because this is not the 
sole result of the process. In the latter case, a portion of the decrease in internal 
energy appears as a flow of heat to the surroundings. 

In a finite isothermal process in which a change t.z flows through the cell , 
the heat flow is 

The work is 
Wr = -&I!.Zr, 

and the change in internal energy is 

t.Ur = (s- r:~)t.z. 

(8- 46) 

(8-47) 

(8-48) 
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In physical chemistry, Eq. (8-48) is most useful when looked o n as a method 
of measuring heat of reaction. As a specific example, the Daniell* cell consists of 
a zinc electrode in a solution of zinc sulfate, and a copper electrode in a solution 
of copper sulfate. When the cell discharges, zinc goes into solution and copper is 
deposited on the copper electrode. The net chemical effect is the disappearance of 
Zn and CuH and the appearance of Zn++ and Cu, as represented by 

Zn + Cu++ -+ Zn++ + Cu. 

By forcing a current through the cell in the opposite direction the process can 
be reversed, that is, copper goes into solution and zinc is deposited. 

The same chemical reaction can be made to take place in a purely chemical 
manner, quite apart from a Daniell cell. Thus if zinc powder is shaken into a solu· 
tion of copper sulfate, a lithe zinc will dissolve (i.e., become ions in soll.nion) and 
all the copper ions will become metal atoms, provided the original amounts of the 
two substances are chosen properly. If the process takes place at constant volume, 
no work is done and the heat liberated equals the change in internal energy, given 
by Eq. (8-48). 

Since emf's can be measured very precisely, then (provided two reacting sub­
stances can be combined to form a vollaic cell) the heat of reaction can be computed 
from measurements of the emf and its rate of change with temperature more pre· 
cisely than it can be found by direct experiment. 

For example, when I kilomole of copper and zinc react directly at 273 K, the 
internal tntrgy change as measured txperimencally by calorimecric mer hods is 232 x 
10' J. When !he subscances are combined co form a voltaic cell at 273 K, the 
observed emf is 1.0934 V and its race of change wilh temperacure is -0.453 x 
10- • V K-1• Because the ions are divaltnt, the charge t:.Z passing chrough tht cell is 
2 faradayst per kilomole, or 2 x 9.649 x 10' C kilomole-•. Then che int<rnal 
energy change is found to be 

t:.U - 234.8 x 10' J kilomolo- •. 

8- 7 BLACKBODY RADIATION 

The principles of thermodynamics can be applied not only to material substances 
but also to the radiant energy wilhin an evacuated enclosure. If the walls of the 
enclosure are at a uniform temperature T, and lhe enclosure contains at least a 
speck of a com pi"~ absorbtr or blackbody (a substance which absorbs I 00% of 
the radiant energy incident on it, at any wavelength), the radiant energy within the 
enclosure is a mixture of eleccromagnetic waves of different energies and of all 
possible frequencies from zero to infinity. Suppose that an opening is made in the 
walls of the enclosure, small enough so that the radiant energy escaping through 

• John F. Daniell, English chemise (1790- 1845). 
t Michael Faraday, English physical chemist (1791-1867). 



.228 APPLICATIONS OF THERMODYNAMICS TO SIMPLE SYSTEMS 8-7 

the opening does notappreciably affect that within the enclosure. It is found experi­
mentally that the rate at which radiant energy is emitted from the opening, per unit 
area, is a function only of the temperature Tof the walls of the enclosure and does 
not depend on their nature, or on the volume V or shape of the enclosure. The rate 
of radiation of energy through the opening is proportional to the radiant energy 
per unit volume within the enclosure, or to the radiant energy density u, where 

u u -=-. v 
Hence we conclude that the energy density u is also a function only of the 

temperature T: 
u = u(T). 

It follows from electromagnetic theory that if the radiant energy in the enclosure 
is isotropic (the same in all directions) it exerts on the walls of the enclosure a 
pressure P equal to one-third of the energy density: 

I 
p - 3 u. (8-49) 

The rad iation pressure, like the energy density, is a function of T only and is inde­
pendent of the volume V. 

The energy density, the frequency, and the temperature are found experi­
mentally to be related by an equation known as Planck's law, according to which 
the energy density O.u, in an interval of frequencies between • and • + O.v, and at 
a temperature T , is given by 

c •• 
6-u, £: 

1 A.,, 
exp(c1•/T) - I 

(8-50) 

where c, and c, are constants whose values depend o nly on the system of units 
employed. The dependence of the total energy density on temperature can be found 
by integrating Planck's equation over all frequencies from zero to infinity, but the 
principles of thermodynamics enable us to lind the form of this dependence without 
a knowledge of the exact form of Planck's equation. To do this, we again make 
use of Eq. {6-9), which is derived from the combined first and second laws and 
which we now write in extensive form: 

(au) = r(oP) _ P. 
av.. oTy (8-51) 

Since U = u V, and u is a function ofT only, 

(:~) .. = u. (8-52) 
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Also, since both P and u are functions ofT only, 

(
iiP\ l(ilu) I du 
iiTf/"' J CIT "- J dT . 

(8-53) 

Hence Eq. (8-5 I) becomes 

u =! T du_1 u 
3 dT 3 ' 

~- 4 dT 
u T' 

u - t11'4, (8-54) 

where a is a constant. 

The energy density is therefore proportional to the 4th power of the thermo­
dynamic temperature, a fact which was discovered experimentally by Stefan• 
before the theory had been developed by Planck and which is called Stifan's law, 
or the Sttfan-Boltznrannt law. The best experimental value of the Stefan-Boltzmann 
constant a is 

a = 7.561 x J0-11 J m-• K-•. (8-55) 

From Eqs. (8-49) and (8- 54), the equation of state of the radiant energy in an 
evacuated enclosure is 

The total energy U in a volume Vis 

U= uV= aVT'. 

The heat capacity at constant volume Vis 

c" = (au) = 4aVT'. ar, 

(8-56) 

(8-51) 

(8-58) 

To lind the entropy, imagine that the temperature or the walls of an enclosure 
at constant volume is increased from T ~ 0 to T = T. Then 

and hence 

4 
S = J aVT'. (8-59) 

*Josef Stefan, Austrian physicist (IBJS-1893). 

t Ludwig Boltzmann, Austrian physicist (1844-1906). 
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and 

The Helmholtz function is 

F= U - TS- uVT•- ~ uVT', 
3 

The Gibbs function is 

G - F + PV = _! uVT' +! uVT<, 
3 3 

and hence 
G= 0. 

(8-{i()) 

(8-61) 

We shall return to a discussion of blackbody radiation in Section 13-3 and show 
how Planck's law, and the value of the Stefan-Boltzmann constant, can be deter­
mined by the methods of statistics and the principles of quantum theory. 

8-8 THERMODYNAMICS OF MAGNETISM 

We showed in Section 3-3 that in a process in which the magnetic moment M of a 
paramagnetic system is changed by dM, the work is 

d'W = - .J'f dM, 

where .J'f is the external magnetic field intensi ty. 
The magnetic systems of primary interest in thermodynamics are paramagnetic 

crystals, whose volume change in a process can be neglected and for which the 
"P dV" work is negligible compared with -.J'f dM. Such crystals have an internal 
energy U, and also a magnetic potential energy 

(8-62) 

As described in Section 3-13, the appropriate energy function is therefore the 
total energy E: 

E = U + E0 - U- .J'fM, 
dE = dU- .J'f dM - M d.J'f. 

The combined first and second laws state that 

TdS = dU + d'W = dU- .J'f dM. 

Hence in terms of E, 
TdS =dE+ M d.J'f. 

Comparison wilh Eq. (7-23), 

TdS = dH- VdP, 

(8-63) 

(8-64) 

(8-65) 

(8-66) 
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shows that the total energy E is the magnetic analogue of the enthalpy H of a 
PVTsystem, and some authors speak of it as the " magnetic enthalpy" and repre­
sent it by H*. There is an important distinction, however. The enthalpy H of a 
'PVTsystem is defined as 

H - U+PV, 

and the total energy E of a magnetic system as 

E- U- .1t'M. 

In the latter equation, the term -.1t'M is the potential energy of the system 
in a conservative external magnetic field and is a joint property of the system and 
the source of the field, while no such significance attaches to the product PV. Thus 
the correspondence between Eqs. (8-65) and (8-66) is a mathematical analogy only. 
But since the equations do have the same form, we can take over all of the equations 
previously derived for the enthalpy H, replacing H with E, V with -M, and P 
with .1t'. 

Thus the heat capacity at constant .Jt', corresponding to Cp, is 

c,. ... (E!i . ar),. 
The heat capacity at constant M, corresponding to c,, is 

CM= (~t 
The first and second T dS equations become 

T dS- CAl dT- r(~~ dM, rJTJJll 
T dS - c,. dT + r(i!M) dJf'. 

i!T,. 

(8-67) 

(8-68) 

(8-69) 

(8-70) 

In Section 7-2 we have defined a function F*, corresponding to the Helmholtz 
function F ... U - TS, as 

F* = E- TS. 
Then 

dF* ... dE - T dS - S dT, 

and making use of Eq. (8-65), we have 

dF* = - S dT- M dJf'. 
Therefore 

( i!F*) - -s 
i!T,. • (ar) i!.Jf' 1' ... -M. 

(8-71) 

(8-72) 

(8-73) 

The methods of statistics, as we shall show later, lead directly to an expression 
fo r F* as a function of Tand J1f". Then from the second part of Eq. (8-73) we can 
find M as a function of T and .Jf', which is the magn~ric equalion of srare of the 
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system. The fi rst equation gives S as a function of Tand Yf'. The energy E is then 
found from Eq. (S...7J), 

E= F• + .TS, 
and the internal energy U is 

U = E + Jfi'M. (8-74) 

Thus all properties of the system can be found from the expression for £0 as a 
function of T and Jfi'. 

The dependence of the entropy on the magnetic intensity can be determined 
by the method used to derive the Maxwell relations. Applying Eq. (7-39) to Eq. 
(8-72) we obtain 

(8-75) 

For a paramagnetic salt obeying Curie's law, (iJMfiJ1},,. < 0 and the entropy of 
a paramagnetic salt decreases as the magnetic intensi ty increases. 

In our discussion of the third law in Section 7-7, it was stated that all proc­
esses taking place in a condensed system at T = 0 K proceed with no change in 
entropy. If these processes include the increase in magnetic intensity in a para­
magnetic crystal, it follows that at T- 0 K, 

(.P§...) = o. 
iJJfi' T 

(8- 76) 

Figure (8-4) is a plot of the entropy of a magnetic system as a function of tem­
perature for values of the applied intensity Jfi' equal to zero and to Jfi'1• The form 
of these curves will be calculated in Section I 3-4. 

s 
·" -o 

Fig. 8-4 The temperature dependence 
of the entropy of a magnetic system at 
.It' - 0 and at .It' - .lt'1• 
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Substituting Eq. (8-76) into Eq. (8-75) we obtain that (oM/on~ = 0 at 
T = 0. However from Curie's law 

M _ CoJf' 
- T • 

and (oM/on~ approaches infinity as T-+ 0. The conclusion is that Curie's 
law cannot hold at T- 0 qnd that a transition to an ordered magnetic state must 
take place. 

The production of low temperatures by adiabatic demagnetization of a para­
magnetic salt can be understood with the help of Fig. 8-4. Suppose that initially 
the magnetic intensity is zero and that the temperature of the salt has been reduced 
to a low value T, by contact with a bath of liquid helium. The state o f the system 
is then represented by point a. The magnetic field is now increased isothermally 
and reversibly, in the process a-b, to a value Jt"1• In this process there is a heat 
flow out of the salt into the helium bath. The entropy of the system decreases while 
its temperature remains constant at T1• In the isothermal process a-bin which 
dT = 0, Eq. (8-70) yields 

d'Qr = T dSr = r(oM) dJf' r· oT ~ 
At constant Jlf', (oMJonJI' is negative. Then since Jf' increases, d'Qr is negative 
and there is a heat flow out of the system to the surroundings. 

The next step is to isolate the system thermally from the surroundings and 
perform the reversible adiabatic process b-e, in which the magnetic field is reduced 
to zero while the entropy remains constant. The final tempe•ature T,, from Fig. 
8-4, is evidently less than the initial temperature T1• In this process, since dS - 0, 
Eq. (8-70) becomes 

dT8 ~ - ..I...(oM) dJf'8 , 
CJf' oT Jf' 

and since (oM/oT)JI' and dJif'8 are both negative, dT8 is negative also. Tem­
peratures near lo-> K have been attained in this way. 

The processes a-band b-e in Fig. 8-4 are exactly analogous to those in which a 
gas is first compressed isothermally and reversibly, and then allowed to expand 
to its original volume, reversibly and adiabatically. The temperature drop in the 
adiabatic expansion corresponds to the temperature drop from 1 1 to T1 , in process 
b-e in Fig. 8-4. 

Process b-e, in Fig. 8-4, is commo nly described as a "reversible adiabatic 
demagnetization," or as an "isentropic demagnetization." Suppose, however, 
that such a process is carried out in a temperature interval in which CA1 is negligible, 
so that 

(aE.\ (oM) 
cJf'- ar/Jf'"" - Jf ar I 
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Then from Eq. (8-70), in an isentropic process in which dS = 0, 

Jt'(oM) dTs = r(oM) d.lt's, oT ~ oT ~ 
. and 

( f)
8 
= constant. 

8-8 

(8-77) 

The ratio Jt'fT is therefore constant in the isentropic process in which the magnetic 
field is reduced from Jf', to zero. Hence since the magnetic moment M is a function 
of Jt'fT, the magnetic moment is constant also and the term " demagnetization" 
is inappropriate. 

.r -o 

~~--------------- T 

Fig. 8-S The unattainabil ily of I he 
absolule zero of temperaiUre by a 
linile ser ies of isolhermal magnel· 
iuuions and adiabal ic demagnel· 
izations. 

Suppose that a series of isothermal magnetizations from Jf(' = 0 to Jt' = Jt'., 
represented by the vertical lines io Fig. 8-5, are each followed by adiabatic de· 
magnetizations, represented by the horizontal lines. In order to carry out the iso­
thermal magnetizations, in which there is a heat ftow out of tl;ie crystal, reservoirs 
at lower and lower temperatures are required, so that the processes become more 
and more difficult e~perimentally as the temperature decreases. It will be seen that 
every adiabatic demagnetization process intersects the curve Jt' = 0 at a tem­
perature above T ~ 0. This is an e~ample of the unattainability statement of the 
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third law. We leave it as a problem to show that if the entropy is not zero at T = 0 
for ;;t' = 0, the absolute uro of temperature could be reached in a fini te number 
of processes in violation of the unattainability statement o f the third law. 

8-9 ENGINEERING APPLICATIONS 

The p rospect of continuously "converting heat into work" has intrigued man since 
ancient times. The credit for some of the most significant contributions to the 
science of thermodynamics is due to the successful achievement of this conversion, 
so important to the evolution of our modern civilization. The power cycle, which 
is the instrument for the continuous conversion of heat into work, presents an 
illuminating application of the first and second laws that is always exacting and 
often can be very subtle. This section is devoted to a thermodynamic analysis of 
a power cycle in which the working substance undergoes a change of phase. 
Specifically, steam is used as the working substance for the purpose of discussion, 
but the general principles are applicable to all other similar substances. 

figure 8-6 is a diagram of the s-P-Tsurface for the liquid and vapor phase of 
water substance. The surface resembles a P-v-Tsurface. It can be drawn to scale 
because the relative mtropy change between liquid and vapor phases is much 
smaller than the relative volume change. Lines have been constructed on the 
surface at constant P, T , and s. 

Fig. H The s·P-Tsurface for water. 
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The numerical values of P, T, and s are given, in Fig. 8-6, in the archaic set of 
units still employed by mechanical engineers in the United States. The unit of pressure 
is J pound-force per square inch, the unit of energy is J Btu, and the unit of mass is I 
pound-mass. On the temperature axis, temperatures are expressed in degrees Fahren­
heit , but the unit of specific entropy is I Btu per pound-mass, per rankine. It is little 
wonder that engineering students in this country lose sight of theprinciplu of thermo­
dynamics because of the welter of conversion factors involved in numerical cal­
culations. 

Fi&. IJ.-7 The h-s-P surface for water. 

Figure 8-7 is a drawing, also to scale, of the thermodynamic surface obLained 
by plotting the specific enthalpy vertically and the pressure and specific entropy 
horizontally. The heavy line on the surface is the boundary of the liquid-vapor 
region and the light lines are lines of constant h, s, and P. Isobaric lines on the 
surface have a slope at any point equal to the temperature a t that point, since 

(~) = T. 
OS I' 

Hence in the liquid-vapor region, where a reversible isobaric process is also iso­
thermal, the isobaric lines are straight lines having a constant slope equal to T. 
The lines slope upward more steeply as the critical temperature is approached. 

Figure 8-8 is a projection of a portion of the h-s-P surface on the h-s plane, 
and is called a Mol/ier• diagram. It covers the range of variables encountered in 

• Richasd Mollier. German engineer (1863- 193S). 
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most engineering calculations. The practical utility of the diagram lies in the fact 
that in any process at constant pressure, such as the conversion of liquid water 
to water vapor in the boiler of a steam engine, the heat fl ow is equal to the difference 
in enchalpy h between the endpoints of the process, and this difference can be read 
d irectly from a Mollier diagram. 

ENTROPY, BTU/ LBM• R 

::! !I 

ENTROPY, BTU/ LBM• R 

Fig. 8-8 The Mollier diagram for waler. 

In our earlier discussions of Carnot cycles, it has been tacitly assumed that the 
substance carried through the cycle underwent no changes in phase. However, a 
Car not cycle is any reversible cycle bounded by two isochermals and two adiabatics, 
and the shaded areas bcfg in Fig. 8-9 represent a Carnot cycle operated in the 
liquid-vapor region. In part (a) of the figure, the cycle is shown on aP-v-T surface, 
and projected on the P·v plane. Part (b) shows lhe same cycle on the s·P-Tsurface 
and projecled on the T·s plane, and in part (c) it is shown on the h·s·P surface and 
projected on lhe h·s plane (a Mollier diagram). 
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I' 

(a) 

T 

T, ------------

(b) 

(c) 

Fl&. 8-9 The Carnot cycle bcft in the liquid vapor region and the Rankine cycle 
abcd•fth with superheat. 

8--9 
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Starting with saturated liquid at point b, we carry out a reversible isothermal 
expansion a t the temperature T, until the liquid is completely vaporized (point c). 
During this part of the cycle heat q1 is withdrawn from a reservoir at temperature 
T,. An adiabatic expansion of the vapor lowers the temperature to T1 (point f). 
If the material is water-substance, this adiubatic expansion carried us back into the 
liquid-vapor region. In other words, some of the saturated vapor condenses. 
(Not all substances behave in this way. For some, the slope of the adiabatic line is 
less than that of the saturation line and the point corresponding to flies in the 
vapor region.) An isothermal compression is now carried out a t the temperature 
T1 to the state represented by point g, and heat q, is rejected to a reservoir. The 
cycle is completed by an adiabatic compression to point b, during which the re­
mainder of the vapor condenses and the temperature increases to T,. Note that in 
the T-s diagram of Fig. 8- 9(b), the Carnot cycle projects as a rectangle, bounded 
by two isothermals and two adiabatics. 

Since areas in a T-s diagram represent heat absorbed or liberated, the area 
bcjk in Fig. 8- 9(b) represents the heat q1 absorbed in the reversible expansion a t 
temperature T1 , the area &fjk represents the heat q1 rejected at temperature T1, and, 
from the first law, the area bcfg represents the net work.,. done in the cycle. The 
thermal efficiency of the cycle is therefore 

., • ~ ,.. a rea bcfg 
q, area bcjk 

(T, - T,)(s, - s,) "" T, - T, 
T,(s, - s1) T, 

as must be the case for any Carnot cycle operated between temperatures T, and T1• 

In the Mollier diagram of Fig. 8-9(c), reversible adiabatics are represented by 
vertical lines, and isotherms and isobars (which are the same in the liquid-vapor 
region) by straight lines sloping upward to the right. Since the heat flowing into a 
system in any reversible isobaric process is equal to the increase in enthqlpy of the 
system, the heat q, supplied in the isothermal-isobaric expansion fronl b to c is 
equal to h, - h,. The heat q, given up in the isothermal compression fromfto g 
is 111 - lr, . The net work tt· d one in the cycle is equal to the difference between the 
magnitudes of q, and q1• The thermal efficiency is therefore 

., "" ~ = It, - ''• - h, + "· 
q, "· - ''• 

(8-78) 

The advantage of :he Mollier diagram is that heat, work, and efficiency can 
all be determined from the ordinatu of points in the cycle, obviously a simpler 
procedure than measurements of area which must be made on a T-s diagram. 
Of course, the values of hat points b, c,f , and g may be taken from tables instead 
of being read from a graph. 



238 APPLICATIONS OF THERMODYNAMICS TO SIMPLE SYSTEMS 

R«iproca tine 
entine or turbine 

Fig. 8-10 Schematic diagram of processes in a recip­
rocating steam engine or turbine. 

S..9 

In both the reciprocating steam engine and the turbine, liquid water and water 
vapor go through essentially the same sequence of states. The boiler in Fig. 8-10 
receives heat from a heat source maintained at a high temperature by the combustion 
of fossil fuel, or by a nuclear reactor. In the boiler, saturated liquid is converted 
to saturated vapor at a temperature determined by the pressure in this part of the 
system. This temperature is very much less than that of the heat source. For 
example, if the pressure in the boiler is 1000 lb in-• (6.9 x 10" N m-*), the tem­
perature is 544°F (558 K), while the flame temperature in a source in which fuel 
is burned may be of the order of3500°F (2200 K). The saturated steam is led from 
the boiler to the superheater, where it receives more heat from the source and its 
temperature increases. The superheater is con'nected directly to the boiler, thus the 
pressure of the superheated steam does not rise above boiler pressure. In principle, 
the temperature of the superheated steam could be increased to that of the source, 
but a limit of about IOOO"F (811 K), called the metallurglcal/imit, is set by the fact 
that above this temperature the materials available for piping are not strong 
enough to withstand the high pressure. 

The superheated steam then flows to the reciprocating engine or turbine, where 
it delivers mechanical work and at the same time undergoes a drop in temperature 
and pressure. A portion is usually condensed in this part of the cycle also. The 
mixture of saturated liquid and vapor then flows to the condenser, where the re­
maining vapor is liquefied and the heat of condensation is given up to a heat sink, 
which may be the atmosphere o r cooling water from a river or the ocean. The 
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pressure in this part of the system is determined by the temperature of the heat 
sink. The condensed liquid is then forced into the boiler by the pump. This com­
pletes the cycle. 

The reciprocating engine and the turbine differ only in the means by whicb 
internal energy is abstracted from the flowing steam and converted to mechanical 
work. In the former, a mass of steam in a cylinder expands _against a piston. Jn 
the latter, the steam flows through nozzles, as in Fig. 3-14, acquiring kinetic 
en.ergy in the process. The rapidly moving steam then impinges on the buckets in 
the turbine rotor and gives up its kinetic energy. The process is approximately 
adiabatic in both devices but is not completely reversible and hence is not isentropic. 

Note that as far as the steam cycle itself is concerned, the sequence of states 
is the same whether the heat source is a furnace in which fuel is burned, or is a 
nuclear reactor. 

The Rankine cycle is a reversible cycle which corresponds more nearly than does 
the Carnot cycle to the sequence of states assumed by the liquid and vapor in a 
reciprocating steam engine or turbine. We consider first a cycle in which the steam 
is not superheated. Slarting at point b in Fig. 8-9(c), which corresponds to the 
boiler in Fig. 8- 10, saturated liquid is converted reversibly to saturated vapor at 
a temperature T1 and pressure P1 (point c). The vapor then expands reversibly 
and adiabatically to the pressure P1 and temperature T1 (point}). This stage corre­
sponds to the passage of steam through the engine or turbine. The mixture of 
vapor and liquid is then completely liquefied at the temperature T1 (point h) corre­
sponding to the process in the condenser of Fig. 8-10. The liquid is then com· 
pressed reversibly and adiabatically to boiler pressure P1 (point a). This operation 
is performed by the pump in Fig. 8-10. As we have seen, the temperature of a 
liquid increases only slightly in an adiabatic compression, so that heat must be 
supplied to the compressed liquid along the line ab in Fig. 8-9(c) to raise its tem­
perature to T1 • In Fig. 8-10, this heating takes place after the liquid has been 
pumped into the boiler. If the cycle is to be mJtrsible, however, the heat must be 
supplied by a series of heat reservoirs, ranging in temperature from that at point a, 
slightly above T, to T1• The average temperature at which heat is supplied is 
therefore less than T1 , so the Rankine cycle, although reversible, has a lower 
thermal efficiency than the Carnot cycle in which heat is taken in only at the tem­
perature T1. 

The thermal efficiency of the Rankine cycle can be determined directly from the 
Mollier diagram, Fig. 8-9(c), by the same method used for the Carnot cycle. Heat 
q1 is supplied along the path a-b-c and heat q1 is rejected along the pathf-h. Al­
though process a-b-c is not isothermal, it is isobaric (see Fig. 8- 9a), and the heat 
q1 supplied is equal to the enthalpy difference h, - h. . The heat q, rejected is 
h1 - h• and the net work w equals the difference between q. and q1• The efficiency 
is therefore 

w h, - h. - h, + h. 
~~--= 

q. h,- h. 
(8-79) 
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Note that although the expression for the efficiency in terms of enthalpy 
differences has the same form as that for the Carnal cycle, Eq. (8-79) does not 
reduce to (T, - T1)/T,, as is obvious from a comparison of the graphs of the 
Carnot and Rankine cycles. As stated above, the efficiency of the Rankine cycle 
is Jess than that of a Carnal cycle operating between temperatures T, 
and r,. 

It was mentioned in Section S-8, in connection with the general subject of 
entropy and irreversibility, that irreversible processes in a heat engine result in a 
decrease in efficiency. We can now see how irreversibility affects the efficiency of a 
Rankine cycle. If the expansion of the steam in a reciprocating engine or turbine 
is reversible as well as adiabatic, it is also isentropic, and process c:fin Fig. 8-9(b) 
is a vertical line of constant entropy. If the expansion is Irreversible, the entropy 
increases and at the end of the expansion the state of the system is represented by 
a point to the right of point/ The decrease in enthalpy in the process, from Fig. 
8-9(c), is therefore less in the irreversible than in the reversible expansion. Now 
apply the energy equation of steady flow to a turbine. The elevations of intake and 
exhaust can be assumed the same, the velocities at intake and exhaust can be con· 
sidered equal, and the process is very nearly adiabatic, even if it is not isentropic. 
The shaft work is therefore equal to the enthalpy difference between intake and 
exhaust, and the efficiency of the irreversible cycle is less than that of the 
reversible since the turbine delivers less mechanical work for the same heat 
input. 

In practically all steam cycles the vapor is superheated to a temperature T1 
higher than that of the saturated vapor T, before it is expanded adiabatically (see 
Fig. 8-10). The corresponding Rankine cycle is then represented by the process 
b-c-d-e-h-a-b in Fig. 8-9(c). The superheating stage is represented by the segment 
cd in this figure. There are two reasons for superheating. One is that the average 
temperature at which heat is supplied is thereby increased above the temperature 
of vaporization, with a resulting increase in efficiency. The other, which is actually 
of greater importance, can be seen from an examination of Fig. 8-9(c). If the 
adiabatic expansion starts from the state of saturated vapor, point c, the state of 
the steam at the end of the expansion is represented by point/ If the expansion 
starts at point d, the state of the steam at the end of the expansion is represented by 
point e. The "moisture content" of the steam, that is, the fractional amount in 
the liquid phase, is greater at pointfthan at point e. If the moisture content is too 
great, mechanical wear on the turbine buckets becomes excessive. Hence super­
heating must be carried to a sufficiently high temperature to keep the moisture 
content down to a safe value. 

In Fig. 8-9(c), heat q, is absorbed along the path a-b-e-d, and because this is 
isobaric, we have q2 = h4 - h •. Since q1 = h, - h. , the efficiency is 

w h. - h. - h, + h. 
1'J ==--

q, h. - h. 
(8-80) 
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PROBLEMS 

8-1 A volume Vis divided into two pariS by a frictionless dialherrna l partition. l'Mre 
are n,.. moles of an Ideal gas A on one side of the parti tion and n0 moles of an ideal gas B 
on the other side. (a) Calculate the change in entropy of the system which occurs when 
the partition is removed. (b) As the properties of gas A approach those of gas B, the 
entropy of mixing appears 10 remain unchanged. Yet we know that if gas A and gas B 
are identical, there can be no change in entropy as the partition is removed. This is Gibb's 
paradox. Can you explain it ? 

8-2 A container of volume V Is d ivided by partitions into three parts containing one 
kilomole of helium gas, two kilomoles of neon gas, and three kilomoles of argon gas, 
respectively. The temperature of each gas is initially 300 K and the pressure Is 2 aim. The 
partitions are removed and the gases diffuse into each other. Calculate (a) the mole 
fraction and (b) the partial pressure of each gas in the mixture. Calcula te the change (c) 
of the G ibbs function and (d) of the entropy of the system in the mixing process. 

8-3 For a tw<><Omponenl open system dU • T dS - P dV + p1 dn1 + /'s dn1• (a) 
Derive a similar expression for dG, and (b) derive Maxwell relations for this system from it. 

8-4 (a) Show that 
- SdT + VdP- 'J:. n1 dp1 - ·o. 

' 
(8-81) 

This is known as the Gibbs-Duhem• equa tion. (b) For a two-component system use the 
Gibbs-Duhem equation 10 show that 

X ( :"•) + ( I - x) (:"•) - 0, 
X T, P X r.P 

(g..82) 

where x - n. /(n. + n,). )his equation expresses the variation of the chemical potent ial 
with composition. (Hint: Express p in terms of P, T and x and note that ( apJaP)T.• -
"•· etc.) 
8-5 Consider a mixture of alcohol and water in equilibrium with their vapors. (a) 
Determine the number of degrees of freedom for the system and stale what they are. 
(b) Show thai for each constituent 

-s; dT + v~ dP + (i!) dx' - -s~ dT + v~ dP + ( iJ) dx• , 
~ T,P . T,P 

where x" is the mole rraccion or one or rhe constituents in the liquid and x• is the mole 
fraction of the same constituent in the vapor phase. (c) Using the equation of part (b) 
and Eq. (8-82), show that j 

(
aP \ x• cs: - •:> +(I - ?><•: - s;> 
ar J •• - x~(v: - v;> + ( I - x•)(v: - v;> ' 

where x• is held constant a rtificially. 

• Pierre M. M. D uhem, French phrsicist (1861- 1916). 
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H The direction in which a chemical reaction occurs depends upon the value of the 
thermodynamic equilibrium consrant K, which can be defined as 

t.G,.(reaction) - too;,( reaction) + RT In Kp, 

where toG,. is the change in Gibbs funcrion for the reaction and musr be equal to zero 
at equilibrium; and .6(;!- is rhe change in Gibbs function for the reacrion taking place at 
one almosphere and a t constanr temperature. (a) For rhe reacrion of ideal gases 

n4 A + nlJB ~ n0C + n0 D , 

where n4 A is n4 moles of A, etc., show that 

K (p(! X p';f) 
p a (p~A X p;,)' 

where P<~ is the partial pressure of A in the mixture, etc. (b) For the reaction 
lN1 + i H, ~ NH1 show thar K is 0.0128 if rhe rotal pressure is 50 atm and the mole 
fraction o~NH, is 0.15 I of the equilibrium mixture. (c) How does K1• change wirh pressure 
and temperature? 

8-7 To make baking soda (NaHCO,), a concentrated aqueous solution of Na,C01 is 
saturated with C01• The reaccion is given as 

2Na+ + C00 + H20 + CO, +t 2NaHC00• 

Thus Na+ ions, CO) ions, H10, C02, and NaHC03 are presenl in arbitrary amounrs, 
exoeprthat allrhe Na+ and CO) are from Na1C03. Find the oun1ber of degrees of freedom 
of this sysrem. 

JOO 

lOO 

100 

Liquid sotutH>n Cd + Bi 

271"C 

liqukf 
soluhon and 

solid Bi 

Solid Cd + solid Bi 

lO 60 

Wciaht " Cd 

Figure 8-11 

E • 
10 100 

8-8 A phase diagram is a temperarure-composirion diagram for a sysrem of rwo con­
sriruents in various phases. An idealized phase diagram for the cadmium-bismurh sysrem 
is shown in Fig. 8-11 for P - I atm. (a) Determine the number of degrees of freedom 
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'or the system at each lettered point and state what they arc. (b) Draw a sketch of a tem­
?Crature versus time curve for cooling the system at 80 weight per cent Cd from 3S0°C 
:o room temperature. (c) The freezing point of a solvent is lowered by the addition of 
;olute, according to the relation liT1 - km where k is the freezing point constant, and m 
.s the number of kilomoles of the solute per kilogram of the solvent. Calculate the freezing 
?Oint constant of bismuth. 

H (a) Show that for a liquid containing a nonvolatile solute in equilibrium with its 
vapor at a given temperature Tand pressure P 

tr• • p• •tr• + RTln ( I - x) 

Nhere x is the mole fraction or the solute. This assumes that the solute and solvent mix 
1S ideal gases. (b) For a pure substance show that at constant pressure 

(c) Use part (b) to show that for a small change in x at constant pressure, part (a) reduces 
to 

(h• - h}d(j;) • Rdln (I - x). 

(d) In the limit of small x 

dT - RT' dx 

'·· . 
where lu is the latent heat or vaporization. This shows that the boiling temperature is 
elevated if a solute is added to a liquid. (e) Show how the result in part (d) can be used to 
determine molecular weights of solutes. 
8-10 (a) The vapor pressure of water at 20°C, when the total pressure equals the vapor 
pressure, is 17.5 Torr. Find the change in vapor pressure when the water is open co the 
atmosphere. Neglect any effect of the dissolved air. (b) Find the pressure required to 
Increase the vapor pressure of water by I Torr. 

8-11 If the total pressure on a solid in equilibrium with its vapor is increased, show that 
the vapor pressure of the solid increases. 

8-12 The equation of slate for a surface film can be wrillen as u • u0(1 - T/T ,)" 
where" a l .ll and "• is a constant. (a) Assume that this equation holds for water and 
usethedataon Fig. 8-2todeterminecr,. (b) DccerminevaluesrorA,c..c and•at T • 373 K. 
(c) Calculate the temperature change as the area of the film is increased from 0 10 
2 x J0-1 m1 adiabatically. 

8-13 Let a soap film be carried through a Carnot cycle consisting or an isothermal 
increase in area at a temperature T, an infinitesimal adiabatic increase in area in which 
the temperature decreases to T - dT, and returning to the Initial state by an isothermal 
and an infinitesimal adiabatic decrease in area as shown in Fig. 8-12. (a) Calculate the 
work done by the film during the cycle. (b) Calculate the heat absorbed by the fi lm in the 
cycle. (c) Derive Eq. (8-36) by considering the efficiency or the cycle. (d) Plot the cycle 
on a T-S diagram. 

l 

j 
' 
.. 
' 
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Figure 8-12 

8- 14 Suppose that below a critical temperature r •. the Helmhollz function of a film is 
to be expressed as 

F- AB(l- f.)" 
where B, r •. and n are constants depending upon the film and A is the area of the film. 
(a) What experimental information will determine the values B, Tc• and n? (b) Is there 
enough information to specify all the properties of the film? (c) Is the specification, as 
far as it goes, sensible? 

8-15 Consider a rubber band as a one·dimensional system. (a) Derive an expression for 
the difference between the specific heat capacity at constant tension c., and that at con­
stant length c1• (b) Find the ratio c_,/c,. (c) A rubber band heated at constant tension 
becomes shorter. Use this fact to show that if the tension in a rubber band is released 
adiabatically its temperature drops. (This can be checked experimentally by sensing the 
temperature of a rubber band with your lip while it is under tension and just after the 
tension is released.) 

8- 16 Show that the pressure P1 inside a bubble of radius r in a liquid which is under an 
external pressure P0 is given by P1 - P0 - 2afr. 

8-17 The temperature dependence of the emf .r of a reversible cell is given by .r -
3.2 + 0.0011 where 1 is the Celsius temperature of the cell. This cell discha rges 200 mA 
for 30 s when 1 = 27°C. Calculate (a) the entropy change, (b) the heat absorbed, (c) the 
work done, (d) and the internal energy change of the cell during the process. 

8- 18 Show that when a charge t.Z fl ows reversibly through a vollaic cell of emf 8 at 
constant temperature and pressure, (a) t.G - d' t.Z, and (b) t.H = t.Z d(d/T)/d(l/T). 
(c) Calculate t.G and t.H for the cell undergoing the process described in the previous 
problem and compare with the answers for parts (b) and (d) of that problem. 

8- 19 Calculate the tota l work done to electrolyze acidic water to produce 1 kilomole 
ofH,and! kilomole ofO,all almand at 300 K. The em fused is 1.2 V. Assume that the 
gases are ideal. · 

8-20 Let the radiant energy in a cylinder be carried through a Carnot cycle, similar to 
that shown on Fig. 8-12, consisting of an isothermal expansion at the temperature T, an 
infinitesim41 adiabatic expansion in which the temperature drops to T -dT, and returning 
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to the original state by an isothermal compression and an infinitesimal adiabatic compres­
sion. Assume P - u/3 and that u is a function or T alone. (a) Plot the cycle in the p. V 
plane. (b) Calculate the work done by the system during the cycle. (c) Calculate the heat 
flowing into the system during the cycle. (d) Show that u is proportional to T' by con· 
sidering the efficiency of the cycle. 

8-21 Show that the heat added during an isothermal expansion of blackbody radiation 
is four times larger than that expected for the heat added during the expansion or an ideal 
gas of photons obeying the same equation of state. The factor of four arises because the 
number of photons is not conserved but increases proportionally to the volume d uring an 
isothermal expansion. 

8-22 The walls of an evacuated insulated enclosure are in equilibrium with the radiant 
energy enclosed . The volume of the enclosure is changed suddenly from 100 to 50 em•. 
If the initial temperature of the walls is 300 K, compute (a) the final temperature of "the 
walls, (b) the initial and final pressure exerted on the walls by the radiant energy, and (c) 
the change of entropy or the radiant energy. 

8-23 Show that the internal energy U of an ideal paramagnet is a functio n of temperature 
only. 

8-24 In a certain range o f temperature T and magnetic intensity Jl' the functio n F* of a 
magnetic substance is given by 

bJI'' 
F*- - aT -rr, 

where a and bare constants. (a) Obtain the equation of state and sketch the magnetiza­
tion as a function of temperature at constant magnetic intensity. (b) If the magnetic 
intensity is increased adiabatically, will the temperature or the substance rise or fall ? 

8-25 The refrigerator for a n adiabatic demagnetization experiment is to be made from 
40 g of chromium potassium alum [CrK(SO,), · 12H20 ] which has the following prop­
ert ies: the molecular weight is 499.4 g mole- •; the density is 1.83 g em_,; the Cur ie 
constant per gram i$ 3.73 x 10-1 K g- 1; and the lauice specific heat capacity b 4.9S x 
to-< RTI. (a) Assuming that the salt obeys Curie's law, calculate the heat flow during a n 
isothermal magnetization at 0.5 K and lo< Oe using a He' refrigerator and a super­
conducting magnel. (b) Calculate the change in £

1
,, E, U, and F* during the p rocess of 

part (a). (c) An adiabatic demagnetization to zero-applied magnetic intensity does not 
reach 0 K because of local effective magnetic fields in the material. Calculate the mag­
nitude of these fields if the salt can be demagnetized adiabatically to O.OOS K. (d) Cal­
culate the ratio o r C.K of the magnetic system to the lau ice heat capacity of the salt a t O.S K. 

8-26 Show that if the graph for Jl' - 0 on Fig. (8-S) intersects the vertical axis at a point 
above that for Jl' - J1'1, the unauainability statement or the third law would be violated. 

8-27 Since the magnetic induction B inside a superconductor is zero, for a long cylin­
drical sample, the magnetization M/1•• Vis equal to the negative of the applied magnetic 
intensity Jl' for Jt' less than some critical intensity Jt',. For Jt' greater than Jt"• the super­
conductor becomes a normal metal a nd M - 0. (a) Sketch a graph of the magnetization 
as a fu nction of the applied intensity. Show that in the transition from the supercon­
ducting to the normal state (b) the heat of tra nsformation I is given by - TpoJfi.(d.Jt' Jdn 
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and (c) the difference in the specific heat capacities of the superconductor and the normal 
metal is given by 

T 

T, 

T, 

JJoTd2(Jt'!) 
c, - c. - 2 dT' . 

Figure 8-13 

8-28 Figure 8-13, which is similar to Fig. 8-9(b), shows a Carnot cycle in the liquid­
vapor region. The working substance is I kg of water, and T1 • 453 K, T1 • 313 K. 
Steam tables list values ofT, P, 11, s, and /1 at points on the saturation lines and these are 
tabulated below, in MKS units, for points o, b, t, andf We wish to make a complete 
a nalysis of the cycle. 

Point t ("C) T(K) P(Nm-1) u(J kg-1) s(J kg-• K- 1) /t(J kg-1) 

a 180 453 10 X 10' 7.60 X 1()$ 2140 7.82 X 10' 
b 180 453 10 X 1()$ 25.8 xlo> 6590 27.7 X 1()$ 

• 40 313 .074 X Jo> 1.67 X Jo> 512 1.67 X 10' 
f 40 313 .074 )( to> 24.3 X 1()$ 8220 2$.6 X 101 

(a) Show that in the process o-b, 

(b) Show that in the process b-e, 

qH - 0, WH - U6 - u •. 

(c) Show that in the process c-d, 

(d) Show that in the process d-o, 

w.,4 - u,. - u •• 

8 
Sl 

p 
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{e) Let x1 and x1 represent the fraction of the mass of the system in the vapor phase at 
points c and d, respectively. Show that 

{f) Show that 

s. -~. x.---, s,- s, 

u, • u, + x1(u1 - uJ, 
u4 • u, + x1(u1 - uJ, 

Ia - .r, 
x1•--. .r,- s, 

h, • h, + x1(h1 - hJ, 

h• • h, + x1(h1 - hJ. 

(g) Compute in joules the "expansion work" in the cycle, along the path D·b-c. 
(h) Compute in j oules the "compression work," along the path c-d-o, and find the ratio 
o f expansion work to compression work. 
(i) Compute from (g) and (h) the net work done in the cycle. 
(j) Compute from (i) and (a) the efficiency of the cycle, and show that it is fqual to 
(Ta - T1)/T1 • 

(k) In any real engine there are unavoidable friction losses. To estimate the effect of these, 
assume that in the expansion strokeS% or the work done by the system is lost, and that 
in the compression stroke S% more work must be done than computed in part (h). 
Compute the net work delivered per cycle, and the efficiency. 

8-29 A steam turbine operates in a reversible Rankine cycle. Superheated steam enters 
the turbine at a pressure of 100 lb in-• and a temperature of 800°F. The pressure of the 
exhaust steam is IS lb in- •. (a) Find from Fig. 8-8 the work done per pound of steam. 
(b) If as a result of irreversible processes the specific entropy of the exhaust steam is 
l Btu lb- 1 deg 1'""1 at the exhaust pressure of IS lb in- •, how much work is done per 
pound of steam? 

T 

Figure 8-14 

8-30 Figvre 8- 14 represents a refrigeration cycle in which the adiabatic compression 
stage, cd, lakes place in the vapor region. The expansion stage from d to Dis at constant 
pressure and the irreversible expansion from 11 to b takes place through a throttling valve • . 
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(a) Sketch the cycle in an lo-s diagram. (b) Show that the coefficient or pcrrormancc or the 
cycle is given by 

(c) I n a typical cycle using Frcon-12 as a working substance, the specific cnthalpies at 
points d, c, and a arc, respectively, 90.6, 8S.O, a nd 36.2 Btu Jb-1• The measured coeffi. 
cient or penormance or the cycle was 2.4. Compare with the value computed rrom the 
equation above, which assumes that all processes except a-b arc reversible. 
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8-1 INTRODUCTION 

The subjeJt of thermodynamics deals with the conclusions that can be drawn from 
certain experimental laws, and with the applications of these conclusions to rela­
tions between properties of materials such as heat capacities, coefficients of ex· 
pansion, compressibili ties, and so on. It makes no hypotheses about the nature of 
matter and is purely an empirical science. 

Although thermodynamic principles can predict many relations between the 
properties of matter, such as the difference between the specific heat capacities 
c p and c., or the variation of these quantities with pressure, it is not possible to 
derive from thermodynamic considerations alo ne the absolute magnitudes of the 
heat capacities, or the equation of state of a substance. 

We can go beyond the limitation of pure thermodynamics only by making 
hypotheses regarding the nature of matter, and by far the most fruitful of such 
hypotheses, as well as one of the oldest, is that matter is not continuous in structure 
but is composed of particles called molecules. In particular, the molecular theory 
of gases has been very completely developed, because the problems to be solved 
are much simpler than those encountered in dealing with liquids and solids. 

The properties of matter in bulk are predicted, starting with a molecular theory 
by means of two different lines of attack. The first, called the kinetic or dynamic 
theory, applies the laws of mechanics to the individual molecules of a system, and 
from these laws derives, for example, expressions for the pressure of a gas, its 
internal energy and its specific heat capacity. The method of statistical thermo­
dynamics ignores detailed considerations of molecules as individuals, and applies 
considerations of probability to the very large number of molecules that make up 
any piece of matter. We shall see that the methods of statistical thermodynamics 
provide a further insight into the concept of entropy and the principle of increase 
of entropy. 

Both kinetic theory and statistical thermodynamics were first developed on the 
assumption that the laws of mechanics, deduced from the behavior of matter in 
bulk, could be applied without change to particles like molecules and electrons. 
As the sciences progressed, it became evident that in some respects this assumption 
was not correct; that is, conclusions drawn from it by logical methods were not in 
accord with experimental facts. The failure of small-scale systems to obey the 
same laws as large-scale systems led to the development of quantum theory and 
quantum mechanics, and statistical thermodynamics is best treated today from the 
viewpoint of quantum mechanics. 

This chapter and the next will be devoted to the kinetic aspects of molecular 
theory, and the following chapters to statistical thermodynamics. As we go along, 
we shall make many references to concepts and equations that have already been 
discussed in the preceding chapters on thermodynamics, and we shall see how a 
much deeper insight into many questions can be attained with the help of molecular 
theory as a background. 
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8-2 BASIC ASSUMPTIONS 

In thermodynamics, the equation of state of a system expresses the relation between 
its measurable macroscopic properties. The simplest equation of state is that of an 
ideal gas; and although kinetic theory is limited neither in concept nor in applica­
tion to ideal gases, we shall begin by showing how the equation of state of an ideal 
gas can be derived on the basis of a molecular model with the following as­
sumplions: 

I . Any macroscopic volume of a gas contains a very large number of molecules. 
This assumption is justified by all experimental evidence. The number of molecules 
in a kilomole (Avogadro's• number N .. ) is 6.03 x 10". Experimental methods 
for arriving at this number are discussed in later chapters. At standard conditions, 
I kilomole of an ideal gas occupies 22.4 m1. Hence at standard conditions there are 
approximately 3 x 10" molecules in a cubic meter, 3 x 1011 in a cubic centimeter, 
and 3 x 1011 in a cubic millimeter. 

2. The molecules are separated by distances that a re large compared with their own 
dimensions and are in a state of continuous motion. The diameter of a molecule, 
considered as a sphere, is about 2 or 3 X IQ-10 m. If we imagine one molal volume 
at standard conditions to be divided into cubical cells with one molecule per cell, 
the volume of each cell is 30 x JQ-17 m•. The length of one side of suchla cell is 
about 3 X I Q-1 m, which means that the distance between molecules is of this order 
of magnitude, about 10 times the molecular diameter. 

3. To a first approximation, we assume that molecules exert no forces on one 
another except when they collide. Therefore between collisions wi th other mole­
cules or with the walls of the container, and in the absence of external fo rces, they 
move in s traight lines. 

4. Collisions of molecules with one another and with the walls are perfectly elastic. 
The walls of a container can be considered perfectly smooth, so that there is no 
change in tangential velocity in a collision with the walls. 

S. In the absence of external forces , the molecules are distributed uniformly, 
throughout the container. If N represents the total number of molecules io a 
container of volume V, the average number of molecules per unit volume, n, is 

n - N/V. 

The assumption of uniform distribution then implies that in any element of 
volume AV, wherever located, the number of molecules AN is 

AN= nAV. 

Obviously, the equation above its not correct if AVis too small, since the number 
of molecules N, although large, is finite, and one can certainly imagine a volume 

• Count Amedeo Avogadro, Italian physicist (1776-1856). 
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element so small that it contains no molecules, in contradiction to the equation 
above. However, it is possible to divide a container into volume clements large 
enough so that the number of molecules per unit volume within them does not 
difl'cr appreciably from the average, and at the same time small enough compared 
with the dimensions of physical apparatus that they can be treated as infinitesimal 
in the mathematical sense and the methods of difl'crcntia l and integral calculus 
can be applied to them. For example, a cube 1/1000 monon a side is certainly 
small in comparison with the volume of most laboratory apparatus, yet at standard 
conditions it contains approximately 30 million molecules. 

6. The directions of molecular velocities a re assumed to be distributed uniformly. 
To put this assumption in analytic form, imagine tha t there is attached to each 
molecule a vector representing the magnitude and direction of its velocity. Let us 
t ransfer all these vectors to a common origin and construct a sphere of arbitrary 
radius r with center at the origin. The velocity vectors, prolonged if necessary, 
intersect the surface of the sphere in as many points u there are molecules and the 
assumption of uniform distribution in direction means that these points are distrib­
uted uniformly over the surface of the sphere. T he average number of these 
points per unit area is 

and the number in any element of area AA is 

N 
AN-

4
,,• AA, 

wherever the e lement is located. As in the preceding paragraph, the area must be 
large enough (that is, it must include a large enough range of directions) so that 
the surface density of points within it does not difl'er appreciably from the average. 
Because of ~he large number of molecules, the range of di rections can be made 
very small and still include a large number of points. 

Let us carry this description of velocity directions o ne step further. Any 
arbitrary direction in space can be specified with reference :o a polar coordinate 
system by the angles 0 and ,P, as in Fig. 9-1. The a rea AA of a small element on 
the surface of a sphere of radius r is, very nearly, 

AA = (r sin 0 AO)(r A,P) = r• sin 0 AO A,P. 

The number of points in this area, or the number of molecules AN,, having 
velocities in a direction between 0 and 0 + AO, .p and .p + A,P, is 
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When bolh sides of this equation are divided by the volume V occupied by the gas, 
we get 

An,~ = !!.. sin 0 AO At/>, 
411 

(9-1) 

where A.n,• is the number density of molecules with velocities having directions 
between 0 and 0.+ AO, and 4> and 4> + At/>. 

rJjn8 rsinOA' 

Fig. 9- 1 Polar coordinates. 

Consider, finally, the magnitudes of the molecular velocities, or the spuds 
of the molecules. It is clear that not all molecules have the same speed, although 
this simplifying assumption is onen made. Even if we could start them off in this 
way, intermolecular collisions would very quickly bring about differences in speed. 
We shall show in Sec lion I 2- 2 how to calculate the number that have speeds in 
any specified range, but for the present we shall assume that the speed can have 
any magnitude from zero to infinity• , and we represent by AN. the number of 
molecules with speeds between v and v + Av. Geometrically this number equals 
the number of velocity vectors tuminating within a thin spherical shell in Fig. 9-1, 
between spheres of radii r1 .. o and ' • • v + Av. As a result of collisions, the 
speed of any one molecule is continually changing, but we assume that in the equi­
librium state the number of molecules with speeds in any specified range remains 
constant. 

• It would be beuer to say, from zero lo the speed oflighl. However, as we shall show, 1he 
number of molecules with speeds exceeding even a small fraction of the speed of light is so 
small for ordinary gases that for mathematical simplicity we may as well make the 
assumption above. 
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$-3 MOLECULAR FLUX 

Because of the continuous random motion of the molecules of a gas, molecules are 
continually arriving at every portion of the walls of the container, and also at each 
side of any imagined surface within the gas. Let I:!.N represent the total number of 
molecules arriving from all directions and with all speeds at one side of an element 
of surface of a rea I:!.A during a time interval l:!.t. The molecular flux Cl> at the surface 
is defined as the total number of molecules arriving at the surface, per unit area and 
per unit time. Thus, 

(9-2) 

lf the surface is an imagined one within the gas, all molecules arriving at the 
surface, from either side, will cross it, and if there is no net rr.otion of the gas as a 
whole, the molecular fluxes on either side oft he surface are equal and are in opposite 
directions. Thus at either side of the surface there are two molecular fluxes, one 
consisting of molecules arriving at that side and the other consisting of molecules 
that have crossed the surface from the other side. 

lf the surface is at the wall of the container, molecules arriving at the surface 
do not cross it but rebound from it Hence there are also two fluxes at such a 
surface, one consisting of molecules arriving at the surface and the other consisting 
of molecules rebounding from the surface. 

In Fig. 9-2, the shaded area I:!.A represents a small element of surface, either 
within the gas or at a wall. Construct the normal to the area, and some reference 
plane containing the normal. We fi rst ask, how many molecules arrive at the 
surface during a time interval l:!.t, travelling in the particular direction 8, <f>, and 
with a specified speed v. (To avoid continued repetition, Jet it be understood that 
this means the number of molecules with directions between 8 and 8 + 1:!.8, </>and 
</> + 1:!.¢>, and with speeds between v and v + l:!.v.) 

Construct the slant cylinder shown in Fig. 9-2, with axis in the direction 8, 
¢>, and of length v l:!.t, equal to the distance covered by a molecule with speed v 
in time l:!.t. Then the number of 0</>o-molecules that arrive at the surface during 
the time l:!.t is equal to the number of O<f>v-molecules in the cylinder, where a 8</>o­
molecule means one with speed v, traveling in the 0, </>direction. 

T o show that this is correct, we can see fi rst that all 0</>v-molecules in the cy­
linder will reach the surface during the time l:!.t. (We are ignoring any collisions 
with o ther molecules that may be made on the way to the surface, so tha t the 
molecules are considered as geometrical points. In Section 10-3 we shall see how 
to take such collisions into account.) There are, of course, many other types of 
molecules in the cylinder. Some of these will reach the surface element during the 
time 1:!.1 and others will not. Those that do not are either not traveling toward the 
element (that is, they are not O<f>-molecules) or are not traveling fast enough to 
reach the element during the time l:!.t (that is, their speed is less than v). Those 
within the cylinder that do reach the surface during the time l:!.t are necessarily 
8¢>-molecules, but unless they have a speed v they are not 8¢>o-molecules. 
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Fig. 9-1 Only the Btlv-molecules in the cylinder will arrive at the 
an:a ll.A during a time ll.t. 

Many ollter molecules, not in the cylinder, will arrive at the element during 
the time I:J.t. Some of these will have a speed u, but they are not 8<f>-molecules since 
they come in from other directions. Therefore al/8~v-molecules in Lite c:ylinder, 
and only those molecules, will reach the surface during the time I:J.t, traveling in the 
0</>-direction with speed u. 

Let 6.n, represent the number density of molecules with speeds between v and 
v + tJ.u. Then from Eq. (9- 1) the number density of O~molecules is 

lin,., - ..!.. lin, sin 0 68 li~. 
4,. 

The volume of the slant cylinder in Fig. 9-2 is 

liV = (liA cos O)(v lit). 

The number of 8~v-molecules in the cylinder is therefore 

· liN_.,=..!.. ulin, sin 8 cos 8 MJ li~liA lit, 
4,. 

and the ftux li4>1#• of O~v-molecules is 

li4>_., - liN,., oa _!_ vlin,sin Ocos OliO li~. 
liAlit 4,. 

(9-3) 

(9-4) 
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The flux t.<Il,. due to molecules arriving at an angle 0 with speed v, but in­
cluding all angles tf>, is found by replacing t'.tf> with dtf> and integrating over all 
values of tf> from 0 to 27T. The result is 

t.<I~,. =- ~ v t.n. sin 6 cos 6 t.6. (9-S) 

The flux t.<Il, due to molecules arriving at the angle 6, including all angles 
tf> and all speeds v, is found by summing the expression for t.<%1,. over all values of 
v. Thus 

t.<%11 • ~ sin 6 cos 6 t.6 2 v t.n., (9- 6) 

The flux t.<Il. of molecules with speed o, including all angles 6 and tf>, is found 
by replacing t.6 with d8 in Eq. (9-5) and integrating over all values of 6 from zero 
to "/2. This gives 

I 
t.<%1. = 4 D t.n., (9-7) 

Finally, the total flux <II, including all speeds and all angles, is obtained ei ther 
by summing t.<ll. over all values of v, or by replacing t.O with dO in Eq. (9-6) and 
integrating over 8 from zero to 7T/2. The result is 

<ll - ! 2 v t'.n., (9-8) 
4 

Let us express this result in terms of the avuagt or aritlzmttic mean speed 0. 
This quanfity is found by adding toget~er the speeds of all the molecules, and 
dividing by the total number of molecules: 

- 2v v=N, 
where the sum is over all moltcults. But if there are t'.N1 molecules with speeds v,. 
t'.N, molecules with speeds v,, etc., the sum of the speeds can also be found by 
multiplying the speed v1 by the number of molecules t'.N1 having that speed, 
multiplying v, by the number t'.N, having speed v,, and so on, and adding these 
p roducts. The average speed is then the sum of all such products, d ivided by the 
total number of molecules. That is, 

v=o,t'.N,+v,t'.N,+···=..!.~vt'.N (9-9) 
N N"- •• 

where the sum is now over all spttds. When numerator and denominator are 
divided by the volume V, we have 

It follows that 
2vt'.n,- un, (9-10) 
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and hence from Eq. (9-8) the molecular flux ~. including all molecules arriving 
at one side of the element and coming in from all directions and with all speeds, is 

I. 
~ ~ 4vn. (9-1 1) 

As a numerical example, the number of molecules per cubic meter, n, is approxi­
mately 3 x IOU molecules m-.1 at standard conditions. We shall show later that the 
average speed of an oxygen IT!olecule at 300 K Is approximately 4SO m s-1• The 
molecular flux in oxygen at standard conditions is therefore 

I . J 
4> • 4 no "' 4 X 3 X JQU X 450 "' 3.3 X 1017 molecules m-1 s-•. 

It is sometimes useful to put Eq. (9-4) in the following form. Consider the 
area t.A in Fig. 9-2 to be located at the origin in Fig. 9-1 and to lie in the x-y 
plane. The molecules arriving at the area in the 8,P-direction are those coming in 
within the small cone in Fig. 9- 1, whose base is the shaded area t.A on the spherical 
surface in that diagram. This area is 

t.A "" r' sin 8 M t..p, 

and the solid angle of the cone, !J.w is 

!J.w = !J.: = sin 8 !J.8 !J.,P. 
r 

Hence from Eq. (9-4) the flux !J.011, can be wrillen 

!J.0 1f , = ..!... vAn, cos 8 Aw = t.0.,; 
47T 

and the flux per unit solid angle, of molecules with speed v, is 

A4>~, = ..!. vAn, cos 0. 
t.w 4>r 

!he total flux per unit solid angle, including all speeds, is 

M>M - ...!.. lin cos 0. 
!J.w 4>r 

(9-12) 

(9-13) 

(9-14) 

If we consider a number of small cones with apexes at AA in Fig. 9-1, the 
greatest number of molecules arrives with direction in the cone centered about the 
normal, since cos 0 has its maximum value for this cone, and the number decreases 
to zero for cones tangent to AA, where 0 .. 90°. 
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If the area D.A is a hole in the wall of a thin-walled container, small enough so 
that leakage through the hole does not appreciably affect the equilibrium of the 
gas, then every molecule coming up to the hole will escape through it. The distri­
bution of directions of the molecules emerging from the hole is also given by Eq. 
(9- 14). The number emerging per unit solid angle is a maximum in the direction 
normal to the plane of the hole and decreases to zero in the tangential direction. 

1-4 EQUATION OF STATE OF AN IDEAL ~AS 

Figure 9-3 shows a 8,Pu-molecule before and after a collision with the wall of a 
vessel containing a gas. From our assumption of perfect elasticity, the magnitude 
of the velocity v is the same before and after the collision, and from the assumption 
that the wall is perfectly smooth, the tangential component of velocity is also un­
altered by the collision. I t follows that the angle of reflection is equal to the angle 
of incidence and the normal component of velocity is reversed in the collision, 
from v cos 8 to - v cos 8. 

Fig. 9-3 Change in velocity in an elastic collision. 
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The force exerted on the wall by any one molecule in a collision is an impulsive 
force of short duration. The details of its variation with time are unknown; but it 
is not necessary to know them because from Newton's second law we can set the 
average force per unit area exerted on the surface, or the average pressure, equal to 
the average rate of change of momentum per unit a rea. 

If m is the mass of a colliding molecule, the change in the normal component 
of momentum in a 8,Pv-collision is 

mv cos 8- (-mv cos 0) = 2mv cos 8. (9-15) 

The change in momentum depends on 8 and v, but not on the angle tf>. Hence 
we need the number of 0<>-molecules arriving at the surface per uni t area, and 
per unit time, or the flux t.<ll,. given by Eq. (9-5). 

The rate of change of momentum per unit area due to all molecules arriving 
at an angle 0 with speed v, or the pressure t.P,., equals the product of t.4>,. and 
the change in momentum of a 8v-molecule: 

t.P,, = (iv t.n. sin 8 cos 8 t.8)(2mv cos 8) = mv' t.n. sin 8 cos' 8 t.O. 

To find the pressure t.P. due to molecules of speed v coming in at all values of 0, 
we integrate over 0 from 0 to "'/2. This gives 

I 
t.P. = 3 mv' t.n,. 

Finally, summing over a ll values of v, we have for the total pressure P, 

(9- 16) 

The same reasoning as that above can be applied to any imagined surface in 
the inte rior of the gas. The molecular flux t.<ll,.., is the same for a ll surfaces, 
wherever located. Molecules approaching an internal surface from one sjde pass 
through it and do not rebound, but the flux across the surface from the opposite 
side carries the same momentum away from the surface as do the molecules re­
bounding from a wall of the container. That is, for every 8</>v-molecule crossing 
the surface from one side, there will be another O,Pv-molecule crossing from the 
other side, and Fig. 9-3 will apply to any surface wi thin the gas, except that the 
black circles in Fig. 9-3 do not represent the same molecule. 

Hence the net flux of momentum , at right angles to any surface, is the same as 
at the boundary wall; and if we consider the pressure as the flux of momentum, 
the pressure has the same value at all points, both within the gas and at its surface. 

Equation (9-16) is more conveniently expressed as follows. Tbe average value 
of the square of the speed of all molecules, or the mean square speed, is found by 
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squaring all the speeds, adding these quantities, and d ividing by the total number of 
molecules: 

Just as in calculating the average speed, we can obtain l:v1 more conveniently 
by multiplying v: by I!.N., v: by 6N1, etc., and adding these products. That is 

Then 

and 

01 =I v1
1!.N. or 

N 

I -
P- 3nmv'. (9-17) 

Since the mean kinetic energy of a single molecule is •mV', the right side of Eq. 
(9- 17) equajs two-thirds of the total kinetic energy per unit volume or two-thirds 
of the kinmc ~ntrgy dmsity; and Eq. (9-17) thus expresses the pressure in terms of 
the kinetic energy density. 

It will be shown in Section 12- 2 that the average value of the square of the 
speed, v', is always greater than the square of the average speed, (<i)1• 

Since n represents the number of molecules per unit volume, N/ V, we can 
write the p receding equation as 

I -
P V - JNmv'. 

This begins to look like the equation of state of an ideal gas, 

PV = nRT, 

where n represents the number of kilomoles , equal to the total number of mole­
cules divided by the number of molecules per kilomole, or Avogadro"s number N ... 
We can therefore write the equation of state of an ideal gas as 

PV- N~ T. 
N .. 

The quotient R/N .. occurs frequently in kinetic theory. It is called the universal 
gas constant per molecule, or Boltzmann's constam, and is represented by k: 

k=~. 
N._ 

(9- 18) 

I 
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Since Rand N._ are universal constants, k is a universal constant a lso. T hat is, 
its magnitude depends only on the system of units employed. In the MKS system, 

k = ~ = 8·314 x IO' = 1.381 x 10_,. J molecule-• K-l. 
N 4 6.022 X IO" 

In terms of the Boltunann constant, the equation of state of an ideal gas 
becomes 

PV - NkT. 

This will agree with the equa!ion derived from kinetic theory, Eq. (9-17), if we set 

or 

I -
NkT =- Nmv', 

3 

;; - 3kT. (9-19) 
m 

The theory has thus led us to a goal we did no t deliberately set out to seek; 
namely, it has given us a molecular interpretation of the concept of absolute 
temperature T, as a quantity proportional to the mean square speed of the 
molecules of an ideal gas. It is even more s ignificant to write Eq. (9-19) as 

I - 3 - mv' =- kT. 
2 2 

(9- 20) 

The product of one-half the mass of a molecule and the mean square speed is the 
same as the mean translational kinetic energy, and we see from the preceding 
equation that the mean translational kinetic energy of a gas molecule is pro­
portional to the absolute temperature. Furthermore, since the factor 3kf2 is the 
same for a ll molecules, the mean kinetic energy depends only on the temperature 
and not on the pressure or volume o r species of molecule. That is, the mean kinet ic 
energies of the molecules of H,, He, 0 ,, Hg, etc., are all the same at the same tem­
perature, despite the disparities in their masses. 

We can compute fro m Eq. (9-20) what this energy is at any tempera ture. Le t 
T - 300 K. Then 

3 3 
2kT= i X 1.38 X 10- u X 300 = 6.21 x IQ-"J. 

If the molecules are oxygen, the mass m is 5.31 x IO-" kg, and the mean 
square speed is 

.... 2 x 6.21 x ro-" , , , 

.,.. • 
5

.31 x 
10

_ii - 23.4 x 10 m s- . 

The square root of this quantity, or the root·m•an·squau <peed is 

•, ... - ~- 482 m s-1 
• 1607 ft r 1

- I IOO mi hr-1
• 
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By way or comparison, che speed or sound in air al slandard condicions is about 
350m s-1 or 1100 rc s-1 and lhe speed or a .30 cal rifle bulle! is aboul 2700 rc s-1• 

The speed of a compressional wave in a fluid is given by 

v =~ 
which, for an ideal gas, is equivalent to 

v- .JykT/m, 

where y = cpfc •. Since the root-mean-square speed of a molecule is 

v,.,. = .J3kT/m, {9-21) 

we see that the two are nearly equal but that the speed of a sound wave is somewhat 
smaller than the rms molecular speed, as would be expected. 

When electrons and ions are accelerated by an e lectric field , it is convenient to 
express their energies in tlectron-IJ{)/ts {abbreviated eV), where by definition 

l electron-volt • 1.602 x 10""11 J. 

An electron-volt is equal to the energy acquired by a particle of charge e = 
1.602 x 10""11 C accelerated through a potential difference of I V. 

At a temperature of 300 K, 

3 l kT • 6.21 X 10""11 J ~ 0.04 eV. 

or 
kT = 0.026 eV ~ -h eV. 

Hence at a temperature of 300 K, the mean kinetic energy of a gas molecule is 
only a few hundredths of an electron-volt. 

9- 5 COLLISIONS WITH A MOVING WALL 

We now examine the nature of the mechanism by which an expanding gas does 
work against a moving piston, and show that if the process is adiabatic, the work 
is d one at the expense of the kinelic energy of the molecules (that is, the internal 
energy of the gas) and the temperature of the gas decreases. Figure 9-4 represents 
a gas in a cylinder provided with a piston. Let the piston move up with speed u, 
small compared with molecular speeds and small enough so that the gas remains 
practically in an equilibrium state. From the thermodynamic viewpoint, then, the 
process is reversible. 

When a molecule collides elastically with a stationary wall, the magnitude of 
the normal component of velocity is unchanged. If the wall is moving, the mag­
nitude of the relative velocity is unchanged. 
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Fig. 9-4 Collisions with 
a moving wall. 
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To illustrate by a simple numerical example, if a particle approaches a stationary 
wall normally with a speed of ISm s-•, referred to a coordinate system fixed in the 
laboratory, it rebounds with a speed of ISm s-•. If the wall is moving away from the 
particle with a speed of 5 m s-•, and if the particle has a speed of 20 m s-•, both 
relative to the laboratory coordinate system, the molecule is again approaching the 
wall with a relative velocity of ISm s-•. After the collision the magnitude of the 
velocity of the particle relative to the wall will again be IS m s-1, but since the particle 
is now moving in a direction opposite to that of the wall, its speed in the laboratory 
coordinate system is only 10m s- •. 

In general, if the normal component of the velocity before collision is v cos 8, 
where 8 is the angle between v and the normal to the wall, the velocity component 
after collision, v' cos 8' , is equal to v cos 6 - 2u. The loss of kinetic energy in the 
collision is 

I I 
2 m(v cos 6)1 

- 2 m(v cos 6 - 2u)1 ~ 2mvu cos 8, 

since by hypothesis u « v. The kinetic energy of the molecule can decrease even 
if the collision is perfectly elastic, because in the collision the molecule exerts a 
force against a moving wall and hence does work on the wall. 

The loss of kinetic energy depends on 6 and v but not on ~· By Eq. (9-S) the 
number of Ov-collisions with a wall, per unit area and per unit time, is 

A<ll,. - ~ v 6n, sin 8 cos 6 60. 

Multiplying this by the loss in kinetic energy in such a collision, we obtain for the 
loss in kinetic energy per unit area and per unit time, by molecules making 8v­
collisions, 

muv• 6n, sin 6 cos• 6 60. 
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Finally, after integrating over 0 from 0 to "/2, and summing over all values of v, 
we get 

for the total loss of molecular kinetic energy, per unit area and per unit t ime. But 
inm'iii equals the pressure P, and if the area of the moving piston is A, the decrease 
of molecular kinetic energy per unit time is 

PAu = Fu. (9-22) 

The product Fu (force times velocity) gives the rate at which mechanical work 
is d one on the piston or the power developed by the expanding gas, and we see that 
this is j ust equal to the rate of decrease of molecular kinetic energy. If the molecules 
do not reCfive energy from any other source, their kinetic energy, and hence the 
temperature of the gas, decreases. Note that it is not correct to say that the tem­
perature of a moltcule decreases. From the molecular point of view, temperature 
is a n attribute of the assembly of molecules as a whole, namely, a quantity pro­
portional to the mean kinetic energy. An individual molecule can have more or 
less kinetic energy but it does not have a higher or lower temperature. 

The derivation above was based on the assumption that the piston velocity, u, 
was very much smaller than the molecular velocities, and it does not hold if the 
piston is pulled up rapidly. In particular, if the piston velocity is very much greater 
than the molecular velocities, no molecules (or at least very few) will be able to 
overtake the piston and coll ide with it. Then there is no loss of kinetic energy and 
no decrease in temperature, intermolecular forces being neglected. Such a process 
is equivalent to an expansion into a vacuum, as in the Joule experiment, where we 
showed on thermodynamic grounds that the work and the change in internal 
energy were both zero. 

11-1 THE PRINCIPLE OF EOUIPARTITION OF ENERGY 

Suppose we have a mixture of gases that do not react chemically with one another, 
and that the temperature and density are such that their behavior approximates 
that of an ideal gas. It is found experimentally that the total pressure of the 
mixture is the sum of the pressures that each gas alone would exert if a mass of 
each, equal to the mass o f that gas in the mixture, occupied the entire volume of 
the mixture. The pressure that would be exerted by each gas if present alone is 
called its pattial prtssurt and the experimental law above is Dalton's law of partial 
pussuru. If the gases are distinguished by subscripts, we can then write 

p,V - N1k T, etc., 

where p 1 , p,, etc. are the partial pressures of the constituent gases, N1 , N,, etc. 
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are the numbers of molecules of each constituent, and V and Tare the volume and 
temperature, common to all of the gases. 

Let m., m,, etc. represent the masses of the molecules of the constituents 
and v~. v:O etc., the respective mean square speeds. By the methods of Section 9-4, 
considering the collisions of each type of molecule with the walls and computing 
the pressure produced by each, we would find 

I - I -
p,V • 3 N,m,v~. p1 V - 3 N,m,v~, etc. 

Equating corresponding expressions for p. V, p,V, etc., gives 

I - 3 2 m,v~ = 2 kT, ! m,;;: - ~ kT, etc. 
2 2 

The terms on the left side of the preceding equation are the mean translational 
kinetic energies of the molecules of the various gases, and we conclude that in a 
mixture of gases the mean kinetic energies of the molecules of each gas are the same. 
That is, in a mixture of hydrogen and mercury vapor, although the masses of the 
molecules are in the ratio of 2 to 200, the mean translational kinetic energy of the 
hydrogen molecules equals that of the mercury molecules. 

The example above is one illustration of the principl~ of ~quiportitlon of en~rgy. 
We know now that this principle is not a universal law of nature but, rather, a 
limiting case under certain special conditions. However, it has been a very fruitful 
principle in the development of molecular theories. 

Let us give another example. The translational kinetic energy associated with 
the x-component of the velocity of a molecule of mass m is lmv!, with corre­
sponding expressions for they- and z-components. The mean square value of the 
velocities of a group of molecules is 

;.=;:+;;:+;;:. 
Since the x-, y-, and z-directions are all equivalent, the mean square values of the 
components of velocity must be equal, so that 

and 

;. = 3v! = 3;: -= 3~. 
The mean kinetic energy per molecule, associated with any one component of 
velocity, say v., is therefore 

! m;. - ! m;. - ! kT. 
2 • 6 2 

Since the mean total translational kinetic energy per molecule is 3kT/2, it follows 
that the translational kinetic energy associated with each component of velocity 
is just one-third of the total. 
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Each independent quantity that must be specified to determine the energy of a 
molecule is called a degree of freedom. Since the translational kinetic energy of a 
molecule is determined by the three velocity components of its center of mass, 
it has three translational degrees of freedom. We see that the average translational 
kinetic energy per molecule is divided equally amorig them. In other words, we have 
equipartition of the energy among the three translational degrees of freedom. 

. Molecules, however, are not geometrical points but are o f finite size. They 
have moments of inertia, as well as mass, and can therefore have kinetic energy 
of rotation as well as of translation. Furthermore, we would expect them to rotate 
because of the random collisions with other molecules and with the walls. Since 
the angular velocity vector of a rotating molecule can have a component along all 
three coordinate axes, a molecule would be expected to have three rotational 
degrees of freedom or, if it is a rigid body, six degrees of freedom in all. However, 
molecules are not perfectly rigid structures and can also be expected to oscillate 
or vibrate as the result of collisions wi th other molecules, giving rise to still more 
degrees of freedom. (It may be mentioned at this point that rotations and vibrations 
of molecules are facts that are as well established as most of our other information 
about molecular properties. The best experimental method of studying rotations 
and vibrations consists of a spectroscopic analysis of the light emitted or absorbed 
by molecules in the infrared.) Without committing ourselves to any specific number, 
let us say that in general a molecule hasf degrees of freedom, of which 3 only are 
translational, however complex the molecule. 

We shall show in Section 12-5, on the basis of the Boltzmann statistics, that if 
the energy associated with any degree of freedom is a quadratic function of the 
variable specifying the degree of freedom, the mean value of the corresponding 
energy equals kT/2. For example, the kinetic energy associated with the velocity 
component v. is a quadratic function of v., and, as shown above, its mean value 
equals kT/2. Similarly fo r rotat i~n. where the kinetic energy is Jw'/2, the mean 
rotational kinetic energy is kT/2; and for a harmonic oscillator, where the potential 
energy is Kx'/2 (K being the force constant), the mean potential energy is kT/2. 
Hence all of the degrees of freedom for which the energy is a quadratic fu nction 
have associated with them, on the average, equal amounts of energy; and if all 
degrees of freedom are of this nature, the total energy is shared equally among 
t hem. This is the general statement of the principle of equipartition of energy. 
The mean total energy of a molecule withfdegrees of freedom, assuming the equi­
partition principle holds, is therefore 

i - £ kT, (9-23) 
2 

and the total energy of N molecules is 

Ni = £ NkT = [_ nRT, (9-24) 
2 2 

where n is the number of moles and R the universal gas constant. 
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9-7 CLASSICAL THEORY OF SPECIFIC HEAT CAPACITY 

In thermodynamics, the change in internal energy U of a system, between two 
equilibrium states, is defined by the equation 

u.- u.- w •• , 
where w •• is the work in any adiabatic process between the states. Only changts 
in internal energy are defined. 

Starting with a molecular model of a system , we can identify the internal energy 
with the sum of the energies of the individual molecules. In the preceding section 
we have derived a theoretical expression for the total energy associated with the f 
degrees of freedom of each of theN molecules o f a gas. We therefore set this equal 
to the internal energy U: 

The specific internal energy per mole is 

u = !!_ =[RT. 
n 2 

(9-25) 

(9-26) 

How can we tes t the validity of the assumptions made in the foregoing deriva­
tion 7 The most direct way is from measurements of specific heat capacities. The 
molal specific heat capacity at constant volume is 

c.=(;~) .. 
Hence, if the hypothesis above is correct, we should have 

c.=..!!...(£ RT) =f.R. 
dT 2 2 

We also know from thermodynamic reasoning that for an ideal gas, 

Hence 

and 

c" .. c. + R. 

!+2 
r=~ =-2- .. !+2. 

c. £ J 
2 

(9-27) 

(9-28) 

(9-29) 
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Table 9-1 Molal specific heat capacities of a number 
of gases, at temperatures near room temperature. 
The quantities measured experimentally are <1, andy. 
The former is determined by use of a continuous 
How calorimeter and the latter is obtained from 
measuremeniS of the velocity of sound in the gas. 

Gas y Cp/R c,/R 
Ct•- C11 

-R-

- ------------
He 1.66 2.50 1.506 .991 
Ne 1.64 2.50 1.52 .975 
A 1.67 2.51 1.507 1.005 
Kr 1.69 2.49 1.48 1.01 
Xe 1.67 2.50 I.SO 1.00 

---- ----- - - - ----
H, 1.40 3.47 2.47 1.00 
o, 1.40 3.53 2.52 1.01 
N, 1.40 3.50 2.51 1.00 
co 1.42 3.50 2.50 1.00 
NO 1.43 3.59 2.52 1.07 
Cl, 1.36 4.07 3.00 1.07 

--------- -------
co, 1.29 4.47 3.47 1.00 
NH1 1.33 4.41 3.32 1.10 

--- ---- ------ ---
CH, 1.30 4.30 3.30 1.00 
Air 1.40 3.50 2.50 1.00 

Flg. 9-S A dumbbell molecule. 

!l-7 
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Thus while the principles of thermodynamics could give us only anlexpression 
for the differtnce between the specific heat capacities at constant pressure and 
constant volume, molecular theory, together with the cquipartition principle, 
predicts the actual magnitudes of the specific heat capacities a nd their ratio y, in 
terms of the number of degrees of freedom f and the experimentally determined 
universal constant R. Note that, according to the theory, c, , cp, and y arc all 
constants independent of the temperature. 

Consider firs t a gas whose atoms arc monato mic and for which the energy is 
wholly kinetic energy of translation. Since there are three translational degrees of . 
freedom,/ - 3, and we would expect 

and 

c - [. R - 1 R - I SR • 2 2 . • 

, .. ~ .. ~ - 1.67. 
c. 3 

This is in good agreement with the values of c, andy for the monatomic gases listed 
in Table 9- l. Furthermore, the specific heat capacities of these gases arc found to 
be practically independent of temperature, in agreement with the theory. 

Consider next a diatomic molecule having the dumbbell structure shown in 
Fig. 9-5. Its moment of inert ia about the X· and z-axes is very much greater than 
that about they-axis, and if the latter can be neglected, the molecule has two 
rotational degrees of freedom, the two quantities specifying the rotational kinetic 
energy being the components of angular velocity about the x· and z-axes. Also, 
since the atomic bond is not perfectly rigid, the atoms can vibrate along the line 
joining them. This introduces two vibrational degrees of freedom, since the vi bra· 
tiona! energy is part kinetic and part potential and is specified by the velocity and 
the separation of the atoms. We might therefore expect seven degrees of freedom 
for a diatomic molecule (3 for translation, 2 for rotation, and 2 for vibration). 
For f = 7, the theory predicts 

7 
c, = i R = 3.5R, 

These values are not in good agr.ement with those observed for the diatomic 
gases listed in Table 9-l. However, letting/"" 5, we find 

5 
c, = z R = 2.5R, 

7 , .. 5 = 1.40. 
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These are almost exactly equal to the average values of c. and y for the diatomic 
molecules in the second part of the table (CI, is an interesting exception). Thus, 
near room temperature, these molecules behave as if either the rotational or vibra­
tional degrees of freedom, but not both, shared equally with the translational 
degrees of freedom in the total molecular energy. 

As the number of atoms in a molecule increases, the number of degrees of 
freedom cau be expected to increase; and the theory predicts a decreasing ratio 
of specific heat capacities, in general agreement with experiment. 

The main features of the theory are fairly well borne out. It predicts that y 
is never greater than 1.67 or less than I and this is in fact true. However, if we insert 
in Eq. (9-29) the measured values of y and solve for f, the result is in general not 
exactly an integer. Now a molecule either has a degree of freedom or it has not. 
Degrees of freedom are counted, not weighed. It is meaningless to speak of a 
fraction of a degree of freedom, and the simple concept of equipartition is 
certainly not the whole story. 

When we examine the temperature variation of specific heat capacities, the 
divergences between experiment and the simple theory above become even more 
apparent. Except for gases whose atoms are monatomic, the specific heat capacities 
of all gases increase with increasing temperature and decrease as the temperature 
is lowered. In fact, at a temperature of20 K, the specific heat capacities of hydrogen 
(the only diatomic gas that remains a gas at very low temperatures) decreases to 
iR, the value predicated by theory for a monatomic gas. Thus at this low tem­
perature neither the rotational nor the vibrational degrees of freedom of the 
hydrogen molecule appear to share at all in the change of internal energy associated 
with a change in temperature. All of the difficulties mentioned above are removed, 
however, when the principles of quantum mechanics and of statistics are taken 
into consideration. These are discussed in Section 12-7. 

The pressure of a gas depends on its translational kinetic energy, and regardless 
of its molecular complexity a molecule has only three translational degrees of 
freedom, and its translational kinetic energy equals 3kT/2. Then if u,, represents 
this portion of the internal energy, 

3 
U., = i NkT. 

The pressure P equals NkT/ V, so 

(9-30) 

where u., is the translational energy per unit volume, or the energy density; and, as 
pointed out earlier, the pressure equals two-thirds of the translational energy 
density. 
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f-1 SPECIFIC HEAT CAPACITY OF A SOLID 

The molecules of a solid, unlike those of a gas, are constrained to oscillate about 
fixed points by the relatively large forces exerted on them by other molecules. Let 
us imagine that each executes harmonic motion. Each has three degrees of freedom, 
considered as a mass point, but the por~ntlal energy associated with its motion, 
which could be neglected for the widely separated molecules of a gas, is on the 
average just equal to the kinetic energy, if the motion is simple harmonic. Hence, 
if the equipanition principle is valid for solids, we must assign an energy kT toeach 
degree of freedo m (kT/2 for kinetic energy, k T/2 for potential energy) rather than 
just kT/2 as for the molecules of a gas. The total energy of N molecules is then 

U ~ 3NkT, (9-31) 

and the molal specific heat capacity at constant volume, from the theory, is 

c. • 3R = 3 X 8.31 X 10'- 24.9 X 10' J kilomole-1 K- 1• (9-32) 

This is in agreement with the empirical law of Dulong and Petit which states 
that at temperatures which are not too low, the molal specific heat capacities at 
constant volume of all pure substances in the solid state are very nearly equal to 
3R. Again we have reasonably good agreement with experiment at high tempera­
tures. At low temperatures the agreement is definitely bad, since, as we have seen, 
the specific heat capacities of all substances must approach zero as the temperature 
approaches absolute zero. This is another problem to which the classical theory 
does not provide the right answer a nd in which the methods of quantum mechanics 
must be used. 

One other d iscrepancy between simple theory and experiment should be pointed 
out here. There is good reason to believe that in metals, which are electrical con­
ductors, each atom parts with one or more of its outer electrons and that these 
electrons form a sort of electron cloud or electron gas, occupying the volume of the 
metal and constrained by electrical forces at the metal surfaces in much the same 
way that ordinary gases occupy a containing vessel. This electron gas has trans­
lational degrees of freedom which are quite independent of the metallic ions 
forming the crystal lattice, and it should have a molal specific heat capacity equal 
to that of any other monatomic gas, namely, 3Rf2. That is, as the temperpture of 
the metal is increased, energy must be supplied to make the electrons move I' aster as 
well as to increase the amplitude of vibrations of the metallic ions. The latter 
should have a specifi c heat capacity of 3R, so the total heat capacity of a metal 
should be at least 3R + 3R/2 = 9Rf2. Actually, metals obey the Dulong-Petit law 
as well as do nonconductors, so apparently the electrons do not share in the thermal 
energy. This was a very puzzling thing for many years, but again it has a very 
satisfactory explanation when quantum methods are used. 
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PROBLEMS 

9-l (a) Compute the number of molecules per unit volume in a gas at 300 K when the 
pressure is 10-.s Torr. (b) How many molecules are there in a cube of I mm on a side 
under these condilions? 

9-2 The model used in this chapter assumes that the molecules arc uniformly distributed 
throughout the container. What must be the size of a cubical e lement of volume in the 
container so that the number of particles in each volume element may vary by 0.1 %when 
the gas is at standard conditions? (From a study of statistics it can be shown that the 
probable deviation of the number of particles in each volume element from the average 
number of particles, N, is given by N'''). 
9-3 (a) In Fig. 9- l, let •- 45°, t.• - 0.01 radian, 0- 60°, and t.9- 0.01 radian. 
What fraction of the molecules of a gas have velocity vectors within the narrow cone 
which intercepts the shaded area t.A? (b) Consider a second cone intercepting the some 
orto on thelspherical surface, but for which 4o - 90°, 0 - 0. Sketch this cone and com­
pare the number of velocity vectors included within it with those in the cone of part (a). 

9-4 (a) Approximately what fraction of the molecules of a gas have velocities for which 
the angle ¢ in Fig. 9-1 lies between 29.5° a nd 30.5°, while 0 lies between 44.5° and 45.5"? 
(b) What fraction have speeds for which ¢lies between 29:5° and 30.5°, regardless of the 
value 9? [Note: Angles must be expressed in radians.) 

9-S Suppose that the number of molecules in a gas having speeds between v and v + t.v 
is given by t.N, - N llv/v0 for v0 > v > 0 and t.N, - 0 for v > v0• (a) Find the frac­
tion of molecules having speeds between 0.50 v0 and 0.51 v0• (b) Find the fraction having 
the speeds in part (a) in the direction described in part (a) and part (b) of the previous 
problem. (c) Find the flux of molecules described in part (b) of this problem arriving at a 
surface, if the gas is at standard conditions. 

9-6 Calculateliand ••m• for the following distributions of six particles: (a) all have speeds 
of 20m s- •; (b) th ree have speeds of 5 m s-• and three have speeds of 20 m s-•; (c) four 
have speeds of 5 m s-• and two have speeds of 20m s-•; (d) three are at rest and three 
have speeds of 20m s-•; (e) one has a speed of S m s-•, two have speeds of 7 m s-1, two 
have speeds of 15 m s- • and one has a speed of 20m s- •. 

9-1 T he speed distribution function of a group of N particles is given by t.N, - kv au 
for v0 > v > 0 and t.N, - 0 for v > v0 • (a) Draw a graph of the distribution function. 
(b) Show that the constant k - 2N/<l (c) Compute the average speed of the particles. 
(d) Compute the root-mean-square speed of the particles. 

9-8 (a) Derive Eq. (9-7) beginning with Eq. (9-4). (b) For a gas at standard conditions, 
find t.<l>, for molecules obeying the speed distribut ion law of the previous problem and 
having speeds between O.SO v0 and O.SI v0• (c) Determine <I> for molecules having the same 
speed distribution. 

9-9 What form would Eq. (9-17) take if several kinds of molecules were present in a gas? 
Does the answer agree with Dalton's law? 

9- JO Derive a n expression equivalent to Eq. (9- 17) for a two-d imensional gas, i.e., 
one whose molecules can move only in a plane. (The concept corresponding to pressure, 
o r force per unit area, becomes force per uni t length.) 
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9-11 (a) Compule lhe rms speed of a gas of helium aroms a l 300 K. (b) AI whal lem­
peraiUre will oxygen molecules have rhe same rms speed? (c) Through whar polenrial 
difference musr a singly ionized oxygen molecule be acceleraled 10 have I he same speed? 
9- ll (a) How many molecular impacrs are made per second on each square cenrimeler 
of a surface exposed 10 air al a pressure of I arm and al 300 K? The mean molecular 
weight of air is 29. (b) Whal would be the lengrh of a cylinder I em' in cross seclion con­
raining rhe number of air molecules ar I arm and 300 K which collide wilh a svrface I em• 
in one second? I 
9-q A cubical box of 0.1 m on a side conrains 3 x totS molecules of 0 1 ar 300 K. 
(a) On rhe average, how many collisions does each molecule make wirh rhe walls of I he 
box in one second? (b) Whar pressure does I he oxygen exerl on rhc walls of I he box? 
9-14 A closed vessel conrains liquid warer in equilibrium wirh its vapor al too•c and 
I arm. One gram of warer vapor al I his rernperarure and pressure occupies a volume of 
1670cm1• The heal of vaporizarion ar lhis remperarure is 22501 g-1• (a) How many 
molecules are there per em' of vapor? (b) How many vapor molecules mike each em' 
of liquid surface per second? (c) If each molecule which srrikcs rhc surface condenses, 
how many evaporare from each em' per second? (d) Compare lhe mean kineric energy 
of a vapor molecule wirh rhe energy required 10 rransfer one molecule from rhe liquid 10 

rhe vapor phase. 

9- 15 When a liquid and irs vapor are in equilibrium, lhe rales of evaporarion of lhe 
liquid and condensarion of rhe vapor are equal. Assume rhal every molecule of rhe vapor 
srrik.ing rhe liquid surface condenses, and assume rhar rhe rare of evaporarion is rhe same 
when rhe vapor is rapidly pumped away from rhe surface, as when liquid and vapor arc 
in equilibrium. The vapor pressure of mercury al o•c is ISS x J0-4Torr and rhe larent 
hear of vaporizarion is abour 340 J g-•. Com pure rhe rare of evaporarion of mercury inro 
a vacuum, in g em-• s-•, ar a remperarure of (a) o•c, (b) 20°C. 

9-16 A rhin-walled vessel of volume V conrains N parriclcs which slowly leak our of a 
small hole of area A. No parricles enler rhe volume lhrough rhe hole. Find I he rime 
required for rhe number of parlicles 10 decrease lo N/2. Express your answer in rerms of 
A, V, and tl. 

9-17 The pressure in a vacuum sysrem is ro-• Torr. The exrernal pressure is I a rm and 
T - 300 K. There is a pinhole in rhe walls of rhe sysrem, of area ro-10 em•. Assume rhal 
every molecule "srriking" I he hole passes lhrough ir. (a) How many molecules leak inlo 
rhe sysrem in I hour? (b) If rhe volume of rhe sysrem is 2 lirers, whal rise in pressure 
would resull in rhe sysrem? (c) Show rhar rhe number of molecules rhat leak our is 
negligible. 

9-18 A vessel of volume 2 V is divided inro comparrmenrs of equal volume by a lhin 
parririon. The lefl side conrains imrially an ideal gas ar a pressure P0 , and rhe righl side is 
init ially evacuated. A small hole of area A is punched in I he partition. Derive an expression 
for rhe pressurcP1 on rhe lefl side as a funcrion of rime. Assume rhc remperarure 10 remain 
conslanr and 10 be rhe same on borh sides of rhe parririon. 

9-19 An insulaled chamber conlaining liquid helium in equilibrium wirh irs vapor is 
mainrained ar 1.2 K. II is separared from a second insula red chamber mainrained ar 
300 K , by a rhin insularing parririon wirh a small hole in il. The helium vapor is allowed 
ro fill borb chambers. If rho vapor pressure of rhe hel ium ar 1.2 K is P0 , show rhar rhe 
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pressure Pin the other chamber is P0 VJ00/1.2. (The ratio of P/P0 is called the thtrmo­
moltcufar pr~ssur~ ratio and is important in vapor pressure thermometry when the pressure 
is so low that the panicles do not collide in a distance long compared to linear dimensions 
of the apparatus.) 
9- 20 An ideal monatomic gas is confined to an insulaied cylinder fiued with an insulated 
piston. (a) By considering collisions of the m~lecules or the gas with the quasistatically 
moving piston, show thai PVIi' - constant. (b) Determine the pressure dependence o f 
the rms speed of the molecules in an adiabalic compression or expansion. 

9-21 A molecule consists of four atoms at the corners of a tetrahedron. (a) What is the 
number or translational, rotational, and vibra tional degrees or freedom for this molecule? 
(b) On the basis of the equiparrilion principle, what are the values of c. and y for a gas 
composed or these molecules? 

9-lZ Under the action of •uitable radiation a diatomic molecule splits into two atoms. 
The ratio of the number or d issociated molecules ro the total number or molecules is «. 
Plot y(- c1./c.) as a function of"' al a temperature where the vibrational modes of the 
diatomic molecule are excited. 

9-23 Find the total translational kinetic energy and the rms speed of the molecules of 10 
liters of helium gas at an equilibtium pressure of 10' N m-•. 

9-24 (a) Find the specific heat capacity at constant volume for a gas of H1 molecules and 
H10 molceules. (b) How do the specific heat capacities change if the gas is liquefied or 
solidified? 
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1~1 INTERMOLECULAR FORCES 

Io the preceding chapter, the molecules of a gas were treated as geometrical points 
that e><erted no forces on each other. We now wish to take such forces into account. 

The force between any pair of molecules is of electrical origin; and because 
o f the complicated structure of an atom or molecule, it is not expressible by any 
simple law. In general, at relatively large separations, the force is one of attraction, 
referred to as a van der Waals force, which decreases rapidly wlth increasing 
separation.! When two molecules approach so closely that their electron clouds 
overlap, the force becomes one of repulsion that rises very rapidly as the separation 
becomes smaller. Thus the intermolecular force must have the general form of the 
solid curve in Fig. 1(}...1. 

Fl&. ID-1 Intermolecular forces. 

The simplest approximation to this law is to treat the molecules as elastic hard 
spMres, for which the force of repulsion becomes infinite when the surfaces of the 
spheres come into contact. If we include a force of atlraction when the molecules 
are not in contact, the force law has the form of the dolled curve in Fig. J(}...l. 

1~2 THE VAN DER WAALS EQUATION OF STATE 

We have made extensive use of the van der Waals equation of state in earlier 
chapters, not so much because o f any great accuracy of this equation in describing 
the propert ies of real gases but because it shows in a general way, through the 
factor a, how these properties depend on intermolecular forces of auraction, and 
through the factor b how they depend on molecular sizes. 
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The latter correction to the equation of state was actually first suggested by 
Clausius. He reasoned that in the derivation in Section 9-4 one should use not the 
actual volume V of the container, but the volume available to a single molecule, 
which will be somewhat less than V because of the volume occupied by the other 
molecules. If we represent the "unavailable" volume per mole by b, then in a gas 
consisting of n moles the unavailable volume is nb and we should write 

P(V - nb) = nRT, 
or, dividing through by n, 

P(v- b)~ RT. (10-1) 

This eq uation was fi(St written down by Hirn. • (Here, the letter v represents the 
molal specific volume, not the molecular speed.) 

.,-_- -;- ...... 
,/."~~.1'~ ', 

:.;;.r ... 
I t, 
,...,. \-,;.. I··, ....... I 

''~l~P~ I 
I I 
I-i-I 

Fig. 10-2 The radius 
of the sphere of exclu­
sion equals the molec­
ular diameter d. 

If the molecules are considered as hard spheres of diameter d, the minimum 
distance between the centers of two molecules, as shown in Fig. 10-2, is equal to d. 
In effect, the center of each molecule is excluded by the other from a sphere of 
radius d, known as the "sphere of exclusion." The volume of this sphere is 4-trd0f3, 
and to avoid counting each pair twice, we take as the tot:.l unavailable volume, for 
a system of N molecules, 

The number of molecules N is the product of the number of moles nand Avo­
gadro's number N ... so the unavailable volume per mole, or the constant b, is 

b =~ N._.,d•. (10-2) 
3 

This is four times as great as the actual molecular volume per mole, which is 

I 
(,N .. .,d'. ( 10-3) 

Vander Waals, in 1873, included a second correction term in the equation of 
state to take into account the force of attraction between molecules. Let us assume 

• Gustav A. Hirn, French engineer, (1815-1890). 
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that these forces decrease so rapidly with distance (for example, as 1/r') that they 
are appreciable only between a molecule and its nearest neighbors. Molecules 
within the body of the gas are on the average attracted equally in all directions, but 
those in the outermost layers experience a net inward force . A molecule approaching 
the wall of the contain:r is therefore slowed down and the average force exerted 
on the wall, and hence the observed pressure, is somewhat smaller than it would 
be in the absence of attractive forces. 

The reduction in pressure will be proportional both to the number of molecules 
per unit volume in the outer layer, n "' N/V, and to the number per unit volume 
in the next layer beneath them, which is doing the attracting. Hence the pressure 
will be reduced by an amount proportional to n1, or equal to ""'• where « is a 
factor dependent on the strength of the attractive force . Since the number of 
molecules N equals nN •• where n is the number of moles, then 

1 (N)' 1 n
1 «N~ a «D -«- =«N.-;;;;--- -v v•" ,l' 

(10-4) 

where the product «N! bas been replaced by a. Thus the pressure P given by tbe 
Hirn equation, 

should be reduced by afv' ; and 

or 

p- ..B!.... 
v-b 

p ~ RT -~ 
v - b v•' 

(P + ;.)(o - b)- RT, 

which is the van der Waals equation of state. 

(1(}...5) 

Since the molal specific critical volume of a van der Waals gas, v., is equal to 
3b, it follows from Eq. (1(}...2) that 

00 • 3b = 2N._1Td1
, (10-6) 

which is 12 times the total molecular volume. The value of b for a van der Waals 
gas therefore provides a means of estimating molecular diameters, since 

d = (2£._)"·. (1(}...7) 
211N._ 

Thus for helium, for which b ~ 23.4 x l<r' m' kilomole- 1 , we have 

( 
3 X 23.4 X 104 )Ill 

d = 
3 4 10 

~ 2.6 X 10- ••m • 2.6 x 1<Jicm. 
2 X .1 X 6.02 X 10 

Other methods of estimating molecular diameters will be described in Section 
1(}...4. Values of a and b for several gases are given in Table 2- 1. 
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10-3 COLLISION CROSS SECTION. MEAN FREE PATH 

In deriving the expression for the pressure exerted by a gas, the molecules were 
treated as geometrical points which could fly freely from one wall of a container 
to the other without colliding with other molecules. O ne of the objections raised in 
the early development of kinetic theory was that if molecules acted in t his way, a 
small amount of gas released in a large room would spread throughout the room 
practically instantaneously, whereas we know that when the stopper is removed 
from a bottle of perfume, a considerable time elapses before the odor can be 
detected even at a point only a few feet away, in lhe absence of air currenls. It 
was soon realized that this relatively slow diffusion of one gas in another resulted 
from molecular collisions such as that shown in Fig. 10-3, which cause a molecule 
to move in an irregular, zigzag path. 

0 

0 0 

0 

0 
0 

0 

Fig. J0-3 Molecular free paths. 

We again assume lhat a molecule is a hard sphere. Let us refer to one of the 
colliding molecules as the " target" molecule and to lhe other as the "bullet" 
molecule. Then a collision occurs whenever the distance between the centers of 
the molecules becomes equal to the molecular diameter d, as in Fig. 10-2. 

Since it is only the center-to-center distance that determines a collision, it does 
not matter whether the target is large and the bullet small, or vice versa. We may 
therefore consider the bullet molecule to shrink to a point at its center, and the 
target molecule to occupy the entire sphere of exclusion , of radius d. 

Now consider a thin layer of gas of dimensions L, L, and tix, as in Fig. 10-4. 
The layer contains (equivalent) target molecules, represented by the shaded circles. 
We then imagine that a very large number N of bullet molecules, represented by the 
black dots, is projected toward the face of the layer-like pellets from a shotgun­
in such a way that they are distributed at random over the face of the layer. If the 
thickness of the layer is so small that no target molecule can hide behind another, 
the layer p resents to the bullet molecules the appearance of Fig. 10-4. 
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• ·- : , .. 
. e d. 

Fig. 10-4 A thin layer of gas of 
"larget" molecules being bombarded 
by "bullet" molecules. 

Most of the bullet molecules will pass through the layer, but some will co !tide 
with target molecules. The ratio of the number of collisions, t.N, to the total 
number of bullet molecules, N, is equal to the ratio of the area presented by the 
target molecules to the total area presented by the layer: 

fiN target area 
N = total area · 

The target area a of a single (equivalent) molecule is the area of a circle of 
radius d, the exclusion radius: 

a= .,.d'. (10-8) 

This area is called the microscopic collision cross stction of one (equivalent) mole­
cule. The total target area is the product of this and the number of target molecules 
in the layer. If there are n target molecules per unit volume, this number is nL' t:.x, 
so the total target area is 

naL'fix. 

The total area of the layer is L', so 

fiN = nal! fix = na fix. 
N L' 

(10-9) 

The quantity na is called the macroscopic collision cross stction of the 
(equivalent) molecules. Since the number density n, in the M KS system, is the 
number of molecules per cubic meter and the collision cross section a is the number 
of square meters per molecule, the unit of the product na is I square meter per cubic 
meter (I m• m-> = I m- 1). More generally, in any system, the unit of macro­
scopic collision cross section is a rtciprocalltngth, not an area. 



10-3 COLLISION CROSS SECTION. MEAN FREE PATH 211 

Each of the AN collisions diverts a molecule from its original path or scauers 
it out of the beam, and decreases the number remaining in the beam. Let us, 
therefore, interpret AN not as a "number of collisions," but as the decuase in the 
number N, and write 

or 
AN ~ -NnaAx, 

AN= -na Ax. 
N 

In reality, N decreases in stepwise fashion as individual molecules make 
collisions, but if N is very large we can consider it a continuous function of x and 
write 

Then 

dN = - nadx. 
N 

InN= -nax +constant; 

and if N = N0 , when x = 0, 

N = N 0 exp( - nax). (10-10) 

This is known as the survival tquation. It represents the number of mollcules N, 
o ut of an initial number N0 , that has not yet made a collision after traveling a 
distance x. 

Inserting the expression for N in Eq. (10-9), we obtain 

AN= N0naexp(-nax)Ax. (10-11) 

In this equation, N is the number of molecules making their first collision after 
having traveled a distance between x and' x + Ax. 

Let us calculate the average distance traveled by a group of N0 molecules 
before they make their first collision. This average distance is known as the mean 
fru patlr, /, To calculate it, we multiply x by the number of particles AN that 
travels the distance x before colliding, sum over all values of x, and divide by the 
total number N0• Replacing the sum by an integral, we have 

~ AN f." 1 ~ _;:.._x __ = na x exp( - nax) dx . 
No • 

The definite integral equals 1/n'a', so 

1-..!... 
na 

(10-12) 

and the mean free path is inversely proportional to the macroscopic collision cross 
section. Since the unit of macroscopic collision cron section is the reciproc•l of the 
unit of length, the unit of mean free path is the unit o f length. Note that the mean 
free path does not depend on the molecular speed. 
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The concept of mean free path may be visualized by thinking of a man shooting 
bullets aimlessly into a thick forest. All of the bullets will eventually hit trees, but 
some will travel farther than others. It is easy to see that the average distance 
traveled will depend inversely on both the denseness of the woods (n) and on the 
size of the trees (a). 

A common experimental technique is to project into a gas a beam of particles 
(either neutral or having an electric charge) and to measure the quantity N0 and 
the number N remaining in the beam after a distance x. The exponential decrease 
predicted by Eq. ( 10-10) is found to be well obeyed, and we may now reverse the 
reasoning by which this equation was derived. That is, since N0, N, and x are all 
measurable experimentally, Eq. (10-10) can be solved for na or /, and we can 
consider these quantities to be defined by Eq. (10-10), quite independently of any 
theory of molecular collisions. 

Although we derived the equations above by considering a beam of molecules 
projected into a gas, the mean free path is the same if the group is considered to 
consist of the molecules of a gas moving at random among the other molecules 
and making collisions with them. The motion of a single molecule is then a zigzag 
path as suggested in Fig. 10-3, and we can understand why it is that although 
the average molecular speed is very large, a molecule wanders away from a given 
position only relatively slowly. 

As an example, suppose the molecular diameter d equals 2 X JO-•• m. At 
standard conditions, there are about 3 x 10" molecules m- 3 in a gas. The macro­
scopic collision cross section is then 

DC1 = n1rd'"" 3 X 1025 X 3.14 X 4 X J0-2<1"" 40 X J()' m-1,, 

and the mean free path is 

I = ..!. "" 2.5 x JO-' m, 
na 

which is smaller than the wavelength of visible light. The average intermolecular 
separation at standard conditions is about 3 x 10-• m, so the mean fr~e path is 
much la rge~ than the average intermolecular separation, and Fig. 10-3 is there­
fore misleading. 

Since the number of molecules per unit volume. n, is inversely proportional 
to the pressure, the mean free path increases as the pressure is decreased. A moder­
ately good "vacuum" system will reduce the pressure to 1()-3 Torr, which is about 
tO- • atm. The mean free path is then a million times that at atmospheric pressure, 
or of the order of 25 em. 

More complete theories of the mean free path take into account the relative 
motion of a lithe molecules of a gas, that is, they consider the " target" molecules, 
as well as the "bullet" molecules, to be in motion. The only change in the end 
result is to introduce a small correction factor in Eq. ( 10-12). The inverse depen­
dence on the number of molecules per unit volume and on the collision cross 
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section remains unaltered. On the assumption that all molecules have the same 
speed, Clausius obtained the result 

3 I 0.75 
1=--=-. 

4 na na 

If the molecules have a Maxwellian velocity distribution (see Section 12-2), 

I = __!_,..!. = 0.707 . 
.j2 na na 

However, we shall continue to use the simpler result of Eq. (10-12). 
In the preceding discussion, the target molecules and bullet molecules were 

considered identical hard spheres, each of diameler d. One often wishes to know 
the mean free path of an electron, moving among the neutral or ionized molecules 
of a gas in a plasma, or among the fixed metallic ions in a metallic conductor. The 
"diameter" of an electron is so much smaller than that of a molecule that the elec· 
tron can be considered a geometrical point, and the center-to-center distance in a 
collision (see Fig. 10-2) becomes d/2 rather than d, where d is the molecular 
diameter. Furthermore, the velocities o f the electrons are so much greater than 
those of the molecules that the latter can be assumed at rest, and the correction 
for relative velocities need not be made. From the considerations above, the 
electronic mean free path 10 is 

lo = 4..!., 
na 

(10-13) 

where n is the number density of molecules and na is the macroscopic collision cross 
section of electrons with molecules or ions. 

In terms of the mean free path, the survival equation can be written 

N = N0 exp(-nax) = N0 exp(-x/l). (10-14) 

Figure 10-5 is a graph of this equation, ir. which the dimensionless ratio N/N0 is 
plotted as a function of xfl. The ordinate of the curve is the fractional number of 
molecules with free paths longer than any fraction of the mean free path. Note that 
the fraction with free paths longer than the mean is exp (-I) or 37%. while the 
number with free paths shorter than the mean is 63 %. 

An interesting aspect of the theory of distribution of free paths is that the N0 

molecules considered originally are not necessarily just starting out on their free 
paths after having made a collision. We merely make a random selection of a 
large number of molecules at any instant and inquire into their future without 
asking questions about their past. Sometimes, however, it is the past rather than 
the future that is of interest. That is, we may fix our attention on a group of 
molecules at some instant and instead of asking, as we did above, how far each 
will travel on the average before it makes its next collision, ask how far each has 
traveled on the average since making its last previous collision. The same reasoning 
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as that above shows that this average distance is also the free path /, and that the 
distribution of "past" free paths is I he same as the dis tribution of "future" free 
paths. Hence when we consider a large number of molecules in a gas at any instant, 
the average distance they have yet to travel before their next collision is equal to 
the average d istance they have already traveled since their last collisions, and both 
distances are equal to the mean free path /. We shall make use of this fact in the next 
section, in calculating the average distance above or below a plane at which mole-· 
cules make their last collision before crossing the plane. 

Fla. 10-s Graph of 1he survival 
equation. 

This result raised the following interesting question. If the average distance 
traveled by the group bifou we consider it is /, and the average distance ofiu we 
consider it is also /, why is the mean free palh not equal 10 21 ralher !han I? 

Another important concepl is !hal of rollisionfr~qumq z, !he average number 
of collisions per unit l ime made by a molecule wilh other molecules. In a time 
inlerval At, a molecule !ravels an average dislance;; Ar along irs zigzag palh. The 
average number of collisions il makes in !his lime is ii At{/, and hence !he collision 
frequency is 

ii -z c:- = unu. 
I 

(10-15) 

From the values of ii, n, and a for oxygen molecules at room temperature, we find 

z ,., 5.5 x 101 collisions s·•. 

The mtanfite timeT, or the average time berween collisions, is the reciprocal 
of the collision frequency z and hence 

T= ! =~=...!..., ( IQ-J6) 
z ii Vna 
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For oxygen molecules at room temperature, 

T "' __ I - , "' 1.8 X 10-10 S. 
5.5 X 10 

The preceding results form the basis of the theory of metallic conduction de­
veloped by Drude* in 1900. We assume that the free electrons in a metallic con­
d uctor can be considered an ideal gas and that their average random speed ii is the 
same as that of gas molecules of the same mass, a t the same temperature. (We shall 
sho~ in Chapter 13 that this is not a very good assumption). If the electric field 
intensity in the conductor is£, the force F on each electron, of (negative) charge 
e, is F~ tE. As a result of this force, the electrons have an acceleration a opposite 
to the direction of the field and of magnitude 

F e£ 
a= -= - . 

m m 

The electrons do not accelerate indefini tely, however, because of coll isions with 
the fixed metallic ions. We assume that at each such collision an electron is brought 
to rest and makes a fresh start losing a ll memory o f its previous velocity. In the 
mean free timeT between collisions, an electro n acquires a velocity opposite to the 
field equal to aT, and its average velocity between collisions, or the drift velocity 
u, is 

U = ! QT = !(~)!!, 
2 2 m ii 

This drift velocity is superposed on the random "thermal" velocity ,li ~ut in an 
actual conductor it is very small compared with the random velocity. Note that 
in the expression for the mea n free path 1 •• we should use Eq. (10-13). 

The current densi ty J in the metal (the current per unit of cross-sectional area) 
is the product of the number densi ty n,. of electrons, their cha rgee, and the drift 
velocity u: 

(n,•''•) J = n,eu - -- E. 
2mv 

The resistivity p of the metal is defined as the ratio of the electric intensity E 
to the current density J : p = EfJ. Hence 

2mii 

p = n.•''·. ( 10-17) 

In a given metal a t a given temperature, all quantities on the right side of the 
preceding equation are constants so that !he Drude theory predicts !hat under lhese 
condirions !he resisrivity of a metallic conductor is a constant independent of E. 

• Paul K. L. Drude, German physicist (l863- t906). 
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In other words, the current density J is directly proportional to the electric intensity 
E, and the metal, in agreement with experiment, obeys Ohm's Jaw. 

A more familiar statement of Ohm's law is that at a given temperature, the 
potential difference V between two points of a conducting wire is directly proportional 
to the current/ in the wire, or that V - IR, where R is a constant independent of I. 
The total current I in a conductor of constant cross-sectional area A is I = JA. If 
the length of the conductor is L, the potential difference Vbetween its ends is V - EL, 
so the equatioo pj - E can be written 

or, 

where the rtJistance R - pL/A. 

We shall show in Chapter 12 that the average random velocity v in a gas is 
proportional to T'", so the theory predicts that the resistivity p should increase 
with the square root of the temperature. However, experimentally the resistance 
of metallic conductors increases linearly with increasing temperature, so the Drude 
theory is far from complete. 

10-4 COEfFICIENT OF VISCOSITY 

In the next three sections, we give an elementary treatment of three properties of a 
. gas described by the general term o r transport phenomena. These are its viscosity, 
thermal conductivity, and coefficient of diffusion, and they can be explained in 
terms of the transport across some imagined surface within the gas of momentum, 
energy, and mass, respectively. Consider fi rst the coefficient o r viscosity. 

Fig. HHi Viscous flow between a stationary 
lower plate and a moving upper plate. 

F 
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It appears contradictory at first sight that a gas consisting of widely separated 
molecules making perfectly elastic collisions with one another should exhibit any 
viscosity or internal friction. Every real gas, however, is viscous; and we now show 
that I his property is another necessary consequence of our simple model and does 
nol require the assignment of any new properties to the molecules. 

Figure 10-6 represents a portion of two large plates separated by a layer of 
gas of thickness L. Because of !he viscosity of the gas, a force F must be exerted 
on the upper plate to d rag it to the right at constant velocity relative to the lower, 
stationary plate. (An equal and opposite force must be exerted on the lower 
plate to keep it at rest.) The molecules in the layer of gas have a forward velocity 
component u which increases uniformly wich the distance y above the lower p late. 
The co~ffici~nt of viscosity of the gas, '1· is defined by the equation 

(10-18) 

where A is the area of either plate and dufdy is the v~locity gradient at right angles 
to the plates. 

In the MKS system, the unit ofF/A is I newton per square meter and the unit 
of the velocity gradient dufdy is I meter per second, per meier. The unit of the 
coefficient of viscosity '1 is cherefore I newton per square meter, per meter per 
second per meter, which reduces to I N s m-•. The corresponding cgs unit is 
I dynes cm-•and is called I poise in honor of Poiseuille. • (I poise - 10 N s m-1.) 

The forward velocily u of the molecules is superposed on their large random 
velocities, so chat the gas is not in thermodynamic equilibrium. However, in most 
praciical problems the random velocities are so much larger than any forward 
velocity that we cah use !he results previously derived for an equilibrium state. 

The dotted line S·S in Fig. 10-6 represenls an imagined surface within the gas 
at an arbicrary height y above the lower plate. Because of their random motions, 
there is a molecular flux <I> across the dotted surface, bolh from above and from 
below. We shall assume that at its last collision before crossing the surface, each 
molecule acquires a flow velocicy toward the right, corresponding to the particular 
height at which the collision was made. Since che flow velocity above the dotted 
surface is greater than that below the surface, molecules crossing from above 
transport a greater momentum (toward the right) across the surface than do the 
molecules crossing from below. There results a net rate of transport of momentum 
across the surface, and from Newton's second law we can equate the net rate of 
transport of momentum, per unit area, to the viscous force per unit area. 

Thus the viscosicy of a gas arises not from any "frictional" forces between its 
molecules, but from the fact that they carry momentum across a surface as a result 

*Jean-Louis M. Poiseuille, French physician (1799-1869). 
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of their random motion. The process is analogous to that of two freight trains of 
open-top coal cars moving in the same direction on parallel tracks at slightly 
different speeds, with a gang of laborers in each car, each laborer shoveling coal 
from bis car into the opposite car on the other track. The cars in the slower train 
are continually being struck by pieces of coal traveling slightly faster than the cars, 
with the result that there is a net forward force on that train. Conversely, there is a 
net backward force on the faster train, and the effect is the same as if the sides of the 
cars were rubbing together and exerting forces on one another through the 
mechanism of sliding friction. 

Fls. JG-7 The last mean free path 
before the molecule crosses the surface 
started a distance y - I cos 0 from the 
surface. 

Let us compute the average height j above (or below) the surface at which a 
molecule made its last collision before crossing. In Section 9-3, we assumed that 
the molecules were geometrical points and that all O<fou-molecules in the slant cylinder 
of Fig. 9-2 would arrive at the area 6A without having made a collision. This 
cannot be correct, because on the average each molecule travels only a distance I 
without colliding with another molecule. These molecular collisions will not affect 
the total ftux of 6<,6t>-molecules arriving at the surface, because for every collision 
that scatters a B.Pt>-molecule out of the number originally in the cylinder, there 
will be another collision that results in an identical O<Pt>-molecule at essentially the 
same point. However, as explained in the preceding section, molecules arriving at 
the surface will on the average have started their last free paths before reaching the 1 
surface at a distance I away from the surface. The perfHndicular distance y from the 
surface, for any 6-molecule (see Fig. 10-7) is y = I cos 0. The average value of y, 
or j, is found by multiplying I cos 0 by the flux 6<1>1 , summing over all values of 0, 
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and dividing by the total flux ell. From Eq. (9-6), replacing :Evn,. with iio, 

t.ell, = ~ iio sin 6 cos 6 t.O; 

and from Eq. (9-11), 
I 

ell ~ 4vn. 

Therefore, replacing t.O with dO and integrating over 6 from zero to '"/2, 

1 iiniJ;'' sin 6 cos16 dO 
j = 2 -~I. 

1- 3 
(IQ-19) 

- vn 
4 

Hence on the average, a molecule crossing the surface makes its last collision 
before crossing at a distance equal to two-thirds of a mean free path above (or 
below) the surface. 

Let u0 represent the forward velocity o f the gas a t the plane S-S. At a d istance 
21/3 above the surface, the forwa rd velocity is 

u=u +~I~ 0 3 dy. 

since the forward velocity gradient dufdy can be considered constant over a distance 
of the order of a free path. The forward momentum of a molecule with this velocity 
is 

mu = m(u• + ~ 1~)-
3 dy 

Hence the net momentum C:! in the direction of flow, carried across the surface 
per unit time and per unit area by the molecules crossing from above, is the product 
of the momentum mu and the total flux ell: 

c'i!- lnmii( uo + ~ 1 ~)-
4 3 dy 

Similarly, the momentum carried across the surface by the molecules crossing 
from below is 

,. I _ ( 2 du) v f • - num u0 - - I - . 
4 3 dy 

The net rate of transport of momentum per unit area is the d ifference between 
these quantities, or 

c'i = l nmiil~ 
3 dy. 

(IQ-20) 
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Fig. 10-8 The viscosity of helium, argon, and 
neon is almosl a linear function of ,fi'. 

Table 10-1 Values of the mean free path and molecular diameter of 
some gases determined from viscosity measurements. The values of 
I and din this table were calculated using Eq. (10-13) for I. 

~ o5•q I (I 5•c. 1 atm) d 
Gas (N s m-•) (m) (m) 

He 19.4 x w-• 18.6 x 1o-• 2.18 X lo-10 

Ne 31.0 13.2 2.60 
A 22.0 6.66 3.64 
H, 8.71 11.8 2.74 
N, 17.3 6.28 3.76 
o, 20.0 6.79 3.60 
co, 14.5 4.19 4.60 
NH1 9.7 4.51 4.44 
CH4 10.8 5.16 4. 14 

10-4 

n 
c 
n 
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and from Newton's second law this equals the viscous force per unit area. Hence, 
by comparison with the definition of the coefficient of viscosity in Eq. (IQ-18), we 
have I 

{IQ-21) 

An unexpected conclusion from this equation is that the viscosity of a gas is 
independent of the pressure or density, and is a function of temperature alone 
through the dependence of ii on T. Experiment bears this out, however, except at 
very low pressures where the mean free path becomes of the order of the dimen­
sions of the apparatus. The theory above would not be expected to hold under these 
conditions, where a molecule could go bouncing from o ne wall to the other without 
making a large number of collisions on the way. · 

We shall show in Section 12-2 that the mean speed ii is given by 

so that 

ii= lfkT. ,; ; -;;; 

(10--22) 

Thus for molecules of a given species, the theory predicts that '1 is proportional 
to .Jr. and that for different species at a given temperature it is proportional to 

.J;.fa. 
Figure JQ-8 shows some experimental values of the viscosities of helium, neon, 

and argon, plotted as functions of JT. The graphs are very nearly straight lines, 
but they curve upward slightly, indicating that the viscosity increases with tem­
perature at a somewhat greater rate than predicted by the "hard-sphere" theory. 
This can be explained by realizing that the molecules are not truly rigid spheres and 
that a "collision" is more like that between two soft tennis balls than between two 
billiard balls. The higher the temperature, the greater the averuge molecular kinetic 
energy and the more the molecules become "squashed" in a collision. Thus the 
center-to-center distance in a collision, and the corresponding collision cross 
section a, will be slightly smaller, the higher the temperature, with a corresponding 
increase in '1· 

As for the dependence of viscosity o n the cross section a, Eq. ( IQ-22) is as a 
matter of fact one of the relations used to " measure" collision cross sections and the 
corresponding hard-sphere diameters d. Some values of d computed from viscosity 
measurements, are given in Table 10--1. 
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10-5 THERMAL CONDUCTIVITY 

The thermal conductivity of a gas is treated in the same way as its viscosity. Let 
the upper and lower plates in Fig. HH) be at rest but at different temperatures, so 
that there is a temptrature gradient rather than a velocity gradient in the gas. (It 
is difficult to prevent conductive heat flow in a gas from being masked by convection 
currents. The gas layer must be thin, and the upper plate must be a t a higher tem­
perature than the lower.) If dTfdy is the temperature gradient normal to a surface 
within the gas, the thermal conductivity A is defined by the equation 

dT 
H =-A dy , ( 1(}...23) 

where His the heat flow or heat current per unit area and per unit time across the 
~urface. The negative sign is included because if dTfdy is positive the heat current 
is downward and is negative. 

In the MKS system, the unit of His I joule per square meter per second and 
the unit of the temperature gradient dT/dy is I kelvin per meter. The unit of 
thermal conductivity A is therefore I joule per square meter per second , per kelvin 
per meter, which reduces to I J m- • s- • K- 1• 

From the molecular viewpoint, we consider the thermal conductivity of a gas 
to result from the net flux of molecular kinetic energy across a surface. The total 
kinetic energy per mole of the molecules of an ideal gas is simply its internal 
energy u, which in turn equals c, T. The average kinetic energy of a single molecule 
is therefore c.Tdivided by Avogadro's number, N,, and if we .jefine a " molecular 
heat capacity" c: as c: = cJN,., the average molecular kinetic energy is c:r. 

We assume as before that each molecule crossing the surface made its last 
collision at a distance 21/3 above or below the surface. and that its kinetic energy 
corresponds to the temperature at that distance. If T0 is the temperature at the 
surface S-S, the kinetic energy of a molecule at a distance 21/3 below the surface is 

The energy transported in an upward di rection, per unit area and per unit 
time, is the product of this quantity and the molecular flux <1>: 

H• = ! niic*( T. - ?:.1 dT)· 
I 4 , O 3 dy 

In the same way, the energy transported by molecules crossing from above is 

H l = - nvc• T. + - I - . I _ ( 2 dT) 
4 • 0 3 dy 
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The net rate of transport per unit area, which we identify with the heat current H, 
is 

H = _!niic•JdT 
3 • dy. (IQ-24) 

and by comparison with Eq. (IQ-23) we see that the thermal conductivity lis 

l = ! niic•/ = ! iic: 
3 • 3 q 

(IQ-25) 

Thus the thermal conductivity, like the viscosity, should be independen t of 
density. This is also in good agreement with experiments down to pressures so low 
that the mean free path becomes of the same order of magnitude as the dimen· 
sions of the container. 

and 

The ratio of thermal conductivity to viscosity is 

lM =I, 
'f/C• 

(IQ-26) 

where M is the molecular weight of the gas. Therefore the theory predicts that for 
all gases this combination of experimental properties should equal unity. Some 
figures are given h Table IQ-2 for comparison. The ratio does have the right o rder 
of magnitude, but we see again that the hard-sphere model for molecules is in· 
adequate. 

Table 10-1 Values or the thermal conductivity A, molecular weight M, viscosity ~. and 
specific hear capacity c. or a number or gases 

A(0°C) M •r<o•C) c. AM 
Gas (J m- 1 s-1 K- 1) (kg kilomole-1) (N s m-•J (J kilomole-1 K- 1) -

~. 

He O. t41 4.003 t8.6 X to-• 12.S X to> 2.43 
Ne .0464 20. t8 29.7 t2.7 2.48 
A .163 39.9S 21.3 t2.S 2.45 
H, . t68 2.0t6 8.4t 20.t 

I 
2.06 

N, .24t 28.02 t6.6 20.9 1.95 
o, .24S 32.00 t 9.2 21.0 1.94 
co, . t4S 44.01 t3.7 28.8 1.62 
NH1 .2t8 t7.03 9.2 27.6 1.46 
CH, .lOS 16.03 t0.3 27.4 1.73 
Air .24 1 29. 17.2 20.9 1.94 
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10-8 DIFFUSION 

The vessel in Fig. 1()...9 is initially divided by a partition, on opposite sides of which 
are two different gases A and Bat the same temperature and pressure, so that the 
number of molecules per unit volume is the same on both sides. If the partition 
is removed, there is no large scale motion of the gas in either direction , but after a 
sufficiently long time has elapsed, one finds that both gases are uniformly distrib­
uted throughout the entire volume. This phenomenon, as a result of which each 
gas gradually permeates the other, is called diffusion. It is not restricted to gases 
but occurs in liquid and solids as well. Diffusion is a consequence of random 
molecular motion and occurs whenever there is a concentration gradient of any 
molecular species, that is, when the number of particles of one kind per unit 
volume on one side of a surface differs from that on the other side. The phe­
nomenon fan be described as a transport of malltr, (that is, of molecules) across 
a surface. 

• ••••• •• • • • • • • • • ·.·.·.s.·.·.· • • • • • • • • • • • • • • ·.•.•.•.·.·.· 

Fig. ID-9 A vessel con­
taining two different 
gases separated by a par­
tit ion. 

The phenomenon of diffusion may be complicated by the fact that when more 
than one type of molecule is present the rates of diffusion of one into the other 
are not the same. We can simplify the problem and still bring out the essential 
ideas by considering the diffusion of molecules of a single species into others of the 
same species, known as ulfdiffusion. 

If all of the molecules of a system were exactly alike, any calculation of self­
diffusion among them would be of academic interest only, since there would be no 
experimental method by which the diffusing molecule& could be distinguished 
from the others. However, molecules that are isotopes of the same element, or 
molecules whose nuclei have been made radioactive, differ only in their nuclear 
structure and are essentially identical as far as collision cross sections are concerned. 
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(Their mean kinetic energies will differ slightly because of differences in mass.) 
It is thus possible to "tag" certain molecules so that they can be distinguished 
from others, and yet treat the problem as if the molecules were all alike. 

Consider an imagined horizontal surface S·S within the vessel of Fig. 10-9, 
at some stage of the diffusion process. The vessel contains a mixture of tagged and 
untagged molecules, the total number of molecules per unit volume being the same 
at all points so that the pressure is uniform. We ossume the temperature to be 
uniform also. Let n* represent the number of tagged molecules per unit yolume 
at any poinr. We shall assume that n* is a funclion of y only, where the ylaxis is 
normal to the surface S·S. If tfn*fdy is positive, the downward fl ux of tagged 
molecules across the surface is then greater than the upward flux. If r represents 
the net flux of tagged molecules across the surface, per unit time and per unit area, 
the cotfficimt of srlfdi.ffusion D is defined by the equation 

r = - D dn* • (10-27) 
dy 

The negative sign is included since if dn*/dy is positive, the net flux r is down­
ward and is negative. 

In the MKS system, the unit of r is I molecule per square meter per second and 
the unit of the concentration gradient dn*/dy is I molecule per cubic meter, per 
meter. The unit of the diffusion coefficient Dis therefore I molecule per square meter 
per second, per molecule per cubic meter, per meter, which reduces to I m' s-1• 

We assume as before that each molecule makes its last collision before crossing 
at a perpendicular distance 21/3 away from the surface. If n6 is the number of 
tagged molecules per unit volume at the surface S·S, the number per unit volume at 
a distance 21/3 below the surface is • 

n• = n:- ~/!!!!..._ 
3 dy 

In the expression previouslyderived for the flux «1>, we must replace n by n•, and 
the upward flux rr is then *) 

rr =! v(n.r- ~ 1 ~ • 
4 3 tly 

In the same way, the downward flux is 

r! = ! v(n: +~, tin*) . 
4 3 dy 

The net flux r is the difference between these, so 

r- - ! i!/ dn* . 
3 dy 

Comparison with Eq. (10-24) shows that 

D=!vl=!.!., 
3 3 no 

where n is the total number of molecules per unit volume. 

(10-28) 

(10- 29) 
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The phenomenon of diffusion through fine capillary pores in a ceramic material 
is one of the methods used to separate the isotopes u= and U131• Naturally 
occurring uranium is converted to the hexafluoride UF,, a gas, and the mixture 
of isotopes flows by diffusion through a porous barrier. The phenomenon is more 
complicated than the simple case described above because the free path is no 
longer small compared with the dimensions of the capillaries, and collisions with 
the walls become an important factor. However, we can see qualitatively that 
because of the slightly smaller mass of U135 compared with U131, the mean speed jj 
of the hexafluoride molecules containing U'" will be slightly greater than for the 
others. The diffusion coefficient is slightly greater also, so that this component is 
slightly enriched in the gas that has diffused through the pores. 

The operation of a nuclear reactor is also dependent on the phenomenon 
of diffusion. The neutrons in a reactor behave like a gas that is continuously being 
generated throughout the reactor by fission processes and which diffuses through 
the reactor and eventually escapes from the surface. In order that the reactor may 
operate successfully, conditions must be such that the rate of generation of neu­
trons is at least as great as the loss by diffusion, p lus the losses due to collisions 
in which the neutrons are absorbed. 

10-7 SUMMARY 

Let us compare the three results obtained in the preceding sections. We can wri te 
Eqs. (10-20), (10-24), and (10-28) as 

G (I _1) d(mu) - j nu "'dJ, 
H- -(~ nut)d(c:T) 

3 dy • 

r ... - (! nvt) d(n*/n). 
3 dy 

T he last equation is obtained by multiplying numerator and denominator of 
Eq. (I 0-26) by n. 

The product (mu) in the fi rs t equat ion is thejloll' momentum of a gas molecule, 
the product (c:TJ in the second is the kinetic tnugy of a molecule, and the ratio 
(n"fn) in the third is the conctntration of tagged molecules. 

The corresponding expressions for the coefficients of viscosity, of thermal 
conductivity, and of self·diffusion, are 

I - I iim 
1J = 3 nmul = )-;• 

l - ! nc•Vt :c: ! Vc: 
3 ' 3 a 

v~ 1vt =!i.. 
3 3 no 
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PROBLEMS 

16-1 How arc the assumptions of kine tic theory given in Section 9-2 changed in the 
developm<nt of the Hirn and the van der Waals equations of state? 

16-l The critical temperature of C01 is 3 1.1°C and the critical pressure is 73 atm. 
Assume that C01 obeys the van der Waals equation. (a) Show that the critical density 
of C01 is 0.34 g em- •. (b) Show that the diameter of a C02 moloculo is 3.2 >< JO-•• m. 

10-3 Using the data of the previous problem, (a) find the microscopic collision cross 
section for a C02 molecule. (b) If on< kilomole o f C02 occupies 10 m•, find the mean 
free path of the co, molecules. (c) If the mean speed of tho C01 molecules is SOO m s-•, 
compute the average number of collisions made per molecule in one second. 

1o-4 Find the pressure dopendence at constant temperature of the mean free path and 
the collision frequency. 

16-5 A beam of molecules of radius 2 >< tO-•• m strikes a gas composed of molecules 
whose radii arc 3 >< to-•• m. Thore are 10" gas moleculos per m•. ~termine (a) the 
exclusion radius, (b) the microscopic coll ision cross section, (c) the macroscopic collision 
cross section, (d) the fraction of the beam scattered per unit distance it travels in the gas, 
(e) the fraction of molecules left in the beam after it tra vels to-• m in the gas, (f) the 
distance the beam travels in the gas before half of the molecules are scauered out, (g) 
the mean free path of the beam in the gas. 

1()-6 A group of oxygen molecules start their free paths at the same instant. The pressure 
is such that the mean free path is 3 em. After how long a time will half of the group still 
remain unscallered. Assume all particlos have a speed equal to the rms speed. The tern· 
perature is 300 K. 

16-7 Dowling pins with an etfective diameter of tO em are placod randomly on a bowling 
green with an average density of 10 pins per square meter. A large number of IO·cm 
diameter bowling balls are bowled at the pins. (a) What is the ratio of the mean free path 
of the bowling ball to the average distance between pins? (b) What fraction o f t he bowling 
balls will travel at loast 3 meters without striking a pin? 

10-8 The moan free path in a cortain gas isS em. Consider 10,000 mean fret paths. How 
many are longer than (a) S em? (b) 10 em? (c) 20 em 7 (d) How many arc longer than 
3 em but shorter than S em? (e) How many a re between 4.S and S.S em long? (f) How 
many are between 4.9 and S. l em long? (g) How many ore exactly S em long? 

16-9 A large number of throws arc made with a single die. (a) What is the average 
number of throws between the appearances of a six? At any stage or the process, V!hat is 
the ave:"ttge number of throws (b) before the noxt appearance of a six, (c) since the last 
appearanco of a six? (d) How do you answer the question raised in Section I G-3; that is, 
why is the mean free path I and not 2/? 

10- 10 The mean free path of a helium atom in helium gas at s tandard conditions is 
20 >< lo-' m. What isthe radius of a holium atom? 

tO- ll A beam of olectrons is projected from an electron gun into a gas at a pressure P, 
and the number remaining in the beam at a d istance x from the gun is determined by 
allowing the beam to strike a collecting plate and measuring the current to the plate. The 

I 
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electron current emitted by the gun is 100 JAA, and the current to the collector when x • 
10 em and P • 100 N nr• (lbout I Torr) is 37 ~tA. (a) What is the electron mean free 
path? (b) What current would be collected if the pressure were reduced to SON m-•? 

10-12 A singly cha'l:ed oxygen molecule staru a free path in a direction at right angles 
to an electric field of intensity 10' V m-•. The pressure is one atmosphere and the tem­
perature 300 K. (a) Compute the distanoc moved in the direct ion of the field in a time 
equal to that required to traverse one mean free path. (b) What is the ratio or the mean 
free path tcj this distance? (c) What is the average speed in the d irection or the field? (d) 
What is the ratio of the rms speed to this speed? (e) What is the ratio of the energy of 
thermal agitation to the energy gained from the field in one mean free path 1 

10-13 The resistance ofl m ofO.Ol em diameter copper wire is measured to be 3 ll. The 
density of copper is 8.9 x 10' kg m-• and its atomic weight is 64. (a) Determine the mean 
free time ~ between collisions of the electrons with the copper ion cores. (b) Determine 
the mean free path of the electrons assuming that ii for an eleclron is given by (8/<"Tf•mr)"'· 
How many atomic distances is this, assuming copper is cubic? (c) Determine !he ratio 
of the diameter of the copper ion cores to the atomic d istance. (Parts (b) and (c) do not 
give correct answers because electron speeds are approximately I o> times as large as those 
given by (8kT/•m)1' '· Section 1~.) (d) Determine the average length of time it takes an 
electron to move the length or the wire when the current through the wire is 0.333 A. 

10-14 Satellites travel in a region where the mean free path of the particles in the acmos­
phere is much greater than the characceristic size of che body. Show that the force per 
unil area on che sacellite due to chis rarefied gas is 4nnru1/3, where n is !he number density 
of particles in the atmosphere, rn is their mass, and u is the speed or che satellice. [Hint: 
Since the sa tell ice speed is much greater than the speed or sound, assume that the sa!ellite 
is moving through a stationary cloud of particles.] 

10-15 Calculate the coefficien! or friction o r a disc gliding on an air table wich a speed 
of l m s-•. The diameter of !he disc is 0.1 m and ics mass is 0.3 kg. Assume !hac il glides 
Ill' m above the table. The diameter of a nitrogen molecule is about 4 x 10-•o m. 

10-16 The viscosity or carbon dioxide over a range or tempera cures is given in the table 
below. (a) Compu!e !he ratio ~/Vr at each lempera!ure and (b) determine the diameler 
of the CO, molecule. (c) Compare that diamecer wich the diamecer o f A and No taken 
from Fig. 10-8. 

10-17 (a} Derive an expression for chc temperature dependence of !he chermal con­
ductivity of an ideal gas. (b) Calcula!c the thermal conductivicy or helium (considered as 
an ideal gas) at 300 K. 

10-18 (a) From the d31a in Table 10-2 de!ermine the self-diffusion coefficient of helium 
a !Standard conditions in two ways. (b) How does the self-diffusion coefficient depend upon 
pressure a! constant lemperacure, upon cemperature at constant pressure, and upon the 
mass or the diffusing particle. 
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IG-19 A tube 2m long and JO-< m1 in cross section contains CO, at atmospheric pressure 
and at a temperature of 300 K. The carbon atoms in one-half of the C02 molecules are 
the radioactive isotope C". At time 1 - 0, all of the molecules at the extreme left end of 
the tube conta in radioact ive carbon, and the number o f such molecules per unit volun1e 
decreases uniforn1ly to zero at the other end of I he tube. (a) What is I he init ial concentra­
tion gradient of radioactive molecules? (b) Initially, how many radioactive molecules 
per second cross a cross section at the midpoint of the tube from left 10 right? (c) How 
n1any cross fron1 right to left? (d) What is the initial net rate of diffusion of radioactive 
molecules across the cross section, in n1olecules per second and micrograms per second? 

IG-20 Given that the density of air is 1.29 kg m-•, v - 460 m s-•, and I - 6.4 x lo-1 m 
at standard conditions, determine the coefficients of viscosity, (b) diffusion, and (c) thermal 
conductivity. Assume that air is a diatomic ideal gas. 

10- 21 There is a small uniform pressure gradient in an ideal gas at constant temperature 
so that there is a mass flow in the direction of the gradient. Using the mean free path 
approach show that the rate of flow of mass in the direction of the pressure 4radient per 
unit area and per unit pressure gradient is miil/3k T. 
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11-1 IN~RODUCTION 

The metliods of statistical thermodynamics were first developed during the latter 
part of the last century,largely by Boltzmann in Germany and Gibbs in the United 
States. With the advent of the quantum theory in the early years of the present 
century, Bose• and Einsteint, and Fermi! and Dirac§ introduced certain modifica­
tions of Boltzmann's original ideas and succeeded in clearing up some of the 
unsatisfactory features of the Boltzmann statistics. 

The statistical approach has a close connection with both thermodynamics 
a nd kinetic theory. For those systems of particles in which the energy of the 
particles can be determined, one can derive by statistical means the equation of 
state of a substance and its energy equation. Statistical thermodynamics provides 
an additional interpretation of the concept of entropy. 

Statistical thermodynamics (also called statistical mechanics), unlike kinetic 
theory, does not concern itself with detailed considerations of such things as 
collisions of molecules with one another o r with a surface. Instead, it takes ad­
vantage of the fact that molecules are very numerous and a!N'rage properties of a 
large number of molecules can be calculated even in the absence of any information 
about specific molecules. Thus an actuary for an insurance company can predict 
with high precision the average life expectancy of all persons born in the United 
States in a given year, without knowing the state of health of any one of them. 

Statistical methods can be applied not. only to molecules but to photons, to 
elastic waves in a solid, and to the more abstract entities of quantum mechanics 
called wave functions. We shall use the neutral term "particle" to designate any 
of these. 

11-2 ENERGY STATES AND ENERGY LEVELS 

The principles of classical mechanics, or Newtonian mechanics, describe correctly 
the behavior of matter in bulk, or of marroscopic systems. On a molecular or 
microscopic scale, classical mechanics does not apply and must be replaced by 
quantum mechanirs. The principles of quantum mechanics lead to the result that 
the energy of a particle, not acted on by some conservative force field such as a 
gravitational, electric, or magnetic field , cannot toke on any arbitrary value, or 
cannot change in a contimlous manner. Rather, the particle can exist only in some 
one of a number of states having specified energies. The energy is said to be 
quantiud. 

A knowledge of quantum mechanics will not be assumed in this book. We 
shall try to make plausible some of its predictions; others will simply be stated and 

• Satyendranalh Bose, Indian physicist (1894-1974). 
t Alben Einstein, German physicist, (1879-1955). 
~Enrico Fermi, llalian physicisc (1901- 1954). 
§Paul A. M. Dirac, English physicist (1902-
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Fig. 11- 1 Three of the possible station­
ary waves in a stretched string fixed at 
both ends. 
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the reader will have to take them on faith or refer to texts devoted to this1subject. 
In any event, as far as the methods of statistics are concerned, it is enbugh to 
know that quantized energy states exist. 

In quantum mechanics, also known as wave mechanics, the general method 
of attacking a problem is to set up and (hopefully) solve an equation known as 
Schrodinger's• equation. In many problems, this equation is exactly analogous 
to the wave equation describing the propagation of transverse waves in a stretched 
string, fixed at both ends. As is well known, the string can vibrate in a steady state 
in any one of a number of stationary waves, three of which are shown in Fig. I 1- 1. 
That is, there may be a node Nat each end and an antinode A at the center, or 
there may be a node at the center as well as at the ends, with anti nodes midway 
between the nodes, and so on. The important result is that there is always an 
integral numliu of antinodes in the steady-state modes of vibration ; o ne antinode 
in the upper diagram, two in the next, and so on . The distance between nodes (or 
antinodes) is one-half a wavelength, so if L is the length of the string, the wave­
lengths l of the possible stationary waves are 

)., = 2L, ', = 1 2L, t A 

3 
e c.; 

or in general 

A1 =.!. 2L, 
n, 

• Erwin Schrodinger, Austrian physicist (1887-1961). 
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where n1 is an integer equal to the number of anti nodes and can have some one of 
the values 

n1 = 1, 2, 3, .... 

A stationary wave is equivalent to two traveling waves propagating in opposite 
directions, the waves being reftected and re-reftected at the ends of the string. 
This is analogous to the motion of a particle moving freely back and forth along 
a straight line and making elastic collisions at two points separated by the distance 
L. According to quantum mechanics, a s tationary Schrtxlinger wave is in fact 
completely equivalent to such a particle, and the wavelength .<of the stationary 
wave is related to the momentum p of the particle through the rela tion 

h 
p=:i· (ll-1) 

where his a universal constant called Planck's constant. ln the MKS system, 

h = 6.6262 X 10 ..... ] s. 

The momentum of the particle is therefore permitted to have only some one o f 
the set or values 

h 
p, .. n1 2L·· (11-2) 

If a particle is free to move in any direction within a cubical box of side length 
L whose sides a re parallel to the .x, y, z axes of a r<etangular coordinate system, 
the .x,y, and z components of its momentum are permitted to have only the values 

where n,, n,, and n, are integers called quantum numbers, each of which can have 
some one pf the values I, 2, 3, etc. Each set of quantum numbers therefore corre· 
sponds to Ia certain direction of the momentum. Then if p, is the resultant momen­
tum corresponding to some set of quantum numbers n,, n,, n., 

P' = p' + p' + p' = (n' + n• + n1
) ~ • J z v ' ~ ,. • 4LI' 

or, if we let (n! + n! + n!) = n:, 
I I hi 

p, = "'4IJ' 

The kinetic energy< of a particle of mass m, speed v, and momentum p - mv 
is 

< = l mv' = L. 
2 2m 
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The energy <1 corresponding to the momentum PJ is therefore 

p" h' , 
~~ = --L ~ n~--. 

2m 8mL' 
(11-3) 

The values of n., n,, and n, are said to define the state of a particle, and the 
energies corresponding to the different possible values of n: are the possible energy 
levels. The energy levels depend only on the values of n~ and not on the individual 
values of n,, n,, and n,. In other words, the energy depends only on the magnitude 
of the momentum p1 and not on its direction, just as in classical mechanics. In 
general, a number of different states {corresponding to d ifferent di rections of the 
momentum) will have the same energy. The energy level is then said to be de­
generate, and we shall use the symbol g1 to designate the degeneracy of level j, 
that is, the number of states having the same energy <1. 

The volume Vof a cubical box of side length L equals L' , soL' = V'13 ; and 
Eq. (11- 3) can be written, for a free particle in a cubical box, 

• - n' .!!: v-"· J - J • 
8m 

(11-4) 

The same result applies to a container of any shape whose d imensions 3re large 
compared with the wavelength of the Schrlldinger waves. The energy of the jth 
level therefore depends on the quantum number n1 and on the volume V. If the 
volume is decreased, the value of a given <j increases. 

As an example, consider a 1-liter volume of helium gas. When numerical values 
of h, m, and V are inserted in Eq. (11-4), we find that 

h' 
Bm v-II• ""8 X 10""<0 J ""s X JO-tl eV. 

We have shown that at room temperature the mean kinetic energy of a gas molecule 
is about l/40eVor 2.S x lo-• ev. Hence for a molecule with this kinetic energy, 

t 2.5 X JO-I II 
n1 "" S X J0-2I <:o< S X 10 , 

n, "" 2.2 x 101
• 

Thus for the vast majority of the molecules of a gas at ordinary temperatures, the 
quantum numbers n1 are very large indeed. 

The lowest energy level (j = I) is that for which n, = n, = n, = I. Then 
n: = 3 and 

3h' v-"• (l:Z::- • 

8m 

T here is only o ne state (one set of quantum numbers n., n,, nJ having this energy. 
The lowestlevel is therefore nondegenerate and g, = I. The x,y, and z components 
of the corresponding momentum p 1 are all equal, and each equals hf2L. 
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In the next level (j = 2) we might have any one of the following states: 

n. n, n, 

2 l l 
l 2 l 
l l 2 

Thus in the first o f these states, for example, the components of momentum are 

h p,, = 2L' 
h 

p,, = 2L. 

In each state, n: - (n! + n! + n!) = 6, and in this level, 

~. :., 611' v-"•. 
Bm 

Since three different states have the same energy, the degeneracy g, = 3. 
The preceding discussion of the energy levels and degeneracies of a free particle 

in a box is only one example of energy q uantization. Other constraints also leading 
to energy quantization will be discussed later. 

Figure ll-2 represents in a schematic way the concepts of energy states, energy 
levels, and the degeneracy of a level. The energy ltvtls can be thought of as a set 
of shelves at different elevations, while the energy slalts correspond to a· set of 
boxes on each shelf. The degeneracy g1 o f level j is the number of boxes on the 
corresponding shelf. If a number of marbles are distributed among the various 
boxes, the number in any one box is the number in a particular slalt. Those marbles 

(I ) (2) (J) (4) (S) 

.. u u LJ u ~ f1• • 1.N. • 2 

.. LJ u LJ ~ fhz 4,NJ•) 

.. l.d LJ GJ g, • l. NJ • 4 

' • 
~~ • I {Nondcgtnerate ~ N, = S 

Fig. 11-2 A schematic representalion of a set of 
energy levels •1, their degeneraciesg1 and their occupa­
tion numbers N1• 
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i,n the boxes on any one shelf are in different states, but all have the same energy. 
T he total number of marbles in the boxes at any level j is called the occupation 
number N1 of that level. 

Evidently, the sum of the occupation numbers N1 over all levels equals the 
total n umber of particles N: 

~N, ~ N. 

' 
(11-5) 

Also, since the particles in those states included in any level} all have the same 
energy.,. the total energy of the particles in level} is <1N1, and the total energy E 
of the system is 

~ <1N1 =E. 

' 
( 11-6) 

If the system is in an external conservative force field such as a gravi tational, 
electric, or magnetic field, the total energy E will consist in part of the potential 
energy£" of the system. If the potential energy is zero, the total energy E is then 
the internal energy U and 

~ <1N1 = U. 

' 
11-3 MACROSTATES AND M ICROSTATES 

(11-7) 

A number N o f identical entities is called an assembly. The entities may be single 
particles, or they may themselves be identical assemblies of particles, in which case 
one has an assembly of assemblies, or an ensemble. We shall for the most part 
consider only assemblies of single particles, and shall refer to them as an assembly 
or simply as a system. 

If the distribution of the particles of the system among its enerll>l states is 
k nown, the macroscopic properties of the system can be determined. Thus a 
central problem of statistical mechanics is to determine the possible distributions of 
particles among energy levels and energy states. 

The description of a single·particle assembly depends on whether the part icles 
of which it consists are distinguishable or indistinguishable. Suppose the assembly 
is a sample o f gas and the individual molecules are the particles. Since there is no 
way in which the molecules can be labeled, the particles are indistinguishable. 
On the other hand, if the assembly is a crystal, the molecules can be labeled in 
accord with the positions they occupy in the crystal lattice and can be considered 
distinguishable. 

Whether the particles are distinguishable or not, a specification of the number 
of particles N1 in each energy level is said to define a macros/ate of the 
assembly. For example, the macrostate of the assembly in Fig. 11-2 is specified by 
the set of occupation numbers N1 = S, N, - 4, Ns - 3, N, - 2. 

If the particles are indistinguishable, a specification of the total number of 
particles in each energy state is said 10 define a microstate of the assembly. Thus if 
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the energy states in each level in Fig. 11- 2 are numbered {I), {2), (3), etc., up to the 
number of states g1 in the level; and if the particles are indistinguishable, the micro­
state of the assembly is specified by saying that in level 4 there is one particle in 
each of the states {3) and (5), and there are no particles in states (I), {2), and (4); 
in level3 there is one particle-in states (I), (3), and {4), and no panicle in state {2) ; 
in level2there are two particles in state (I) and one particle in each of states (2) 
and {3); and in level I there are live particles in the on'ly state in this level. 

If one or both of the particles in level 4 were in states other than (3) and (5), 
the microstate would be different, but the macrostate would be unchanged since 
we would still haveN, = 2. Evidently, many different microstates will correspond 
to the same macrostate. 

If the particles are distinguishabl~. a specification of the energy state of ~ach 
partie/~ is said to define a microstate of the assembly. That is, we must specify not 
only how ma11y particles are in each state, but which particles they are. Thus suppose 
that the particles in Fig. I 1- 2 are distinguishable and are lettered a, b, c, etc., and 
that in level 4 particle a is in state {3) and particle b is in state (5); in level 3, 
particle cis in state (I) and particles dand e are in states (3) and {4) respectively, and 
so on. The preceding specification, including all levels, describes the microstate 
of the assembly. In contrast to an assembly of indistinguishable particles, in which 
the microstate would be the same no matter • ·hich particles occupied states (3) 
and (5) in level 4, the microstate is now considered different if particles a and b 
are interchanged between these states. Also, the microstate would be different if, 
say, particles c and din level3 were interchanged with a and bin level 4. In each 
such inter$ange we have a different specification of the energy states of the par­
tides and hence a different microstate; although the macrostate does not change 
because the occupation numbers of the levels are the same. 

If there is more than one particle in a given energy state, an interchange of the 
order in which the letters designating the particles is written is not considered to 
change the microstate. Thus suppose the two particles in state {I) of level 2 are 
lettered p and q. The microstate is considered the same if the letters are written 
in the order pq or qp. 

The number of microstates that are considered different, for a given set of 
occupation numbers, is evidently much greater if the particles are distinguishable 
than if they are indistinguishable. 

The possible macrostates and microstates of an assembly of particles is analogous 
to a table of ages of groups of individuals. As an example Jet us take the number of 
children in each grade of an elementary school having a total enrollment of 368 
children. 
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T he grades corre5pond to the energy levels of the sys1em and the specificalion of the 
number of children in each gr.~de defines the macrosta te of the system. A differen t 
macrostale with the same total number of children would be 

L~-~-~-i:_:_n~l ___ : __ ~ __ s_7 __ ~_· 6_: __ ~ __ 7J __ ~ __ 6_: __ L__~_
5

--JI · 
The change in distribution may have several macroscopic consequences: needs for 
differen t numbers of teachers, different equipment, different numbers of textbooks, 
etc. 

The gra des could be further subdivided into clasSC5, that is, in the first macro­
state described there may be 3 first grade classes and 2 second grade classes. These 
classes would correspond to the degenerate energy states of each level. T here would 
be 3 degenerate states in level I , etc. 

If the children were considered as indistinguishable particles (a bad pedagogic 
practice), then a microstate of the system would be 

A different microstate of the same macros tate of the system would be 

Ahhough the number of children in each <lass was changed, the number o f children 
in each grodt remained constant. 

However, the distribution 

would correspond ro a different macrostate since the number of children in each 
grade was changed, even though the total number of children in the school remained 
constant. 

When the children are considered distinguishable particiC5, the microsta te is 
different, if Evelyn is in I (a) and Mildred is in l(b), or vice versa, or if both are in l(b). 
However, in the last case the microstate is the same if Mildred's name appears on the 
class list before Evelyn's or after it. 
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11-4 THERMODYNAMIC PRDBABIUTY 

In the preceding section, no restriction was imposed on the possible ways in which 
the particles of an assembly might be distributed among the energy states. In an 
isolated, closed system, however, the energy E and the total number of particles 
N are both constant. Hence the only possible microstates of such a system are 
those that satisfy these conditions. 

As time goes on, interactions between the particles of an isolated, closed 
system will result in changes in the numbers of particles occupying the energy 
states, and, if the particles are distinguishable, will result in changes in the energy 
state of each particle. These interactions might be collisions of the molecules of a 
gas between themselves or with the walls of the container, or an energy inter­
change between the oscillating molecules of a crystal. Every such interchange 
results in a change in the microstate of the assembly, but every possible microstate 
must satisfy the conditions of constant Nand E. 

The fundamental postulate of statistical thermodynamics is that all possible 
microstates of an isolaud assembly art equally probable. The postulate can be 
interpreted in two different ways. Consider a time interval/ that is long enough so 
that each possible microstate of an isolated, closed system occurs a large number 
of times. Let At be the total time during which the system is in some one of its 
possible microstates. The postulate then asserts that tht timt inttrval At is tM samt 
for all microstatu. 

Alternatively; one can consider a very large number.#' of replicas of a given 
assembly (an ensemble). At any instant, let A.#' be the number of replicas which 
are in some one of the possible microstates. The postulate then asserts that tht 
number A.,V is the same for all microstates. The postulate does not seem to be 
derivable from any more fundamental principle, and of course it cannot be verified 
by experiment. Its justification lies in the correctness of the conclusions drawn 
from it. 

In terms of the example of the previous section, if all microstates were equally 
probable and the population of the school were limited to exactly 368 children, over 
many, many years each distribution of children among classes would occur as oflen 
as any other. Alrematively, if in a given year one looked at many elementary schools 
having a population of 368 children, each distribution of children among classes 
would occur with the same frequency. In each case, the examples given in the previous 
section would occur the same number of times. 

The number of equally probable ll)icrostates that correspond to a given 
macrostate k is called the thtrmodynamic probability rr. of the macrostate. (The 
symbol rr comes from the German word for probability, Walrrsclrein/ichktit. 
Other symbols are often used, and the quantity is also known as the statistical 
count.) For most macrostates of an assembly of a large number of particles, the 
thermodynamic probability is a very large number. The total number n of possible 
microstatn of an assembly, or the thermodynamic probability of the asstmbly, 
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equals the sum over all macrostates of the thermodynamic probability of each 
macrostate: 

The principles of quantum mechanics lead to expressions for the possible 
different ways in Which the particles may be distributed among the energy states of 
a single assembly at one instant of time. In other words, quantum mechanics 
determines the microstate at each instant for a single assembly or of each of the 
large number of replicas of an assembly at one instant. The calculation of ir• for 
three different cases is carried out in Sections 11-5, 11 -6, and 11- 7. 

The observable properties of a macroscopic system depend on the time 
average values of its microscopic properties. Thus the pressure of a gas depends 
on the time average value of the rate of transport of momentum across an area. 
By the fundamental postulate, the observable properties of a macroscopic system 
will also depend upon the average value of the microscopic propenies of a large 
number of replicas of an assembly taken at one instant. 

Thus the primary goal of a statistical theory is to derive an expression for the 
average number of particles IV1 in each of the permitted energy levels j of the 
assembly. The expression to be derived is called the average occupation number of 
the levelj. 

Let N1• be the occupation number of level j in macrostate k. The group 
average value of the occupation number of level j, IV!, is found by multiplying N1• 

by the number of replicas in macros tate k, summing over all macrostates and 
dividing by the total number of replicas, f. The total number of replicas of a given 
assembly that are in macrostate k equals the product of the number of replicas 
ll.IV that are in some microstate and the number of microstates -ur. included in 
the macrostate. Therefore 

However. 
..v- I ir.Af, 

and since A.A·· is 1he same for all m:crostates, we can cancel it from the numJrator 
and denominator. The group average is 

I N,.-tr. I 
IV;,.. t I -;r. =!it N,.ir •. ( 11- 8) 

• 
Similarly, we can calculate the time average of the occupation number of level 

j. IV/. As explained above, the postulate that all microstates are equally probable 
means that over a sufficiently long period of time 1, each microstate exists fo r the 
same time interval At. The total time the assembly is found in macrostate k is 
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then the product of the time interval tlt and the number rr. of microstates in 
macrostate k. The sum of these products over all macrostates equals the total 
timet : 

I - I il'".llt . 
• 

The tim~ a~rag~ value of the occupation number of level j. Nl. is found by 
multiplying the occupation number N1• of level j in macroslate k by the time 
rr. tlt that the assembly spends in macrostate k, summing these products over all 
macrosta tes, and dividing by the total time 1. The time average is therefore 

1 I N,."'r. t>t 
n: - -IN,.rr.t>t =•I . , • rr. t>t 

• 
Since tlt is the same for all microstates, we can cancel it from numerator and 
denominator, giving 

I N,.rr. ' 
n:- ·~~v =-IN,.rr •. 

~"'• n • • 
(11-9) 

Comparison ofEqs. (I 1- 8) and (I 1- 9) shows that if a ll microstates are equally 
probable, the timt> avuage value of an occupation number is equal to the group 
at•nag~. and we can represent either by N1• 

The values of the average occupation numbers of the energy levels are cal­
culattd for different cases in the next three sections. The general expressions for 
the N1, the distribution functions for these cases, are derived in Sections I 1- 9 to 
11-12. 

11-5 THE BOSE-EINSTEIN STATISTICS 

The thermodynamic probability tr. of a macrostate of an assembly depends o n 
the particular statistics obeyed by the assembly. We consider first the statistics 
developed by Bose and Einstein, which for brevity we shall refer to as the B-E 
statistics. In the B-E statistics, the particles are considered indistinguishable, and 
there is no restriction on the number of particles that can occupy any energy state. 
The energy states, however, are dist inguishable. Let the particles be lettered a, b, c, 
etc. (Although the particles are indistinguishable, we assign letters to them tern· 
porarily as an aid in explaining how the thermodynamic probability is computed.) 
In some one arrangement of the particles in an arbitrary level j. we might have 
particles a and bin state (I) of that level, particle c in state (2), no particles in 
state (3), particles d, ~.f. in state (4), and so on. This distribution of particles 
among states can be represented by the following mixed sequence of numbers and 
letters: 

[(l)ab) [(2)c) [(3)) [(4)dif] · · · (I 1- 10) 
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where in each bracketed group the letters following a number designate the particles 
in the state corresponding to the number. 

If the numbers and letters are arranged in all possible sequences, uch sef!uence 
will represent a possible distribution of particles among states, provided ~he se­
quence begins with a number. There are therefore g, ways in which the sequences 
can begin, one for each of the g, states, and in each of these sequences the remaining 
(g1 + N1 - I} numbers and letters can be arranged in any order. 

The number cif different sequences in which N distinguishable objects can be 
arranged is N! (N factorial}. There are N choices for the first term in a sequence. 
For each of these there are (N- I} choices for the second, (N- 2} choices for the 
third , and so on down to the last term, for which only one choice remains. The 
total number of possible sequences is therefore 

N(N - I}(N - 2} · · · 1 = N! 

As an example, the three lellers a, b, and c can be arranged in the following 
sequences: 

abc, otb, bca, hoc, cba, cab. 

We see that there are six possible sequences, equal to 3 !. 

Using the example of lhe previous section, the number "'r of different sequences 
in which the 70 children of the first grade can be lined up is 70!. II is shown in Appendix 
C that Stirling·s• approximation for the natural logarithm of the factorial of a large 
number xis 

Hence 
Jn x! ... x In x - x. 

In 70! • 701n 70-70 • 24S 

log10 701 ~ 245/2.303 = 106 
101 = 1o•••. 

The number of different possible sequences of the (g, + N1 - I} .numbers 
and letters is therefore (g, + N,- I} ! and the total number of possible sequences 
of g, numbers and N1 letters is 

g1[(g, + N,- 1}!]. (I 1- 1 I} 

Although each of these sequences represents a possible distribution of particles 
among the energy states, many of them represent the same distribution. For 
example, one of the possible sequences will be the following: 

[(3}] [(l}ab] [(4)def] [(2}c] · · ·. 

This is the same distribution as {I 1-10}, since the same states contain the same 
part icles, and it differs from {I 1- 10} only in that the bracketed groups appear in a 
different sequence. There are g, groups in the sequence, one for each state , so 
the number of different sequences of groups is g) ! and we must divide {I 1- 1 I} by 
g,! to avoid counting the same distribution mo re than once. 

• James Stirling, Sconish mathematician (1696- 1770). 
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Also, since the particles are actually indistinguishable, a different sequence of 
lel/ers such as 

[(l)ca] [(2~] [(3)) [(4)bdf) · · • 

also represents the same distribution as (11- 10) because any given state contains 
the same number of particles. The N1 letters can be arranged in sequence in N1 1 
different ways, so ( I 1-1 I) must also be divided by N1!. Hence the number of 
different distributions for the jlh level is 

g1[(g1 + N1 - l)!] 
... ,-

g, !N,I 
which may be more conveniently written as 

(g1 + N 1 - 1)1 

WJ :=r (gl- 1}! Nlf ' 

since 
g,l - g,(g, - 1)1. 

(11- 12) 

As a simple example, suppose that an energy level j includes 3 Slates (g1 - 3) 
and 2 part icles (N, - 2). The possible distributions or the particles among the states 
are shown in Fig. 11-3 in which, since the particles are indistinguishable, they are 
represented by dots instead or letters. The number or possible distributions, from Eq. 
(11-12), is (3 + 2 _ l)l 41 

"'I - (3 - 1)!21 ~ 2!21 - 6• 
In agreement with Fig. 11-3. 

s .... (1) (2) 131 

Fig. 11-3 The pos­
sible distributions of 
two indistinguish­
able particles among 
three energy states, 
with no restriction 
on the number of 
particles in each 
state. 
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If a level is nondegenerate, that is, if there is only one state in the level and 
g1 ~ I , then there is only one possible way in which the particles in the level can 
be arranged, and hence '"' = I. But if g1 = I, Eq. (I 1- 1 2) becomes 

N,! 
to1 =-- = I. 

OIN11 
It follows that we must set 0! - I , whicp may be considered as a convention that 
is necessary in order to get the right answer. A further discussion can be found in 
Appendix C. 

Also, if a level j is unoccupied and N1 - 0. 

(g,- I )! I 
«1J = (gl - l )t (0)! = 

and w 1 = I for that level. -~ 
For each of the possible distributions in any level, we may have any one of the 

possible distributions in each of the other levels, so the toril number of possible 
distributions, or the thermodynamic probability tr 0 . 8 of a macrostate in the 
B-E statistics is the product over all levels of the values of w 1 for each level, or, 

"'I' ~ "'I' =II w = II (g, + N, - J)! ( 11- 13) 
D· E • I I I (g,- I)! N,! • 

where the symbol rr, means that one is to form the product of all terms following 
it, for all values of the subscript}. It corresponds to the symbol I 1 for the sum 
of a series of terms. 

If an assembly includes two levels p and 'I• wilh g. - 3 and N. - 2, as in the 
preceding example, and with g.- 2, N.- l , the thermodynamic probabi lity or the 
macrostate N, • 2, N. - 1, is 

4! 2 ! 
.,-D·B-

2121 
"Jili- 6 X 2 - 12, 

and there are 12 different ways in which three indistinguishable particles can be 
dis tributed among the energy states or the assembly. 

We next calculate the thermodynamic probabilities of those macrostates that 
are accessible to a given system and the average occupation numbers of the per· 
mined energy levels. Although all microstates of an isolated, closed system are 
equally probablt, the only possible microstates are those in which the total number 
of panicles equals the number N of particles in the system, and in which the total 
energy of the particles equals the energy U of the system. As an example, suppose 
that we have a system of j ust six particles, that the permitted energy levels are 
equally spaced, and that there are three energy states in each level so that g1 - 3. 
We shall take the reference level of energy as that of the lowest level, ¥> that 
<o = 0, ., ~ •· •• = 2•, etc. We also assume that the total energy U of the system 
equals 6•. 

If the particles are indistinguishable and the system obeys the B-E statist ics, 
the only possible macrostatts consistent with the conditions N = 6, U = 6t, are 
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In II Fl, N•6 

0041 U • 6t 

0.088 n - 1sJ2 

0 20S , , • l 

0.410 

. . G.tlO 

. 160 . 
c:·:: .. . . . 2.1) . . . . 

""·.- 6l Ill Ill 180 90 270 180 100 216 Ill 28 

Fig. 11-4 The eleven possible macroslates of an assemblyof 6 particles obeying 
Bose-Einstein statislics. The energy levels are equally spaced and have a 
degeneracy g1 = 3 in each level. The total energy of the system is U - 6<. The 
thermodynamic probability of each macrostate is given at the bouom and the 
average occupation number of each level is printed on the right of the diagram. 

11-5 

shown in the columns of Fig. 11-4. !Oach horizontal row corresponds to an energy 
level (the three states in each level are not shown in the figure). The dots represent 
the number of particles in each level. The columns could representeitherthe macro­
states of a single system at different times, or the macrostatesof a number of replicas 
of t he system at a given instant. If we consider the figure to represent these replicas, 
then out of a large number..¥ of replicas there would be a number A.¥ in each 
macrostate, but since all of these numbers t,.,V would be equal, we can consider 
that each macrostate occurs just once. 

The diagram can be constructed as foll ows. The macrostate represented by 
the first column is obtained by first placing one part icle in level 6, with energy 6<. 
The remaining five particles must then be placed in the lowest level with energy 
zero, so that the total energy of the system is 6•. Evidently, there can be no particles 
in levels higher than the sixth. In the second column, we place one part icle in 
level 5, one particle in level I , and the remaining four particles in the lowest level, 
and so on. 

The thermodynamic p robability. ""~~'• of each macrostate, calculated from Eq. 
( 11- 13), is given under the corresponding column. Thus for macrostate k = I, 
since g1 = 3 in all levels and all occupation numbers are zero except in level 6, 
where N, = I , and in level 0, where N0 = 5, 

(3 + I - I) ! (3 + 5. - I)! 
if", = 

2
! I! · 

2
! 

51 
= 3 X 21 - 63. 

That is, the single particle in level 6 could be in any one of three states, and in the 
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lowest level the remaining five particles could be distributed in 21 different ways 
among the three states, making a total of 63 different possible arrangements. 

The total number of possible microstates of the system, or the thermodynamic 
pro babili ty of the system, is 

n =I ,-. ... 1532 . 
• 

The average occupation numbers of each level, calculated from Eq. (11-8), 
are given at the right of the corresponding level. In level 2, for example, we see 
that macrostate 3 includes 135 microstates, in each of which there is one particle 
in level 2. Macrosta te 6 includes 270 microstates in each of which theJe is also 
one particle in level 2, and so on. The average occupation number of level 2 is 
therefore 

n. - .!. r N .. ..,.. -
1272 = o.83. n. 1532 

In any macrostate k in which level 2 is unoccupied, the corresponding value 
of N, is zero and the product N,. 'fr . for that level is zero. Note that although the 
attual occupation number of any level in any macrostate must be an integer or 
zero, the atJtrage occupation number is not necessarily an integer. 

The most probable matrostate in Fig. 11-4, that is, the o ne with the largest 
number of microstates (270), is the sixth. The occupation number of each level 
for this macrostate is roughly the same as the average occupatio n number for the 
assembly. It can be shown (Appendix D) that when the number of particles in an 
assembly is very large, the occupation numbers in the most probable state are very 
nearly the same as the average occupation numbers. 

11 - 6 THE FERMI-DIRAC STATISTICS 

The stat istics developed by Fermi and Dirac, which for brevity we call the F-D 
statistics, applies to indistinguishable part icles that obey the Pauli• exduslon 
prindple, according to which there can be no more than one particle in each 
permitted energy state. (It is as if every particle were aware of the occupancy of all 
states, and could only take a state unoccupied by any other particle.) Thus the 
a rrangements in the upper three rows of Fig. 11-3, in which there are two particles 
in each state, would not be permitted in the F·D statistics. Evidently , the number 
of particles N1 in any level cannot exceed the number of states g1 in that level. 

T o calculate the thermodynamic probability of a macrostate, we again tem­
porarily assign numbers to energy states of a level and letters to the particles, and 
we represent a possible arrangement of the particles in a level by a mixed sequence 
of numbers and letters. A possible arrangement might be the following: 

[(J)a] [(2)b] [(3)] [(4)t] [(5)] · · · ( I 1-14) 

meaning that states (I), (2), (4), .. ·. are occupied with their quota of one particle 
each while states (3), (5), .. . are empty. Fo r a given sequence of numbers, we 

• Wolfgang Pauli, Austrian physicist (1900-1958). 
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first select some arbitrary sequence of lellers. There are g1 possible locations for 
the first Jetter, following any one of the g1 numbers. This leaves only (g1 - I) 
possible locations for the second Jetter, (g1 - 2) locations for the third, down to 
[g1 - (N1 - I )] or (g1 - N1 + I) locations for the last Jetter. Since for any one 
location of any one Jetter we may have any one of the possible locations of each 
of the others, the total number of ways in which a given sequence of N1 letters can 
be assigned to the g1 states is 

g,l 
g1(g1 - l)(g1 - 2) · · · (g1 - N1 + I) = (g, _ N,)J , (11-15) 

since 
g1 ! = g,(g1 - l)(g1 - 2) · · · (g1 - N1 + l )(g1 - N1)!. 

Because the particles are indistinguishable, a state is occupied regardless of the 
particular Jetter that foll ows the number representing the state, and since there 
are N/ different sequences in which the N1 letrers can be writren, we must divide 
Eq . (11- 15) by N1!. Again, although the sta tes are distinguishable, a different 
sequence of states does not change the distribution. Therefore we do not need to 
consider other sequences of letters and for level j, 

g,! «>, = . (11-16) 
(g1 - N1)1 N/ 

If a level j includes 3 stales (g1 - 3) and two particles (N1 ~ 2), then 

31 3! 
WJ - (3 - 2)!2! - I !2! = 3· 

The possible arrangements are shown in Fig. 11-S, which corresponds to the 
lower three rows of Fig. 11- 3, the upper three being excluded. 

Finally, since for every arrangement in any one level we may have any one of 
the possible arrangements in the other levels, the thermodynamic probability 

Staceffi§(ll (2) (J) 

. 

. 
Fig. JJ -5 The pos­
sible distributions 
of two indistinguish­
able particles among 
three energy stales, 
with no more than 
one particle in each 
state. 
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Fig. 11--6 The five possible macrostalcs or an 
assembly or 6 parriclcs obeying Fermi-Dirac 
slalisrics. The energy levels arc equally spaced 
and have a degeneracy or &1 - 3 each. The 
Ioiii energy or rhe syslem is U - 6<. The 
lhermodynamic probability or each macroS! ale 
is given a1 I he boll om, and rhe average occupa­
lion number or each level is prinred on rhe 
righr of rhe diagram. 

if'" F-o of a macrostate in the F-0 statistics is 

if'" F-D - .,-... IT "'I - IT gl! (11- 17) 
I I (gl- Nl)l Nl! 

Figure 11-6 shows the possible macrostates of a system of six particles obeying 
the F-D statistics in which, as in Fig. 11 -4, the energy levels are equally spaced 
and the degeneracy of each level is g1 - 3. In comparison with Fig. 11-4, macro­
states I, 2, 3, 5, 10, and II of that figure are excluded because there can be no 
more than three particles in each leveL Thus there are only five possible macrostates, 
each with energy 6<. The thermodynamic probability of each macrostate, calculated 
from Eq. (11- 17), is written underthecorresponding column. Thus in macros tate I, 

3! 3! 3! tr, - = 3 X 3 X l = 9. 
(3 - I)! !! (3 - 2)! 21 (3 - 3)! 31 

That is, there are three possible locarions of the single particle in level 4 (in 
any one of the rhree srares), rhree ways in which the two particles in level I can be 
distributed amongrhe rhree slales (as in Fig. 11-S)and only one way in which rhe rhree 
parricles in level zero can be dislribured among lhe three slales (one in each slate). 

The total number of possible macrostates is 

n = I.,,... = 73 . 
• 

The average occupation numbers of each level, calculated from Eq. ( 11-8) 
are given at the right of the corresponding leveL These mny be compared with the 
occupation numbers in Fig. 11-4. 
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Sl&l< (I) (2) (J) 

I "" 
II "" 
II "" 
v • 6 

v 6 . 
v I . b 

VI I b . 
VII I . b 

IX b . 
Fig. 11-7 The pos· 
sible arrangements 
or two distinguish­
able particlesaandb 
among lhree energy 
states, with no re· 
striction on the 
number or particles 
per SIBle. 

11-7 THE MAXWELL- BOLTZMANN STATISTICS 

11-7 

In the Maxwell-Boltzmann stalislics, which for brevity we call M-B slatislics, the 
parlicles of an assembly are considered distinguishable, bul as in the B-E stalistics 
there is no reslriclion on the number of particles thai can occupy the same energy 
stale. We consider an assembly of N particles and a macroSiate specified by the 
occupat ion numbers N,. N,, . . . , N1, • • • • The degeneracies of lhe levels are 
respectively g,. g,, ... , g1, • • • • Since the particles are distinguishable, two 
arrangements a re considered different if a level contains different particles, even 
though the occupation number of the level may be the same. That is, an arrange­
ment in which the particles in a level are a, b, and cis different from one in which 
the particles are a, b, and d or p, q, and r. Consider first any level j, including g1 
states and some specified set of N1 particles. The first particle may be placed in 
any one of the g1 states. But since there is no restriction on the number of particles 
per state, the second particle can also be placed in any one of the g1 stales, making 
a total of c: possible locations for the first two particles. Since there a re N1 
particles in the level , the total number of possible distributions in this level is 

(1 1-18) 
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For example, if level j includes three s1a1es (K1 - 3) and the two particles a and b 
(N1 - 2), the possible arrangemeniS of !he parriclcs arc shown in Fi,. 11-7, and we 
sec !hat there arc nine. An inlcrchange of the letters a and b belwccn different Slatts, 
as in arrangcmcnls I V and V, VI and VII, VIII and IX, is considered to give ri~ to a 
diffcrcnl microstalc since the particlu a and b arc in different states. On the other 
hand, a change in the order of the letters within a given state docs not change the 
microstate since it leaves the same panicles in the same stale. That is, in arrange­
menr. J, II, and JJJ we could equally well have designated the panicles as ba instead 
of ab. Note that if the particles are indistinguishable and are represented by dols 
instead of lctlcrs, arrangements IV and V correspond to the same microstates, as do 
arrangcmcniS VI and Vll, and VJII and IX, leaving only six different arrangements as 
in Fig. I 1-3. From Eq. (1 1-18), the number of different arrangements is 

in agreement wilh Fig. 11-7. !{'- 3' ~ 9, 

Since for any d istribution of panicles in o ne level we may have any one of the 
possible distributions in each of the o ther levels, the toral number of distributions 
including all levels, with a specified set of particles in each level, is I 

II"'' = II gf•. (11- 19) 
I I 

But II,w1 is not equal to tr. as in the other statistics since an intercha nge of 
particles between ~~~Is (as well as an inlerchange between states in the same level) 
wiU also give rise to a different microstate. {If the particles a re indist inguishable, 
an interchange bel ween levels does not result in a different microstate.) T hus for 
example, if ·particle b in Fig. 11-7 were interchanged with particle c f rom some 
other level so that the two particles in level j were a and c instead o f a and b, we 
would have another nine different a rrangements of part icles in this level. T he 
question then is, out of a total of N particles, in how many different ways can the 
particles be distributed among the energy levels, with given numbers of particles 
N, N,, N,, etc., in the various levels? 

Imagine that the N letters representing the part icles are written down in a ll 
possible sequences. We have shown that there a re N! such sequences. Let the 
first N1 le tters in each sequence represent the par ticles in level I, the next N 1 

letters those in level 2, and so on. Out of theN! possible sequences, there will be 
a number in which the samt letters appear in the fi rst N1 places, but in a different 
order. Whatever the order in which the letters appear, the same particles are 
assigned to level I, so we must d ivide N! by the number of different sequences in 
which the same letters appear in the first N1 places, which is N1 !. In the same way, 
we must also divide by N2!, N,!, etc., so that the total number of ways in which N 
particles can be distributed among the levels, with N, particles in level I, N, 
particles in level 2, and so on, is 

N! N! 

N, !Na!· ·· - fi N,!. 
(ll-20) 

I 
The total number of different dist ributions, or the thermodynamic probability 

11'" ,._8 of a macrostate in the M-B statistics, is therefore the product of ( I 1- 19) 
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Fig. 11-8 The eleven possible macros1a1es or an assembly or 6 particles obeying 
Ma•weii-Bollzmann statistics. The energy levels are equally spaced and have a 
degeneracy org1 ~ 3 each. The total energy or the system is U - 6<. The therm~ 
dynamic probability or each macrostate is given at the bouom, and the average 
occupation number or each level is printed on the right or the diagram. 

and {11-20): 
Nl ''"' I gJ"' 1(/' AI· R - --IT gl = N . II-. 

IT N,! I I Nl! 
(11- 21) 

I 

Figure 11-8 shows the possible macrostates of an assembly of 6 particles 
obeying the M-B statistics. As in Figs. 11-4 and 11- 6, the energy levels arc pre­
sumed to be equally spaced and the degeneracy of each level is g1 = 3. Although 
each panicle could be designated by a leuer, the dots represent only the occupation 
numbers N, or the respect ive levels. The figure is identical with Fig. 11-4 for the 
B-E statistics, but it represents a much greater number of microstates because of 
the possible interchanges of particles between the states in any level, and between 
various levels. The thermodynamic probability of each macrostate, calculated 
from Eq. (11- 21), is given under the corresponding column. The values of iJ"• 
have been divided by 3'. T hus for mncrosta te k = I , in which only levels zero and 
si• a re occupied, 

31 31 

iJ"1 = 6!-- = 18 X 35
, 

S! I! 

1r.f3' = 18. 
The total number of possible microstates is 

Q = ! if"• = 1386 X 3' ~ 3.37 X JO' . 
• 

The average occupation number of each level is given at the right of the corre-
sponding row. 
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11__. THE STATISTICAL INTERPRETATION OF ENTROPY 

In the three preceding sections, the average occupation numbers of the energy 
levels of a system were calculated for particles obeying the Bose-Einstein, Fermi· 
Dirac, and Maxwcll-lloltzmann statistics. It was stated in Section 11-4 that the 
thermodynamic variables of a system were related to the average occupation 
numbers of its energy levels. In this section we derive the connection and begin 
by asking what property of a statist ical model of a system can be associated with 
its entropy. 

For two equilibrium states of an op~n PVT system in which the temperature, 
pressure, and chemical potential arc the same but in which the energy, volume, 
and number of particles are different, the principles of thermodynamics lead to the 
result that the entropy difference between the states is given by 

Tl!.S = l!.U + Pl!.V- p Mi. (1 1-22) 

From the statistical point of view, changes in the energy of an assembly, in its 
volume, a nd in the number of particles result in changes in the total number of 
possible microstates in which the system can exist. For example, iflhe energy U 
o f the system in Fig. 11-4 is increased from 6< to 7<, the number of possible 
micro,<;tates increases from 1532 to 2340 and the average occupat ion numbe!s of 
each level change. (See Problem 11 -9.) 

However, entropy is an extensive property and the total entropy S of two 
independent systems is the sum of(he entropies S1 and S, of the individual systems: 

S=S1 +S2• 

On the other hand, if!l1 and n, are the thermodynamic probabilities o f the systems, 
and since for every microstate of either system the other may be in any one of its 
possible microstates, the number n of possible microstates of the two systems is 
the product of n, and n,: 

n= n,n •. (11-23) 

It follows that the entropy cannot be simply proportional to the thermodynamic 
probability; and to find the form of the functional relationship between Sand n 
such that the conditions above a re satisfied, we assume that Sis some unknown 
function of !l, sayS = J(!l). Then since S ~ S1 + S,, and !l = !l1!l0 , 

J (!l,) + J (!l.) = J(!l,!l.,). 

Now take the partial derivatives of both sides of this equation, first with respect 
to !l, with n, constant, and then with respect to !l, with !l, constant. Since J(!l1) 

is a function of n, only, its partial derivative with respect to n, is equal to its 
total derivative: 

The partial derivative of J(!l2) with respect to !l1 is zero, since !l, is constant. 
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On the right side, the partial derivative of J (!l,O,), with respect to !l, equals 
the total derivative of J(U,O,) with respect to its a rgument (0,0,), multiplied 
by the patltial derivative of its argament with respect to !l,, which is simply the 
constant 0 1• Then if we represent by J '(010,) the derivative of J(O,!l,) with 
resi>cct to its argument, we have 

In the same way, 

dJ(Q,)- !l.,J'(!l,!l,). 
dO, 

dJ(!l,) • 
-- - O,J (0 10 1). 

dO, 

I t follows from these equations that 

Q dJ(O,) = n dJ(Q,) . 
1 dO, . .. dCl, ' 

a nd since 0 1 and 0. are independent , the equation can be satisfied only if each 
side equals the same constant kn. Then for any arbitrary system, 

and hence 

Q dJ(Q) = k 
dQ B• 

dQ 
dJ(O> = ks 0 , 

J(O) - k8 In !l; 

S- k0 In !l. (11-24) 

Thus the only fu nction of 0 which satisfies the condition that entropies are add/tire 
while thermodynamic probabilities are multlplicatiue is the logari thm. 

This equa tion provides the connecting link between statistical and classical 
thermodynamics. T he numerical value of the proportionality constant k n must 
be chosen so that the classical and statistical values of the entropy will agree. We 
shall show. in Section 11 - IS that kH turns out to be none other than the Boltzmann 
constant k = R{N"' 

From a statistical point of view the entropy of a system consisting of a very 
large number of particles is proportional to the natural logarithm of the total 
number of microstates available to the system. If we could prepare an assembly 
so that energetically only one microstate is available to it, Q • I, In 0 = 0, and 
the entropy would be zero. This system is perfectly ordered since the state of each 
particle can be uniquely specified . If more energy states become available to the 
system, Q becomes greater than I and the entropy is larger than zero. In this case 
it is not possible to specify uniquely the state of each particle since the state of a 
particle may be different when the system is in different microstates. Thus the 
system becomes more disordered as more microstates become available to it. 
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The entropy of the system may be thought of as a measure of the disorder of the 
system. 

This statistical interpretation of entropy allows additional insight into the 
meaning of the absolute zero of temperature. According to the Planck statement 
of the third law (Section 7-7) the entropy of a system in internal equilibrium 
approaches zero as the temperature approaches zero. Therefore systems in internal 
equilibrium must be perfectly ordered a t absolute zero. 

Does the quantity k 11 In 0 have the other properties of entropy? We give some 
qualitalitx' answers. 

1. If there is a reversible flow of heat d' Q, into a system at a temperature T, the 
entropy of the system increases by dS ~ d'Q,/T. If the system is at constant volume 
so that the work in the process is zero, the increase d/) in internal energy of the 
system equals d' Q,. But for an assembly of non interacting particles, the values of 
the energy levels depend upon the volume; and if the volume is constant, these 
values do not change. If the energy of an assembly increases, more of the higher 
energy levels become available to the particles of the assembly, with a corre­
sponding increase in the number of available microstates or the thermodynamic 
probability 0 . Hence both Sand In 0 increase when the energy of the system is 
increased. 

2. The entropy of an ideal gas increases in an irrttx'rsiblt free expansion fro m a 
volume V1 to a volume V,. There is no change in internal energy in the process, 
a nd no work is done, but the permitted energy levels become more closely spaced 
because of the increase in volume. For a constant total energy, more microstates 
become available as the spacing of the energy levels decreases, and again both S 
and In 0 increase in the irreversible free expansion. 

3. In a reversible adiabatic expansion of an ideal gas, the entropy S remains 
constant. There is no heat flow into the gas, and the work in the expansion is done 
at the expense of the internal energy, which decreases in the process. If the spacing 
of the energy levels did not change, a reduction in internal energy would result in 
a smaller number of avai lable microstates with a corresponding decrease In In 0, 
but because of the increase in volume the energy levels become more closely 
spaced, and the result ing increase in In 0 just compensates for the decrease arising 
from a decrease in internal energy. The result is that In O, like S, remains constant. 

Many other examples could be cited, and it turns out in fact that complete 
agreement between thermodynamics and statistics results from the assumption 
that the entropy S , whose change dS is defined in thermodynamics by the relation 

dS- d'Q, 
T • 

has its statistical counterpart in the logarithm of the thermodynamic probability 
n of an ass~mbly of a very large number of particles, or in the logarithm of the 
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tota l number of microstates available 10 the assembly. Thus if S = k0 Inn, the 
entropy difference between two neighboring Slates of an assembly is dS -
k 11 d(lnfi). 

Additional insight into the connection between statistical and classical thermo. 
dynamics can be gained by considering two neighboring states or a closed system, in 
which the values of the internal energy U, the energy levels , ,, and the average 
occuft'tion numbers iV1 are slightly different. Since the energy U is given by I, c1N" 
the energy difference between the states is then 

01-m 

that is, the difference in energy results in part from the differences dF/1 in the average 
occupation numbers, and in part from the differences d<1 in the energy levels. 

If the values or the energy levels are function.s of son1e extensive parameter X, 
such as the volume V, then 

and 

~N1 d•1 - [:~N~ ~]dx. 
Ltt us define a quantity Y as 

Then 

d., 
y'" -~N1 dX ' 

IN1d,,- -YdX. 
I 

(1 1- 26) 

(11-27) 

(11- 28) 

If, for example, the parameter X is t~e volume V, the quant ity Y is the pressure P and 

YdX- PdV. 
The energy difference dU is then 

dU -I,, dN, - y dX. 

' 
For two states in which the value or the parametor X is the same, dX = 0, and 

dUx =I •1 dN1• 

' 
:'""principles or thermodynamics lead to the result that whon X is constant, 

dUx- TdS, 

and hence 

(11- 29) 

Thus the equation 
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I 
is the statistical form of the combined first and second law of thermodynamics for a 
closed system: 

dU- T dS- YdX. 

If the system is taken from one state to the other by a rtcrrsiblt process, then 

T dS- d'Q,, and YdX - d'W,. 

Hence in such a process, 
dU - d'Q, - d'W, 

and 
f 'I dl'll - d'Q,. f Nl d.l - - d' W,. (11- 30) 

It is sometimes assumed that the sum :r, <1 dl'l1 Is always equal to the heat flow 
d'Q into the system and sum :r, N1 d<1 is always equal to the negative of the work 
-d'W. We see that th is is the case for a "'"'"iblt process only, and only for such a 
process can we identify the sums in Eq. (II-2S) with the heat flow and the work. 

11- 9 THE BOSE-EINSTEIN OISTRIBUTION FUNCTION 

If a system consists of only a relatively small number of particles, as in Fig. 11-4, 
the average values of the occupation numbers of the energy levels can be calculated 
without much difficulty, when the total number of particles and the' total energy 
are fixed . When the number is very large, as in the statistical model of a macro­
scopic system, direct calculations are impossible. We now show how to derive 
a general expression for the average occupation numbers when the total number of 
particles is very large. Such an expression is called a distribution function. The 
procedure is firs t to derive a general relation for the relative values of In fi for 
two systems having the same set of energy levels, but in the second system the 
number of particles is less than that in the fi rst by some small number n, where 
n « N, and in which the energy is less than in the firs t by n•,. where •, is the energy 
of some arbitrary level r. Thus if unprimed symbols refer to the first system and 
primed symbols to the second system, 

N ' = N- n, U' == U- ,,,. ( 11-31) 

These conditions can always be met, since we can control independently the 
number of part icles in the system, and its energy. The difference in the values of 
kn In fi is then equated to the entropy difference between the systems, using Eq. 
( 11-24). 

The only way in which Eqs. (1 1-31) can be satisfied is that in every macro­
state of the primed system the occupation numbers of all levels, with the exception 
of level r , are the same in both systems, while the occupation number of level r 
in the primed system is less than that in the unprimed system by the number n. 
That is, to satisfy Eqs. ( 11- 31) we mu~t have in every macrostate k, 

Nj ;.. NdJ ,& r), N; • N,- n. ( 11-32) 
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Fig. I 1-9 (a) The pos.>ible macrostates of an assembly of 6 particles obeying 
B·E statistics when U • 6<. (b) The poS.!ible macrostates when one particle 
is removed from level 2 of the assembly of part (a). The thermodynamic 
probability of each macrostate is given at the bottom and the average occupa· 
tion number of each level is printed on the right of the diagram. 

11-9 

The result is equivalent to the removal of n particles from level r in the unprimed 
system, without changing the occupation numbers of the other levels. 

We censider first a system obeying the Bose-Einstein statistics, and illustrate 
the relation between corresponding macrostates by taking as an example of the 
unprimed system that of Fig. 11-4, shown again in part (a) of Fig. 11-9. The 
number of particles is N - 6, the energy U = 6<, and we let n have its smallest 
possible value, n = I. The number of particles in the primed system is N ' = 
N - I ~ S, and level 2 has been selected as t.he a rbitrary level r so that the energy 
of the primed system is U' = U - 2• = 4<. 
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The only possible macrostates of the primed system are shown in part ·(b) of 
Fig. 11-9. There can evidenrly be no macrostates of the primed system corre· 
sponding to a macrostate of the unprimed system in which level 2 is unoccupied. 
Thus there are only five possible macrostates, and it will be seen that in each of 
these the occupation number of level 2 is one less than in the corresponding 
macrostate of the unprimed system, the occupation numbers of all other levels 
being the same in borh sysrems. 

The thermodynamic probability 71'"• of macrostate k in the unprimed system is 

(11- 33) 

In the primed system, 

1r' _ fi (g, + Nj; - I )! 
•• - , (g, - I)! Nj•l . 

( 11-34) 

The double subscript rk means that tr;. is t~e thermodynamic probability of 
macrostale kin the primed syslem, and I hat level r has been selected as the arbitrary 
level from which one particle has been remov~d. The double subscript jk means 
that N,. and Nit are, respectively, the occupation numbers of level ) in macrostate 
k, in the unprimed and primed systems. 

The fact that rhere are no macrostates in ihe primed system corresponding to 
states in the unprimed sysrem in which level r is unoccupied is equivalent to stating 
that for such macrosrates the thermodynamic probability if'";~ is zero. But if 
N,. - 0, then N;. - 0 - I - -I, and the rth term in the product in Eq. ( 11-34) 
becomes 

(g, - 2)! 

(g,- 1)!(-1)! (g,- I)( -1)1 

Hence in order that ir;. shall be zero, and provided that g, > I, we must adopt 
the convention that (- I)! ~ oo. For a more general discussion, see Appendix C. 

The ratio of thermodynamic probabilities is 

In all levels except level r, Nit = N,. so thar allrerms in the product above will 
cancel bel ween numeraror and denominator, with the exce"prion of level r in which 
N;t = N,-. - I. Therefore, since 

and 
(g, + N,. - I)! - (g, + N;.J! = (g, + N;.)(g, + N;. - 1)!, 
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or 

N,•ir• = (g, + N;.)-tr;.; 
and summing over all macrostates, 

"i,N,.~:irt ~: g,.I,tr;. + 2, N;~:ir;1t. 
• • • 

11-9 

The term on the left, from Eq. (I J-8), equals Ji/,0. On the right, the term 
g, !o -tr;. equals g,O; and the last term equals R;o;. Therefore 

and 

R,O - (g, + R;Jo; 

Jil, o; 
g, + R;- a· (11-35) 

In a macroscopic system in which the occupation numbers are very large, the 
removal of o ne part icle from a level will make only a rela tively small change in the 
average occupation number of the level, and to a good approximation we can set 
R; - Jil, so that -

Jil, o; 
g, + R, = fi.' 

Taking the natural logarithms of both sides, we have 

But 

N o; 
In - - '- = ln-. 

g,+R, o 

In ~ ..; In o; - In 0; 

and since by Eq. (11- 24), S- k 0 In 0, 

In~- = S' - S = llS 
g, + R, kn kn · 

( 11-36) 

(11-37) 

From the principles of thermodynamics, the entropy difference llS between 
two states of a no nisolated open system in which the volume (or the appropriate 
extensive variable) is constant is related to the energy difference llU, the difference 
AN in the number of particles, and the temperature T, by Eq. (8-1 J) : 

TllS =- llU- pllN, 
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where p. is now the chemical potential per particle. For the two states we are con­
sidering, 

and hence 
AU= -•., AN= -1, 

Then from Eq. {ll-37), since level r was arbitrarily chosen and could be any · 
level j, 

and 

In ___!!_t_ = P. - ., ; 
g1 + N, k0 T 

8' + N, = .!t. + 1 = exp •, - P. 
N, N, k0 T ' 

which can be written as 

N, = ------~-----
exp ( '' - P.) - I 

k8 T 

{11-38) 

This equation i.s.t.he Bose-Einsttin distribution function. It expresses the average 
occupation number per state in any level j, N1/g1, in terms of the energy ., of the 
state, the chemicat potential p, the universal constant kn, and the temperature 
T. Of course, to apply the equation to a particular system we must know the ex­
pression for the energies <1 of the permitted energy levels, and for the chemical 
potential p. Another derivation of Eq. {11-38) is found in Appendix D. 

11- 10 THE FERM t·DIRAC DISTRIBUTION FUNCTION 

To derive the distribution function in the F-D statistics, we again consider two 
assemblies in which the numbers of particles are respectively Nand N' = N - I. 
In any pair of corresponding macrostates, Ni• = N,. in all levels except an arbitrary 
level r; and in level r, N;. = N,. - I. The corresponding energies are U and 
U' = U- <,. 

Part (a) of Fig. 11- 10 is the same as Fig. 11-6 and shows the possible macro· 
states of an assembly of N = 6 particles and U = 6<, for an assembly obeying 
the F-D statistics and in which the energy levels are equally spaced and g1 = 3 
in each level. Part (b) is the corresponding diagram for an assembly of N' = 5 
particles and one in which level 2 has been chosen as the arbitrary level r so that 
U' = U - 2• = 4<. Again it will be seen that in every pair of corresponding 
macrostates the occupation numbers are the same in all levels except level 2, and 
that in this level N;. = N,. - I. 
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Fig. 11-10 (a) The possible macroslatcs of an assembly of 6 particles obeying F·D 
slalistics when U = 6<. (b) The possible macrostatcs when one particle is removed from 
level 2 of the assembly of part (a). The lhcrmodynamic probability of each macrostate is 
given at the bottom and the average occupation number of each level is prinled on I he 
right of the diagram. 

The thermodynamic probabilities of corresponding macrostates in the un· 
primed and primed assemblies are 

il/' = rr g,, 
• 1 (g1 - N,.)! N"!' 

if";. = rr g,, . 
1 (g1 - Nj.)l Nj.l 

Then 

if";.= I1 (g l - N,.)l N,.! 
if",. 1 (g1 - Nj.)! Nj, !' 

which aftef cancellation reduces to 

Yr;. N,t 
if", = g, - N;, 

or 

N,,if". - (g, - N;,)tr; .. 

Summing over all values of k, we have 

I N,,if", = g, I -rr ;, - I N;,r ;, 
• • • 

and 

(JJ -39) 
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Here we can let FJ; = FJ, since if the states are degenerate enough, N, and N; can 
be much larger than one. By the same reasoning as in the B-E statistics 

!!..t= __ __:_ __ 
g, exp ( •' - "') + I • 

k8 T 

(11-40) 

which is the Ftrmi-Dirac distribution f unction. It differs from the B-E distribution 
in that we have + I in the denominator instead of -I. 

11-11 THE CLASSICAL DISTRIBUTION FUNCTION 

In many systems of indistinguishable particles, the average number ofpart icles 
!iJ1 in a level is very much less than the number of states g1 in the level, so that the 
average number of particles per state, liJ1fg1, is very small. The denominator in 
Eqs. ( 11-38) and (I 1-40) must then be very large; we can neglect the I ; and both 
the B-E and F-D distribution functions reduce to 

FJ, iJ - . , 
-:a: exp--, 
g, k 0 T 

which is the classical distribution function. 

11-12 COMPARISON OF DISTRIBUTION FUNCTIONS FOR 
INDISTINGUISHABLE PARTICLES 

(11-41) 

The distribution functions for indistinguishable part icles can all be represented by 
the single equation, 

!l.!.= ----=----
g, exp (•' - ~-') + a • 

k0 T 

(11-42) 

where a = - I in the B·E statistics, a = +I in the F·D sta tistics, and a = 0 in 
the classical statistics. 

The curves in 'Fig. II-II are graphs of the average number of particles per state, 
N1/g1 , at a given temperature, for the B-E and F-D statistics, plotted as functions 
of the dimensionless quantity (<1 - p,)/k11T. (The energy therefore increases toward 
the right.) The ordinates of the curves have a meaning, of course, o nly at those 
abscissas at which the energy <1 has some one of its permitted values. When 
N1/g1 is very small, the B·E and F-D distributions very nearly coincide, and both 
reduce to the classical distribution. 

Note that when •1 = p,, the value of !iJ1/g1 in the B-E statistics becomes in­
finite, and for levels in which •1 is less than p, it is negative and hence meaningless. 
That is, in this statistics, the chemical potential must be less than the energy of 
the lowest permitted energy level. The particles like to concentrate in levels for 
which •1 is only slightly greater than p,. 
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-) -2 

Fig.Jl-11 Graphs of the Bose-Einstein, Fermi­
Dirac, and classical distribution functions. 

11-13 

In the F-D statistics, on the other hand, all levels are populated down to the 
lowest and as <1 decreases, R,/g, approaches I. That is, the low-energy levels are 
very nearly uniformly populated with one particle per state. 

The curve for classical statist ics has no meaning except when (•, - Jl)/k T is 
large. It is drawn on Fig. I I-I I for comparison only. If the ordinate of Fig. 11- 11 
is taken as R1/Ng1 instead of R,/g,, this curve is the distribution function for 
M-B statistics which is developed in the next section. 

11-13 THE MAXWELL-BOLTZMANN DISTRIBUTION FUNCTION 

The distribution function in the M-B statistics is derived in the same way as in the 
B-E and F-D statistics. Part (a) of Fig. 11 - 12 is the same as Fig. 11- 8, in which 
the dots represent the occupation numbers of an assembly of N = 6 particles and 
of energy U = 6<. Part (b) shows the possible macrostates of an assembly of 
N ' = N - I = 5 particles, and in this assembly level 2 has been chosen for the 
arbitrary level r so that U' = U - 2< = 4< . . The only possible macrostates of 
the primed assembly are those in which level 2 is occupied in the unprimed 
assembly. In any pair of corresponding macrostates, the occupation numbers are 
the same in all levels except level 2; and in level 2, N;. = N .. - I. 

The thermodynamic probabilities of corresponding macrostates in the un­
primed and primed assemblies are 

gi'll 
tr. = N! IT _!_. 

, N1l 
N' 

ir~ = N'! fi ~. 
'Nj! 
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Then 

which simplifies to 

or 

335 
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Summing over all macroslales, we have 

tv,. n; 
Ng, =a· 

and by lhe same procedure as before, 

IV,/N p - <1 - -crexp--, 
g1 knT 

11- 14 

(11-43) 

(11-44) 

which is I he Maxll'tll·Boltzmann distribution Junction. II differs from I he classical 
d islribulion funclion, which is somelimes referred 10 as I he "correcled" Bollzmann 
funca ion , in that lhe numeralor on the left is the average fractional number of 
particles in level}, IVJN, so. thalthe left side is the fractional number of parlicles 
per state in any level. 

11-14 THE PARTITION FUNCTION 

The distribution function in the Maxwell-Boltzmann statisaics can be wrillen 

IV, = N(exp L)g, exp - •, . 
kuT k11T 

_Since ! 1 tv, .. N, and the chemical potential p does neil depend on j, it follows 
that 

! IV1 =- N .. N{expL)! g1 exp - • , . 
1 kuT 1 kuT 

The sum in the last lerm is called the partitlon fimr!ion or sum outr stat~s and 
will be represenled by Z . (German Z11standssumm~) Oaher lei ters are oflen used. 

(11-45) 

The partilion funclion depends only on the lemperalure T and on I he param­
elers I hat determine 1he energy levels. II follows from the 1wo preceding equations 
that in lhc M·B slalislics, 

IJ I 
exp knT = Z' 

and hence the M-B dislribulion funclion can be wrillen 

IV, N - •1 - =-exp- . 
g1 · Z knT 

(11-46) 

( 11-47) 

Thus in a given system, the average number of particles per slate in any level 
decreases exponenlia lly wilh the energy <1 .of lhe level : and lhe lower the !em­
perature T, the more rapid is I he rate of decrease. 
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The cla.ssical distribution function can be written 

tv,= (exp L ) g,exp -•,, 
kaT kaT 

and summing over aU values of j, we have 

I tv, • N = exp- I g1 exp- . ( 
JJ ) - •, 

1 kaT 1 koT 
Then if the partition function Z is defined in the same way as in the M-B 

statistics, we have 
JJ N 

exp ksT = z' 
and the classical distribution function can be wriuen 

(11--48) 

tv, N - • 1 - = - exp-, (11--49) 
g1 Z k 0 T 

which has the same form as the M-B distribution. 
Because of the form of the B-E and F-D distribution functions, these cannot 

be expressed in terms of a single-part icle partition function, and we shall discuss 
them later. 

11- 15 THERMODYNAMIC PROPERTIES OF A ·SYSTEM 

Tlfe importance of lhe partition function Z is that in Maxwell-Boltzmann and 
classical statistics, all the thermodynamic properties of a system can be expressed 
in terms of In Z and its partial derivatives. Thus the first step· in applying the 
methods o f statistics to such a system is to evaluate the partition function of the 
system. 

It will be recalled that all thermodynamic properties of a system are also com­
pletely determined by its characteristic ''Illation; that is, the Helmholtz funct ion 
expressed in terms of X and Tor the G ibbs function expressed in terms of Y and 
T. Here X and Y stand for some related pair of variables such as the volume V 
and the pressure P. 

Thus we begin by deriving expressions for t)le Helmholtz and Gibbs functions 
in terms of In Z. As shown in Section 8--1, these functions are related to the 
chemical potential p by the equation 

(oG) (oF) p.=- c: -
oN 1',Y oN T .x' 

(II-SO) 

For a system obeying M-B statistics, the chemical potential of the system ·is related 
to the partition function by Eq. (1 1--46): 

f' = -k0 T in Z. {I l-SI) 
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In classical statistics, the chemical potential is given by Eq. (11-48): 

p .. - k0 T(Jn Z- InN). 

11-15 

(11-52) 

The partition function , Z = Eg1 exp ( -•1/k,.T), is a function of the temperature 
of the system and of the paramete~ that determine the energy levels of the system 
(such as the volume Vor the magneticintensity Jl"). T hus Eqs. (I I- 51) and (II-52) 
express p in terms of X or Y. 

Consider first a system of indistinguishable particles obeying the classical 
statistics and one in which the energy levels are functions of an extensive parameter 
X. Then the partition function is a function of X and T, and as these are the 
"natural" variables of the Helmholtz function F, we have from Eqs. (II-50) and 
(II-52), 

( CIF\ = -k0 T(Jn Z -In N). 
CIN/T.x 

(II-53) 

The right side of this equation is constant when X and Tare constant. Integrating 
at constant X and T yields 

Fa - Nk0 T(ln Z- InN+ 1), (11-54) 

since JN InN dN- N InN- N. Equation (II-53) would be satisfied if any 
functionf(T, X) were added to the right side of Eq. (II-54), but since F must be 
zero when N = 0, it follows thatf(T, X) = 0. Equation ( 11-54) is on expression 
for Fin terms of N, T, and X; therefore all the thermodynamic properties of the 
system can be determined by tf1e methods of Section 7- 2. 

The entropy Sis given by S = - (CIFfCIT)K.x so that 

(
CI In z) S = Nk0 T -- + Nk,.(lnZ -InN+ 1). 

CIT x 
(II-55) 

Since U = F + TS, the internal energy is 

u = Nkur' ( CIInZ) . 
CIT x 

(II-56) 

The expression for the entropy can now be rewritten as 

S - !!. + Nk0 (1n Z - In N + 1). 
T 

(11 - 57) 

The intensive variable Y associated with the extensive variable X is given by 
Y = - (oFfoX)N.'r • so that 

Y = Nk r(11 In Z\ (11- 58) 
" ax IT' 

which is the equation of state of the system, expressing Y as a function of N, T, 
and X. Thus all thermodynamic properties of this system can be determined if Z 
is known as a function of X and T. 
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For a one-component system, the Gibbs function G = pN, so that from Eq. 
(II-52) 

G = -Nk0 T(InZ -In N). (11-S9) 

But in general for the variables X and Y, 

G = U- TS- YX = F + YX, 
and 

G-F - YX. 
From Eqs. ( II -S4) and (II-S9), 

G-F=Nk 11T, 

so that for any system obeying the classical statistics and in which the energy levels 
are functions of a single extensive parameter X, 

rx ... NknT. (11-60) 

In the special case in which the pnrnmeter X is the volume V and Y is the 
pressure P, 

PV= NknT. 

This is the equation of state of an ideal gas as derived from kinetic theory, pro­
vided that the universal constant k 11 , which was introduced earlier only as the 
proportionality constant in the equation S = k 11 Jn U. is equal to the Boltzmnnn 
constant k - R/N.,. Since k 11 is a tmitwsal constant, which in this special case is 
equal to R/N,,, it must equal R/N ., regardless of the nnture of an assembly. In 
the future we shall, for simplicity, drop the subscript Band write simply S = k In 0. 

It is at first surprising that we obtain only the ideal gas equation of state. 
However, the partition fu nction can only be given by the sum over single particle 
states when the pnrticles do not interact. This is the same condition needed to 
derive the ideal gas law from kinetic theory. 

In t~rms of this notation, the expressions for the thermodynamic properties 
of a system obeying classical statistics and a system in which the energy levels are 
determined by the extensive parameter X are given by I 

F - -NkT(In Z - InN + I), (11-61) 

u - Nkr'(a In z) ' 
ar -" 

(11-62) 

S = Q + Nk(ln Z - In N + 1), 
T 

( I 1-63) 

and 

y = NkT(o ln Z). 
oX T 

(11-64) 



340 STATISTICAL THERMODYNAMICS 11- 15 

It is left as an exercise (Problem 11-30) to show that for a system of dis­
tinguishable particles obeying M-B statistics and in which the energy levels a re 
determined by an extensive parameter X, the expressions for U and Y arc un­
changed, but the expressions for F and S are 

F--NkTlnZ (11-65) 
and 

S =!!. + Nk ln Z . 
T 

(11-66) 

These expressions differ from those for indistinguishable particles by a term pro­
portional toN ln N - N. (See Problem 11-31 ). 

As a second example, consider a system of distinguishable particles obeying 
the M-B statistics and for which the energy levels are functions of an intensive 
parameter Y. Then Z is a fu nction of Y and T ; and since these arc the "natural" 
variables of the Gibbs funct ion, we have, from Eqs. (II- 50) and (11 -SI), 

I 
(Efl) ~ - kT In Z. 

oN T .Y 
(11-67) 

The right side of this equation is constant when Tand Y arc constant. Integrating 
at constant T and Y yields 

G = -NkTln Z. (11-68) 

The arbitrary function g(T, Y) which should be added to the right side of Eq. 
( 11-68) is again zero since G ~ 0 when N ~ 0. This equation appears at first to 
contradict Eq. (1 1-65) since F ,e G. However, Eq . ( 11 -65) is derived for a system 
in which the energy levels arc functions of an extensive parameter X, whereas 
Eq. (11-68) applies to a system in which the energy levels depend upon an intensive 
parameter Y. 

The entropy is now given by S- - (oGfo T)_,· ,y, and hence 

s = NkT( 0 In z) + Nk ln z. ar y 

The enthalpy H equals G + TS, so 

H = NkT' ( il In z) ar y ' 

and Eq. (11-69) can be writtcr 
H 

S = T + Nk lnZ. 

The equation of state is given by 

X= (ilG) = - NkT( olnZ). 
oT .v.7 ilY T 

(11 -69) 

(11-70) 

(11-71) 

( 11 -72) 
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If the parameter Y is the intensity of a conservative field of force, the only 
energy of the particle is its potential energy (gravi tational, magnetic, or electric). 
The internal energy of the system is then zero, and its total energy E is its potential 
energy £ 1, only. If X represents the extensive variable associated with the mtensiv~ 
variable Y, the potenlial energy E, - YX. Then since the enthalpy His defined 
asH= U + YX, and U = 0, it follows that 

E= E,- H, 

and Eqs. (11- 70) and (11 -71) can be written 

and 

F- NkT' (i1ln z) 
i1T y' 

E 
S = T + NklnZ. 

(11-73) 

(11-74) 

It has been assumed thus far in this section that the energy levels were functions 
either of a single extensive variable X or a s ingle intensive variable Y. W e now 
consider the more general case of a multivariab/e system in which the energy levels 
are functions of more than one independent variable. We restrict the discussion to 
systems whose energy levels are functions of two variables only, one of which is 
an extensive variable X1 while the other is an intensive variable Y1 , which we 
consider to be the intensity of a conservative field of force. 

If the system is described by either the Maxwell-Boltzmann or classical 
statistics, we can still define the partition function as 

Z = 1 gtexp (-•t). 
, kT 

The only difference is that the •js are now functions of both X, and Y1 , and the 
partition function is a function of T, X,, and Y1. Since the system has both an 
internal energy U and a potential energy £ 11 - Y,X,, its total energy E is 

E - u + E,- U + Y1X,, 
and we therefore make use of the generalized Helmholtz function F*, defined by 
Eq. (7-34) as 

F• 11 E- TS- U- TS + Y,X1• 

The chemical potential is now 

f'- (ilF:'\ . 
ilN}T.X,.Y, 

If the system obeys the classical statistics, 

I' - -kT(ln Z - In N), 
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and, integrating at constant T, X1, Y,, 

F* "' -NkT(In Z -InN + 1), (11-75) 

setting the arbitrary function of X1 , Y,, and Tequnl to zero as before. 
The variables Y1 and X, , associated with the variables X1 and Y,, are given by 

Y, = -(oF*) = NkT(oln z) . 
oX, .V.T.Y1 oX, T.Y, 

(11-76) 

X,=(oF•) =-Nkt(o lnZ) . oY, .v.T.X, oY, T.x , 
( 11-77) 

The system thus has 111'0 equations of state, expressing Y1 and X, in terms of N, 

T, X,. and Y,. 
The entropy S is 

s = -(oF*) = Nkr(
8 

In 
2

) + Nk(ln z - InN + 1). ( I 1-78) aT .v.x,.Y, aT .v,.Y, 
The total energy E equals F* + TS, so 

E = NkT' ( o In z) • 
oT x,.Y, 

S = E + Nk(ln Z - InN + 1). 
T 

(1 1-79) 

and hence 

( 11 -80) 

If the system obeys the Maxwell-Boltzmann statistics, 

I'= -kTln Z; 

F• = -NkTln Z 
and by similar reasoning, 

(11-81) 

The variables Y1 and X, are again given by Eqs. ( I 1-75) and (I 1-76). The entropy 
is 

The total energy is 

so one can also write 

S = NkT(0 In 2) + Nk In Z. 
aT x,.Y, 

E = Nkr ' ( a In z) . 
oT x,.Y, 

S = E + NklnZ. 
T 

(11-82) 

(11-83) 

( 11- 84) 

In either statistics, the potential energy £1, = Y,X, and the internal energy U is 

U=E-E,,=E- Y,X,. (11-85) 

Specific examples of the general relations derived in this section will be dis· 
cussed in the next two chapters. 
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PROBLEMS 

11-1 Using quantum mechanics, show that the energy levels or a one-dimensional 
infinite square well or width L arc also given by Eq. (1 1-3). 

11- 2 (a) Tabulate the values or the quantum numbers n., n,, n, for the twelve lowest 
energy levels or a free part ide in a container or volume V. (b) What is the degeneracy! 
or each level ? (c) Find the energy or each level in units or h2/8m Vli>. (d) Are the energy 
levels equally spaced? 

Jl-3 Calculate the value or n1 in which an oxygen atom confined to a cubical box I em 
on a side will have the same energy as the lowest energy available to a helium atom con­
tined to a cubical box 2 x 1()-•• m on a side. 

Jl-4 Five indistinguishable particles are to be distributed among the four equally spaced 
energy levels shown in Fig. 11-2 with no restriction on the number or particles in each 
energy state. If the total energy is to be 12<" (a) specify the occupation number or each 
level for each macrostate, and (b) find the number or microstates for each macrostate, 
given the ene'l)' states represented in Fig. I 1- 2. 

Jl-5 (a) Find the number of macrostates for an assembly of four particles distributed 
among two energy levels one or which is two-fold degenerate. (b) Find the thermody· 
namic probability or each macrostate if there is no restriction on the number or particles 
in each energy state and the particles are indist inguishable, (c) distinguishable. (d) Cal­
culate the thermodynamic probability or the assembly for parts (b) a nd {c). 

11-6 In the poker game stwn-rord stud, seven cards are dealt to each player. He makes 
the best hand out or five of those cards. The cards are well shuffled between each deal. 
{a) How many different seven-card hands can be made in a deck of 52 cards? (b) If there 
are fou r players, how many different ways can the cards be dealt if the players are dis­
tinguishable? (c) How many different five-card hands can be ntdde from a seven-<:ard 
hand? 

11-7 For the example illustrated in Fig. 11-4, find (a) the thermodynamic probability 
lrt of each macrostate, {b) the total number of microstates of the assembly 0, (c) the 
average occupation number of each level, and (d) the sum of the average occupation 
numbers. 

Jl-8 Do Problem 11 -7 for a system or seven indistinguishable particles obeying B-E 
statistics and having a total energy U - 6<. 

11-9 {a) Construct a diagram similar to Fig. 11-6, but having eight energy levels. Show 
the possible macrostatcs of the system if the energy U - 7< for six indistinguishable 
particles, obeying B-E statistics. {b) Calculate the thermodynamic probability of each 
macrostate, and (c) show that the to tal number of possible microstates 0 is 2340. (d) 
Find the average occupation number of each level. 

11-10 (a) Suppose that in the F-D statistics, level j includes three sta les (I), (2),1(3), and 
two particles a and b. If the particular sequence of numbers (1), (2), and (3), is selected, 
write down the possible different sequences or leuers and numbers, and show that th is 
agrees with Eq. (11- 15). {b) How many different sequences of numbers are possible? 
(c) What is the total number of different possible sequences of Jeuers and numbers? 
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11-11 Show tha t in the Fermi-Dirac statistics, irlevel j is fully occupied with one particle 
per state, 11·, - I and there is only one way or distributing the particles among the energy 
states or that level. 

11- 12 Do Problem 11- 9 for six indistinguishable particles obeying F-D stat ist ics. In 
this case 0 - 162. 
11- 13 Do Problem 11-9 for six distinguishable particles obeying M-B statistics. In 
this case 0 - 5.17 x 10'. 
11-14 There are 30 d istinguishable particles distributed among three nondegenerate 
energy levels labeled I, 2, 3, such that N 1 - N, - N,- 10. The energies or the levels 
are E"1 - 2 eV. c-1 .. 4 eV, C'3 - 6 eV. (a) Ir the change in the occupation number of 
level 2, •W, - -2, find •IN1 and •IN, such that •IE - 0. (b) Find the thermodynamic 
probability of the macrostate before and a fter the change. 
11- 15 Six I distinguishable particles are distributed over three nondegenerate energy 
levels. Level I is at zero energy; level 2 has a n energy <; and level 3 has an energy 2<. 
(a) Calculate the total number of microstates for the system. (b) Calculate the number of 
mjcrostates such th1U lhere are three particles in level 1. two in level 2, and one in level 3. 
(c) Find the energy of the distribution for which 11 "• is largest. (d) Calculate the total 
number of microstates if the total energy of the six particles is 5<. 
11- 16 Five particles are distributed among the states of the four equally spaced energy 
levels shown on Fig. 11-2 such that the total energy is 12<1• Calculate the thermodynamic 
probability of each macrostate and the average occupation number of each level if the 
particles obey (a) B-E, (b) F-0, (c) M-B statistics. 
11-11 Calculate the change in the entropy of each of the systems illustrated In Figs. 
11- 4, 11 - 6, and 11 - 8 when a n additional energy level is available to the pa rticles and the 
total energy is increased to 7<. [See Problems 11- 9, 11-12, and 11-13.] 

11- 18 The internal energy of the six ind istinguishable part icles of Fig. 11- 4 is increased 
reversibly from 6< to 7< without work being done, but only the levels up through level 6 
can be occupied. (a) Show explicitly that d'Q, - _!1 ., d/il1 and (b) find the increase in 
the entropy of the system. 

11- 19 (a) Construct a diagram similar to part (b) of Fig. 11-9, but in which level 3 is 
selected as the arbitrary level r so that U' - 6< - 3• - 3<. Note that every possible 
macrostate or the primed system corresponds to a macrostate or the unprimed system 
and that with the exception of level 3 the occupation numbers of all levels are the same 
in each pair or corresponding macrostates. (b) How many possible macrostates are there 
for the primed system? (c) How many microstates? (d) Calculate the average occupation 
number of the levels of the primed system. (e) Use Eq. (1 1-35) to calculate the average 
oocupation number or level 3 or the primed system. (f) Calculate the change in the 
entropy of the unprimed system upon removing one particle from level 3. 
11- 20 Fill in the steps of the derivation of (a) Eq. (11-39) and (b) Eq. (11-40). 
11-11 (a) Construct a diagram similar to part (b) of Fig. 11- 10 but in which level 3 is 
selected as the arbitrary level r so that U' - 3<. (b) Calculate the number of microstates 
a va ilable to the primed system. (c) Calculate the average occupation number of the levels 
or the primed system. (d) Use Eq. ( 11 -39) to calculate the average occupation number of 
level 3 or the primed system. (e) Calculate the change in the entropy or the unprimed 
system upon removing one particle from level J. 
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11- 22 Show fhaf Eq. ( 11- 13) for ,-,..~ and Eq. (1 1-17) for tr ,.., bofh roduce fo 

( 11 -86) 

in fhe limif fhaf g1 » N1• This is fhe fhermodynamic probnbilify or a sysfem obeying 
classical sfafiSiics. 

11- 23 By a mefhod similar fo fhaf in Seclion JJ-9, show fhaf Eq. (11-86) of fhe pre­
vious problem leads fo fhc d isfribufion funcfion of Eq. (1 1-41). 

11- 24 Show fhaf Eq. (11-13) for ,..n·R• Eq. (11- 17) for.,.,._, and Eq. (11-86) (Pfoblem 
11-22) for classical sfafisfics can all be r<presenfed by 

..,. _ ITgj(g1 - a)(g1 - 2a) · · · [g1 - (N1 - I )a) 
I Nil • 

where a has fhe values given in Secfion 11- 12. 

11-25 Fill in fhc sfeps of fhe derivafion of fhc Maxweii-Bollzmnnn disfribufion funcfion 
done in Secfion 11- 13. 

11-26 Derive fhc Maxweii-Bollzmann disaribufion funcfion by fhe mefhod of Secfion 
11- 13 buf assume fhafll pnrlicl., are removed from fhc level r of fhe unprimed system, 
where n « N. 
11- 27 (a) Consfructa diagram similar to part (b) or Fig. 11 - 12 but one in which level 3 
is selecfed as fhe arbitrary level r so that U' - 3<. (b) Calculafe the number of micro­
Sfafes available fO fhe primed sysfem. (c) Calculafe fhe average occupafion number of fhe 
levels of the primed system. (d) Calculafe fhe change in fhe enfropy of the unprimed 
system upon removing one particle rrom level 3. 

11-28 Subsfifufe fhe Maxweii-Bollzmann disaribufion funcfion info Eq. (11-29), the 
expr<SSion for fhe enaropy change or a sysfem in a reversible process, fO obfain 

R, 
S - -k ~ N1 1n-. 

7' K• 
11- 29 Seven disfinguishable panicles art dislribufed over fwo energy levels. The upper 
level is nondegenerafe and has an energy 10·• eV higher fhan fhe lower level which is 
two-fold degenerate. (a) Calculafe fhe infernal energy and enaropy or fhe sysaem if il is 
prepared fo have two paraicl .. in fhe upper level. (b) If fhere is no change in fhe system 
when it is brought into contact with a reservoir at a temperature T, calculale the tern· 
perafure of fhe reservoir. (c) Wrife fhe parlifion funcfion for fhis sysfem. (d) Repeat 
parts (a), (b), and (c) for the case fhaf fhe degenerofe level has an energy JO-• eV higher 
than fhe nondegenerafe level. 

11-30 (a) Derive Eqs. ( 11- 65) und (11-66) for a sysfem obeying M-8 sfafi Siics and in 
which fhe energy levels are defermined by an exfensive paramefer X. (b) Show that fhe 
expr<SSions for the infernal energy U and fhe infensive paramefer Y for fh is sysaem are 
sli ll given by Eqs. (11-62) and (11-64). 

I 1-31 (a) Using Eqs. (1 1-11) and (11-86) (Problem 11-22) for fhe fhermodynamic 
probabilify of a macroSiafe of a sysfem of N panicles obeying M-B and classical sfafistics 
respecfively, show fhat n,H, = N!!l,. (b) Use the resulf of para (a) fO show that the 
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enlropies of the two systems are relaled by S61-D - s. + Nk0 (1n N - I) and that the 
Helmholtz functions are relaled by F>J·O - F0 + NkuT(In N - 1). 

11-Jl Show that for a system of N particles obeying M·B or classical statistics the average 
number of particles in the level j is given by 

_ (alnZ\ 
N1 - -Nk8T ""T.;Jr• (11..$7) 

11-33 (a) Derive an expression for the enthalpy of a system if the partition function 
depends on X and T. (b) Derive an expression for the internal energy of a system if the 
partition function depends on y and r. 
11-34 Consider a system of N distinguishable particles distributed in two nondegenerate 
levels separated by an energy < and in equilibrium with a reservoir at a temperature T. 
Calculate (a) the partition function, (b) the fraction NJN and NJN of particles in each 
state, (c) the internal energy U of the system, (d) the entropy S or the system, (e) the 
specific heat capaci ty c. or the system. (f) Make sketches or N1/N, N,/N, U, S, and c. as 
a function of T . 

11-35 Consider a system or N distinguishable particles each having a magnetic moment 
p, distributed over two nondegenerate levels having energies lut'ol2 and - !'LJ2, when 
the magnetic intensity is Jl' .. The particles in the upper level have their magnetic moments 
antiparallel to the field and those in the lower level are aligned parallel to the field. The 
system is prepared to have one-third of all the particles in the upper level and is isolated. 
(a) Find the energy and the net magnetic moment of the system. (b) Calculate the change 
of the energy and the change of the net magnetic moment of the isolated system when 
the magnetic intensity is reversibly reduced to JI'J2 . . (c) Calculate the change in the net 
magnetic moment of the system when the magnetic intensity is reversibly reduced to 
JI'J2 but the energy of the system remains constant. 
11-36 The system of the previous problem is in thermal equilibrium with a reservoir at a 
temperature T. (a) Show that the partition function is given by 

pJI'. 
z- 2cosh 2kur· 

(b) Derive expressions for U, E, S, F•, and M for this system and sketch curves of these 
properties as a function of Tfor a fixed value of ;r .. (c) Use Eq. ( 11..$7) (Problem 11- 32) 
to find how the number of particle$ in each level varies with Jl'0 and T. 

11-37 The M-B statistics and the F-D statistics can be developed by calculating collision 
probabilities for elastic collisions between two particles. If two particles-obeying M·B 
statist ics initially have energies <1 and • • and after the collision <a and '•• then 

•• + •• - <•· - 6) + (<, + 6). 

The number of collisions per unit time F is proportional to the probability /{<1) tha t each 
initial state is occupied: 

F.., - cf( •1)/{ <,). 

Similarly, F~, - </{<,)/(<,). In equilibrium, F 1•1 - F,_,. (a) Show that/(<1) - e-'•/ >'1' 

solves this equation. (b) Use similar reasoning to derive the F-D statistics. Here, how­
ever, the initial states must be filled and the final stales must be empty. Therefore the 



number of collisions per unit time is 

F1, 1 - </(<1)/(<J[I - /(<,))[1 - /(<,)). 

Show that the equation Fu - F,,, can be solved by 

I - /(<,) - ce•,t>'I' 
/(•J 

which yields an equation of the form of Eq. (11-40). 
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11-38 Another way to derive the diSiribution functions is to define a grand partition 
fim<tlon '!II 

and calculate values of /J : 

(a) Show that 

If [n(p - •Jl 
'!II -:~.exp ~j· 

II- - __ d __ In'!'/. 
/•- p) 

leT 

(b) Show that H - I gives the Fermi-Dirac distribution function. (c) Show that H - co 
gives the Bose-Einstein distribution function. 





12 

Applications of statistics to gases 

12-1 THE MONATOMIC IDEAL GAS 

12-2 THE DISTRIBUTION OF MOLECULAR VELOCITIES 

12-3 EXPERIMENTAL VERIFICATION OF THE MAXWELL-BOLTZMANN 
SPEED DISTRIBUTION. MOLECU LAR BEAMS . 

12-4 IDEAL GAS IN A GRAVITATIONAL FIELD 

12--5 THE PRINCIPLE OF EOUIPARTITION OF ENERGY 

12~ THE QUANTIZED LINEAR OSCILLATOR 

12-7 SPECIFIC HEAT CAPACITY OF A DIATOMIC GAS 



350 APPLICATIONS OF STATISTICS TO GASES 12-1 

12- 1 THE MONATOMIC IDEAL GAS 

We next apply the general relations derived in the preceding chapter to the special 
case of a monatomic ideal gas consisting of N identical molecules each of mass m. 
The molecules are indistinguishabl~, and as we shall show later, the average number 
of molecules in each of the possible energy states, except at extremely low tem­
peratures where all real gases have liquefied, is extremely small. The proper 
statistics is therefore the classical statistics (Section I 1- 1 1). 

The first step is to calculate the partition function, 

Z- Ig,exp=!!. 
1 kT 

This requires a knowledge of the energy <1 and the degeneracy g1 of each level. 
We assume that the molecules do not interact except at the instant of a collision, 
so that each is essentially an independent particle and has the same set of energy 
levels as does a single particle in a box. It was shown earlier that the principles of 
quantum mechanics lead to the result that the energy levels of such a particle are 
given by Eq. (1 1-4). 

n~h2v-11' .,----
8m 

(12- 1) 

where n~ = n! + n: + n:, and n., n,, n, a re integers each of which can equal 
I, 2, 3, ... , etc. 

The degeneracy g1 of a level, or the number of energy states in the level, can 
readily be calculated when the quantum numbers are small, as in the example in 
Section 11- 2. In many instances, however, the energy levels of an assembly arc 
very closely spaced relative to the value of the energy itself. We can then subdivide 
the energy levels into groups of width A<1, including those levels with energies 
between <1 and <1 + A <1• We refer to each of these groups as a macrolewl. Let '*' represent the total number of possible stat~s in all energy levels up to and 
including the energy <1• The number of possible states A '*' within the macrolevel 
is equal to the number of states in all levels included in the macrolevel. That is, 
6 '*1 is the degeneracy of the mocrolevel, but it arises in part from the grouping 
together of a large number of levels, while the numbers g1 are fixed by the nature 
of the assembly. 

lmagiqe that the quantum numbers n,, n,, " • are marked off on three mutually 
perpendicular axes, as suggested in the two-dimensional diagram of Fig. 12- 1. 
Every triad of integral values of n., n,, n, determines a point in what can be called 
"n·space," and each such point corresponds to a possible state, provided the 
quantum numbers are positive. We can think of each point as located at the center 
of a cubical cell, each of whose sides is of unit length and whose volume is there· 
fore unity. 

The quantum number n1 corresponds to a vector in n-space from the origin 
to any point, since n; - n! + tt! + 11:. In a system of given volume, the energy 
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.. 
Fig. 12-l Quantum slates in n-space. 

depends only on n1, so that all states of equal energy lie on a spherical surface 
of radius n1 with center at the origin. Since n., n., and n. are all positive, and 
since there is one point per unit volume of n·space, the total number <:§1 of 
possible states, in all levels up to and including the energy.,, is equal to the volume 
of one octant of a sphere of radius n1. That is, 

(12- 2) 

The spherical surface will of course cut through some of the unit cells and it is 
not certain whether a point representing an energy state lies inside or outside the 
surface. However, when n1 is a large number, as is the case for the vast majority 
of molecules of a gas at ordinary temperatures, the uncertainty becomes negligibly 
small. 

The number of states in the macrolevel between <1 and ., + I!J.<1, or the 
degeneracy D. <:§1 of the macrolevel, is 

D. <:§1 = !!. x 3n: D.n1 = !!. n~ D.n1• (12-3) 
6 2 

Geometrically, this corresponds to the number of points in a thin spherical shell 
of radius n1 and thickness D.n1• The degeneracy therefore increases with the square 
of the quantum number n1, for equal values of D.n1• 

The partition function Z for this system is written 

Z- };D. <:§1 exp~ , 
1 kT 
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and on i7serting the expressions for A~~ and <1, we have 

., ( h'v-"' ) Z =- }.;n~exp - --n~ An1• 
2 1 8mkT 

(12-4) 

This sum can be interpreted graphically as follows. Let the values of n1 be; marked 
off on a horizontal axis, and for brevity represent the coefficient of An1 in Eq. (12-4) 
by f(n1). At each value of n1, we construct a vertical line of lengthf(n1), as in Fig. 
12-2. Each productf(n1) An1 then corresponds to the area of a rectangle such as 
that shown shaded in Fig. 12- 2, and the value of Z corresponds to the sum of all 
such areas over values of n1 from j .. I to j .. co, since there is no upper limit to 
the permissible values of n1• To a sufficiently good approximation, this sum is 
equal to ihe area under a continuous curve through the tops of the vertical lines, 
between the limits of 0 and co, so 

Z = !f.m nl exp (- h'v-•ta n:) dn1• (12-5) 
2 o 8mkT 

The value of the definite integral can be found from Table 12-1, and finally, 

z = vC'"~k~.,.· (12~ 
The partition function therefore depends both on the temperature T and the 
volume V, which corresponds to the general extensive variable X in Section 11- 15. 

The Helmholtt function F is given by Eq. (1 1-63) as 

F - - NkT(ln Z -InN + I), 

Fig. Il-l The partition function Z is 
equal to the total area under the step 
fu nction, and is very nearly equal to the 
area under the continuous curve. 
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Table 12-1 [(n) =f. .. x•e-.. • dx. 

n [(n) n f(n) 
---

0 ~A 2 Q 
I 

I 

20 

2 ~Jf. 3 
I 

2Qi 

4 Jfi 8 ;;; 5 
I 
;;; 

6 15Jf., i6 ;;; 
3 

7 ;;< 

i
+ .. 

If n is even, xne-u' dx = 2f(n). 
_., 

f
+«> 

Jf n is odd, x"t-oz' dx - 0. 
-.. 

and the pressure P, which corresponds to the intensive variable Y, is 

Since by Eq. (12- 6), 

it follows that 

Consequently 

P = Nkr( o In z) . 
oV T 

lnZ = In V +~ I n ( 2"""kT) 
2 h2 • 

p = NkT = nRT, 
v v 

(12-7) 

(12-8) 

(12-9) 

(12- 10) 

which is just the equation of state of an ideal gas as derived from kinetic theory. 
The internal energy U is 

U = NkT- -- = -NkT = - nRT, . ( olnZ) 3 3 
oT I ' 2 2 

(12-11) 

which also agrees with the results of kinetic theory for a monatomic gas having 
three degrees of freedom. 
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The heat capacity at constant volume is 

c.,= (8u) = ~Nk = ~nR 
8T v 2 2 ' 

and the molal specific heat capacity is 

The entropy is 

c.= Cv = ~R. 
n 2 

S - !:!. + Nk(ln Z - In N + 1), 
T 

and after inserting the expressions for In Z and U, we have 

S- Nkr~ +In V(2,mkT)"1. 
[j Nh' J 

12- 2 

(12-12) 

(12- 13) 

(12-14) 

The principles of thermodynamics define only difftrmcts in entropy; 
the expression for the entropy itself contains an undetermined constant. There 
are no undetermined constants in Eq. (12-14) and the methods of statistics there­
fore lead to an expression for the entropy itself. 

Using Eq. (12-13), the molal specific entropy can be written 

[ 
(2,mk}'1' 5] 

s =c. In T + Rln V + R In N'hl" + 2 · (12- IS) 

This agrees with the thermodynamic expression for s in its dependence on V and 
T, and contains no undetermined constants. Equation (12-15) is known as the 
Sackur•-Tetrodet equation for the absolute entropy of a monatomic ideal gas. 

12-2 THE DISTRIBUTION OF MOLECULAR VELOCITIES 

In the chapters describing the kinetic theory of gases, a number of results were 
obtained w~ich involved the average or root-mean-square speed of the molecules, 
but at that lime we could say nothing as to how the molecular speeds were distri­
buted around these average values. (We use the term "speed" to mean the mag­
nitude of the velocity.) The methods of statistics, however, lead directly to the 
expression for the occupation numbers of the energy levels and hence to the speed 
distribution. An expression for the distribution was first worked out by Maxwell, 
before the development of statistical methods, and later by Boltzmann and is 
referred to as the Maxll't/1-Bo/tzmann distribution. 

As in the previous section, we express the distribution in terms of the average 
occupation number of a macrolevel, including an energy interval between t 1 and 

• Ouo Sackur, German chemist (1880-1914). 
t Hugo M. Tetrode, Dutch physicist (1895-1931). 
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~, + A<1. Let ,V represent the total number of molecules with energies up to and 
including the energy '•· The average number of molecules included in the macro­
level, or the average occupation number of the macrolevel, is then ~.. The 
quantities ~~ and Af/1 then correspond to the occupation number Fl, and de­
generacy g1 of a single energy level and both the M-B and classical distribution 
functions can be written 

~1 --Afl1 exp -. N (-~,) 
Z kT 

(12-16) 

Because we are interested in the distribution in spud rather than in enugy, 
we express the degeneracy Afl1 in terms of the speed v, instead of the quantum 
number n1• We have from Eqs. (12- 1) and (12-3), 

n'h•v-11
• 1 1 

£,=~:::~2mvl. 

A fl1 - in,An1• 

It follows from these equations that 

A ':I - 4 .. m•v •A • - h. v v. (12- 17) 

For simplicity, we have dropped the subscript j from v, and written A fl. to 
indicate that the degeneracy is expressed in terms of v. Finally, taking the expres­
sion for Z from Eq. (12-6), we have 

~ = 4':_(....!!!..\"'u•exp (- mv•) Au. 
• .,;.. 2kT} 2kT 

(12-18) 

The quantity .,v. represents the average total number of molecules with all speeds 
up to and including v, and A.,V. is the average number with speeds between v 
and v + Av. 

It is helpful to visualize the distribution in terms of"velocity space." Imagine 
that at some instant a vector vis attached to each molecule representing its velocity 
in magnitude and direction, and that these vectors are then transferred to a common 
origin, resulting in a sort of spiny sea urchin. The velocity of each molecule is 
represented by the point at the tip of the corresponding velocity vector. Figure 
12-3 shows one octant of this velocity space. Geometrically speaking, the quantity 
,v. represents the average total number of representative points within a sphere 
of radius u, and ~. the number within a spherical shell of radius u and thick­
ness Au. 

The coefficient of Au in Eq. (12-18), equal to the ratio A.,V ./Au, depends only 
on the magnitude of v, or on the speed. It is called the Maxwell-Boltzmann speed 
distribution function and is plotted as a function ofv on Fig. 12-4. The number of 

I 
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.. 

Fig •. ll-3 Diagram of velocity spaoe. 

Fig. Jl-4 Graph of Maxwell·Boltzmann 
speed distribution function. 

12-2 

., 
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velocity vectors A.,V. terminating between v and v + l1v is represented in this 
graph by the area of a narrow vertical strip such as the shaded one shown, since 
the height o f the strip is t;..;V Jt>v and iLS width is t.v. {Note carefully that the 
ordinate of the speed distribut ion function does not represent t;..;V •. ) The d istri· 
bution function is zero when v '"' 0, since then v• .. 0 and the exponential term 
equals I . This means that no molecules {or very few molecules) a re at rest. The 
function rises to a ma.ximum and then decreases because the exponential term 
decreases more rapidly than v' increases. 

I f velocity space is subdivided into spherical shells of equal thickness, the 
speed v,. a t which the distribution function is a maximum is the radius of that 
spherical shell which includes the largest number of representative points. The 
speed v,. is called the mo$1 probabl~ spud. To find iLS value, we take the first 
derivative of the distribution function with respect to v and set it equal to zero. 
Neglecting the constant terms in Eq. (12- 18), this procedure yields: J 

.!...[•' exp ( -mv')] .. 0. 
dv 2kT 

It is left as a problem to show that 

•• = ,ftT<17iii. (12-19) 
The distribution function can now be expressed more compactly in terms of 

l1.AI". 4N , ( -•) -- .. -- v exp - . 
~v .J"v!. v!_ 

(12- 20) 

T he distribution function depends o n the temperature of the gas throug h the 
quantity "•• which appears both in the exponentia l funct ion and iLS coefficient. 
Figure 12- 5 is a graph of the distribution function at three different temperatures. 

Fig. 12-S Graph of M· B spud dislribution 
(unction at 1hree different temperatures, 
T0 > T2 > T1• 



368 APPLICATIONS OF STATISTICS TO GASES 12- 2 

The most probable speed decreases as the temperature decreases and the "spread" 
or the speeds becomes smaller. The areas under all three curves are equal , since 
the area corresponds to the total number or molecules. 

As explained in Section 9-3, the average or arithmetic mean speed is 

I 
D=NivAA" •. 

Using Eq. (12-20) and approximating the sum by an integral, we have 

ii= ,~ . J."'v•cxp(-,0~dv. 
"'"""' • v,.-J 

The definite integral, From Table 12-1, is o./2, so 

v=2v,.= ~. .J7r ~;-;;; (12- 21) 

The root-mean-square speed is 

v,m,- ..;=,} = (~I v'AA".r = [ 4 J."' , (-v') ]''' J;.v:,. 
0 

v exp v!. dv . 

The definite integral equals 
3f v>, so 

(12-22) 

which agrees with Eq. (9- 19) obtained From kinetic theory. The method used here 
is Far more general than that used to derive Eq. (9- 19). The method is applicable 
to systems more complicated than an ideal gas by changing the dependence or 
• 1 and g1 on the velocity or the particles. 

In summary, we have 

The three speeds are shown in Fig. 12- 6. The relative magnitudes oF the three, at a 
given temperature, arc 

v. :u:v,m, • I :1.128:1.224. 

The quantity AA". represents the number or velocity vectors terminating in a 
spherical shell in velocity space, or "volume" 4,v• Av, between o and o + Av. 
The number or representative points per unit " volume" within the shell, or the 
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Fie. 12-6 Most probable (v.), ari thmetic 
mean (ii), and root·mean·square (v,., ) 
speeds. 

"density" p. in velocity space, is 

p - ~A". = N(-1 
)•exp (-•'\ 

• 4ml Ao .,foo,. u:: J' (12-23) 

The quantity p. is called the Maxwell-Boltzmann velocity distribution function. It 
is a maximu m at the origin, where o = 0, and decreases exponentially with o' as 
shown in Fig. 12- 7. 

Note that although the density is a maximum at the origin, the spherical shell 
containing the largest number of representative points is that of radius v... The 
reason for this apparent discrepancy is that as we proceed outward from the origin, 
the volumes of successive spherical shells of equal thickness ~u continually in· 
crease, while the number of representative points per unit volume continually 
decreases. The volume of the innermost shell (which is actually a small sphere of 
radius Au) is essentially zero, so that al though the density is a maximum for this 
shell, the number of points within it is practically zero because its volume is so 
small. Jn other words, practically none of the molecules is at rest. Beyond the 

Fig. 12-7 Graph or Ma•well· 
Boltzmann ~locity distribution 
function. 
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sphere of radius u,., the density decreases more rapidly than the shell volume in­
creases and the number of points in a shell decreases. 

The number of molecules f1.AI',., having specified values of all three 
velocity compontnts corresponds, in Fig.' 12- 3, to the number of representative 
poiniS within a small rectangular volume element in velocity space having sides 
of length Au •. Au •. and Au., and located at the point "·· u •• u,. The volume of the 
element is Au. Au, Au, and the number of representative points within it is the 
product of iiS volume and the density p, . Thus 

( 
I )' [-(u! + u! + u:)J 

= N .;; "'"' exp v!. .1oa .6.u,. Av., 

since u1 -= v! + v! + v!. 
The number of molecules having an x-,y-, or z-component of velocity in some 

specified interval, regardless of the values of the other components, is represented 
in Fig. 12-3 by the number of representative points in the thin slices perpendicular 
to the velocity axes. (The diagram shows only the intersections of these slices 
with planes perpendicular to the axes.) Thus to find the number of molecules 
f1.AI'. with velocity components between o, and u, + Av,, we sum A%, , • over 
all vaiues of u, and u,. When the sum is replaced with an integral, we h~v"e ' 

f1.AI',, = NCd UJ[[exp c~=) du, [exp (~~:) du,] exp ( ~~:)Au •. 
Each of the integrals, from Table 12-1, equals..{; u,., and therefore 

f1.AI',, I (-u!) --=N--exp-
Au. ~; v,. v~ ' 

(12-24) 

with similar expressions for u, and u,. These are the Maxwell-Boltzmann distri­
bution functions for ont component of velocity, and that for the x-component is 
plotted in Fig. 12-8. The slice in Fig. 12- 8 containing the largest number o f 
representative points is therefore the one at u, - 0, and the most probable velocity 
component along any axis is zero. 

The distribution represented by Eq. (12-24) and Fig. 12-8 is known as a 
gaussian• distribution and is typical of many sorts of random distributions, not 
just that of molecular velocity components. This is to be expected, since the treat­
ment that led to Eq. (12- 24) is so very general. 

We can now show that it is appropriate to use the classical distribution func­
tion to describe an ideal monatomic gas. II will be recalled that the Bose-Einstein 
and Fermi-Dirac distribution function both reduce to the classical distribution 

• J. Carl F. Gauss, German mathematician {1777-ISH). 
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Fig. ll-8 Maxwell-Boltzmann veloc­
iry disrriburion funcrion for a single 
componenl or velociry. 

311 

func lion, provided I he occupation numbers A%1 are much smaller than the number 
of sta tes tJ.'§1 in the macrolevel j. In other words, the classical distribution func­
tion is applicable provided t:..A',!M/1 « I. According to Eq. (12- 16), the general 
expression for tJ..A' ,/M/1 in this case is 

and for an ideal gas, 

Therefore 

!J..A', N ( -•,) --=-exp-
tJ.~1 Z kT ' 

(
21Tmk'!}311 

Z=V-h-,-, . 

tJ.%1 N( 2,.mk1) ... " ( -•1) 
tJ. <§

1 
= Y -h-,--1 exp kT · 

Lei us rake u an example helium gas at srandard condir ions. In a Maxweii­
Bollzmann velociry disrriburion, rhe energies ., arc grouped around the mean value 
3kT{l. Then •,/kT is of rhe order of uniry and so is exp (- •,/k1). The number of 
molecules per unit volume, N/V, is aboul 3 x rou molecules m-• and for helium, 
m - 6.7 X ro-n kg. Jnserring lhe values or"· k, m, and Tin the preceding equation, 
we get 

t..IY, • 
A'§, ::. 4 X 10", 

which is certainly much less rhan uniry. (Only about four slates in a million arc 
occupied!) However, as rhc lemperaturc is lowered, rhc value of t..IY'1/A~1 increases, 
and provided the gas can be cooled to very low temperalures withoul condensing, 
the classicalsrarisrics may cease to be applicable. Conversely, condensation may well 
be adjusted just when the classical statistics cease to be applicable, and this reftects 
the essenlially quantum-mechanical nature of liquid helium. 
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12-3 EXPERIMENTAL VERIFICATION OF THE M AXWELL-BOLTZMANN 

SPEED DISTRIBUTION. MOLECULAR BEAMS 

An important technique in atomic physics is the production of a collimated beam 
of neutral particles in a s<Kalled moltcular Mam. A beam of chargd particles, 
electrons or ions, can be accelerated and decelerated by an electric field, and guided 
and focused by either an electric o r a magnetic field. These methods cannot be 
used if the particles are uncharged. Molecular beams can be produced by allowing 
molecules of a gas to escape from a small opening in the walls of a container into a 
region in which the pressure is kept low by continuous pumping. A series of • 
baffles, as in Fig. 12- 9, limits the beam to a small cross section. Since one often 
wishes to work with molecules of a material such as silver, which is a solid at room 
temperature, the temperature in the container must be great enough to produce 
a sufficiently high vapor pressure. Hence the container is often a small electric 
furnace or oven. 

We have shown in Section 9-3 that the number of molecules with speed v, 
striking ~e surface of a container per unit area and per unit time, is 

~vAn. (12-25) 

where An. is the number o f molecules per unit volume with speed v. 
If the molecules have a Maxwell-Boltzmann speed distribution, the number 

per unit volume with a speed vis given by Eq. ( 12-18) 

An. = ;,(2:Trv• exp ( ~:;') Av. 

If there is a hole in a wall of the oven, small enough so that leakage through 
the hole does not appreciably affect the equilibrium state of the gas in the oven, 
Eq. (12-25) gives the number with speed v escaping through the hole, per unit 
area and per unit time. We wish to compute the rms speed of those that escape. 
Following the standard method, the mean-square speed of the escaping molecules 
Is found by multiplying by v' the number that escapes with speed v, integrating 
over all values of v, and dividing by the total number. The rms speed is the square 

o ... Baines 

Fig. 12-9 Production or a beam or 
neutral particles. 

h 

F 
d 
d 
6 
tl 
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root of the result. It is left as a problem to show that 

·=· =ff!.. (12-26) 

The rms speed of the molecules in the oven is 

v, .. , =fff.. 
so that those escaping have a somewhat higher speed than those in the oven . 

The distribution in direction of the molecules escaping through the hole is 
given by Eq. (9--14): 

t.ci>m=..!_ iin cos O. 
f.w 41T 

That is, the number per unit solid angle in the emerging beam is a ma~imum in the 
direction of the normal to the plane of the opening and decreases to zero in the 
tangential direction. 

Direct measurements of the distribution of velocities in a molecular beam 
have been made by a number of methods. Figure 12- 10 is a diagram of the ap­
paratus used by Zartman and Ko in 1930-1934, a modification of a technique 
developed by Stern in 1920. In Fig. 12-10, 0 is an oven and S1 and S1 are slits 
defining a molecular beam; C is a cylinder that can be rotated at approximately 
6000 rpm about the a~is A. If the cylinder is at rest, the molecular beam enters 
the cylinder through a slit s. and strikes a curved glass plate G. The molecules 

I --:--s, 
--i--s, 

C=Jo 
Fig. IZ- 10 Apparatus used by 
Zartman and Ko in studying 
distribution of velocities. 
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stick to the glass plate, a nd the number arriving at a ny portion can be determined 
by removing the plate and measuring with a recording microphot6meter the 
darkening that has resulted. 

Now suppose the cylinder is rotated. Mo lecules can enter it only during the 
short t ime intervals during which the slit S crosses the molecular beam. I f the 
rotation is clockwise, as indicated, the glass plate moves toward the right while 
the molecules cross the diameter of the cylinder. They therefore strike the plate 
at the lefi of the point of impact when the cylinder is at rest , and the more slowly 
they travel, the farther to the lefi is this point of impact. The blackening of the 
plate is therefore a measure of the "velocity spectrum" of the molecular beam. 

I 
I 
I 
I 
I 
I 
I 

,.;.::.::.·..::.·..:_·..:._·.::._·.::....1 !o 
~-~-~- ~ ~~~~~- : 

"" .................. ................ -io· 
I 
I 

', I 
.... ~o· 

Fi1:. 12-11 Schematic diagram or apparatus or Estermann, Simpson, 
and Stem. 

A more precise experiment, making use of the free fall of the molecules in a 
beam, was performed by Estermann, Simpson, and Stern in 1947. A simplified 
diagram of the apparatus is given in Fig. 12- 11. A molecular beam of cesium 
emerges from the oven slot 0 , passes through the collimating slitS, and impinges 
on a hot tungsten wire D. The pressure o f the residual gas in the apparatus is of 
the order of 10~ Torr. Both the sli ts and the detect ing wire are horizontal. The 
cesium atoms striking the tungsten wire become ionized , reevaporate, and a re 
collected by a negatively charged cylinder surrounding the wire but not shown in d 
the diagram. The ion current to the collecting cylinder then gives d irectly the r 
number of cesium a toms impinging on the wire per second. 

In the absence of a gravitational field, only those atoms emerging in a hori- a 
zontal direction would pass through the slitS, and they would all strike the collector t 
in the position D regardless of their velocities. Ac tually, the path of each atom is ) 
a parabola, and an atom emerging from the slit 0 in a horizontal direction, as n 
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indicated by the dot and dash line, (with the vertical scale greatly exaggera ted) 
would not pass through the slit S. The dashed line and the dotted line represent 
the t rajectories of two atoms that can pass through the sli tS, the velocity a long the 
dashed trajectory being greater than tha t along the dotted one. Hence as the 
detector is moved down from the pos ition D, those atoms with velocities corre­
sponding to the dashed trajectories will be collected at D' , those wi th the slower 
velocity corresponding to the dolled trajectory will be collected at D•, etc. Measure­
ment of the ion current as a fu nction of the vertical height o f the collector then give• 
the velocity distribution. 

Fig. 12- 12 Experimental verification of the 
Maxwell-Boltzmann speed distribut ion fu nction. 
This is Fig. 1 from R. C. Miller and P. Kusch, 
"Velocity Distribution in Potassium and 
Thallium Atomic Beams," Plrysical Rtvltw 99 
(1955): 1314. Reprinted by permission. 

In 1955 Miller and Kusch reported a still more precise measurement of the 
distribution of velocities in a beam of thallium atoms. Their data are shown in 
Fig. 12- 12. The oven, which was controlled to 0.2S' C, was made from copper 
to insure a uniform temperature distribution. The thallium a toms passed through 
a slit whose dimension para llel to the beam was 0.003 em to avoid scattering in 
the neighborhood of the slit. The detector was simila r to the previous experilnent. 
As the a toms came out of the sli t they had to pass through one of 702 helical slits 
milled a long the surface of cylinder 20 em in diameter, 25.4 em in length. Each 
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slit was 0.04 em wide and 0.318 em deep. As the cylinder was rotated, only those 
atoms having an appropriate velocity would pass through the slit without being 
scattered. With these precautions Miller and Kusch were able to show that the 
velocity distribution of the thallium atoms agreed with the Maxwell-Boltzmann 
velocity distribution to within I % for 0.2 < x < 1.8, where x - vfv~. This 
agreement is seen on Fig. 12- 12 where the points are the data for two d ifferent 
experiments and the solid line is the theoretical curve computed from the Maxwell­
Boltzmann speed distribution. 

12-4 IDEAL GAS IN A GRAVITATIONAL FIELD 

In the precJding sections, the energy of a gas molecule was considered to be wholl, 
kinetic; that is, any gravitational potential energy of the molecule was ignored. 
We now take this potential energy into account, so that the gas serves as an example 
of a multi variable system. 

Let us take as a system an ideal gas in a vertical cylinder of cross-sectional area 
A, as in Fig. 12-13. The lower end of the cylinder is fixed and the upper end is 

Fi&. ll-13 An ideal gas in a 
cylinder in a gravitational field. 

provided with a movable piston. If the piston is a t a height L above the bottom 
of the cylinder, the volume V occupied by the gas is V = AL. The origin of space 
coordina tes is at the bottom of the cylinder, with they-axis verlically upward. 
The system is in a uniform gravitational field of intensity g, direcled vertically 
downward ; but the value ofg can be changed by, say, moving the system to another 
location whereg has a different value. The temperature Tis assumed to be uniform. 

The gas is therefore a multivariable system, described by three independent 
variables T, L, and g, and it has a gravitational potential energy E. as well as an 
internal energy U. The appropriate energy function is therefore the total energy 

1 
e 

n 
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given by 

d from Eq. (7-31 ), 
E=U+E,,. 

TdS ~ dE+ Y1 dX,- X1 dY,. 

•e extensive variable X, is the length L , and the intensive variable Y, is the 
avitational field intensity g. Let us represent the variable Y, by n, and the 
Iiable X, by r. Then 

T dS = dE + n dL- r dg. (12- 27) 

·e now use the methods of statistics to find the quantities n and r. The first 
:p is to determine the partition function Z. 

A molecule whose vertical coordinate is y has .a gravitational potential enqrgy 
V in addition to its kinetic energy mu1/ 2, and its total energy < is 

• - mv'/2 + mgy. 
An energy interval between • and < + tu includes a kinetic energy interval 

>rresponding to speeds between v and v + Au, and a potential energy interval 
>rresponding to elevations between y andy + t:.y. The degeneracy t:.!l. of the 
>eed interval, since V- AL, is given by Eq. (12-17), 

t:.!l _ 4"m'AL ' t:. 
• - h' v v. (12-28) 

The potential energy is not quantized ; a molecule may have any arbitrary 
levation y and any potential energy mgy. The distribution in potential energy 
' given by the same expression as that for quantized levels, however, if we set 
Je degeneracy t:.!l, of the potential energy interval equal to t:.yfL: 

t:.f§ ~ t:.y 
• L 

(12-29) 

For any one of the possible kinetic energy states, a molecule can have any 
me of the possible potential energy states. The total number of possible states 
l':l in the energy interval is therefore the product of t:.!l, and t:.<§,: 

!:.':1 ~ t:.!l,t:.':l,. 
The partition function Z is 

z-!t:.'lexp(;;) 

- [ }:!:.':1, exp ( ~:;')] [ !t:. ':1, exp ( - km:y)J (12-30) 

lf we designate the sums by Z, and Z,, respectively, then 

z- z.z,. In Z - In Z, + In Z,. 
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The first sum in Eq. (12-30) is to be evaluated over all values of u from 0 to 
co, and the second over all values of y from 0 to L . When the expressions for 
6 '!1, and 6 -:?. are inserted, and the sums replaced with integrals, we find 

Therefore 

(
2rrmkT\'11 

z. = AL -
11
-,-, , 

Z kT [r (-mgL)] , --- - exp . 
mgL kT 

{12- 31) 

(12-32) 

In Z - ~In T - In g + In [r - exp ( -~•/L) J + constant. {12-33) 

The function F* is given by Eq. {11-75), 

F* = -NkT(In Z - In N + 1), 

and F* is a function of N, T, g, and L. 
If N is constant, 

n =-(oF") = Nkr( o ln Z) • 
oL .... oL .... 

and 

r = (oF*) _ -Nkr(oln z) . 
or ... r. or T.r. 

On carrying out the differentiations, we find 

n _ Nmg 
- exp (mgLfkT) - 1 ' 

r = Nk T _ NmL 
g exp (mgLfk T) - 1 

{12-34) 

(12- 35) 

Thus the system has two equations of stale, one expressing n as a funct ion of 
T, L, and g, and the other expressing r as a function of these variables. 

The physical significance of r can be seen as follows. The gravitational 
potential energy £ 0 is 

and hence 
£ 1,- Y,X, = gr, 

r=~. 
g 

Thus r is the potential energy, per unit field intensity. The potential energy is 
therefore I 

NmgL 
E0 = gr = NkT - . 

exp (mgLfkT) - I 
(12-36) 
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T he total energy E is 

E ~ NkT'( o In Z) - ~ NkT - NmgL ' 
oT L., 2 exp (mgLfkT) - I 

(12- 37) 

nd since U = E- £ 0 , it follows that 

3 
U = 2NkT . 

fence the internal energy is the same as in the absence of a gravitational field and 
epends only on the temperature. 

T he entropy can be calculated from 

S - §. + Nk(ln Z - InN + 1). 
T 

We next calculate the pressure P as a fu nction of elevation. The number of 
1olecules A%, in a macrolevel betweeny andy+ fly is, from Eq. (12- 16), 

fl.A", - - fl <§, exp -- . N (- mgy) 
Z, kT 

(12-38) 

'he volume of a thin cross section is A fly, so the number of molecules per unit 
olume at a height y is 

fl.AI'. 
"r z: A 6y: 

'rom the ideal gas law, the pressure P, a t this height is 

P, = n,kT. 

It follows from the preceding three equations, after inserting the expressions 
or fl'd, and Z,. that 

P _ Nmg exp ( -mgyfk T ) 

• A I- exp (-mgL/kT) 

It the bottom of the container, y - 0, and the pressure P0 is 

Nmg 
Po = - - ---~-~::-= 

A I - exp (- mgLfkT) 

' he pressure P, can therefore be written more compactly as 

(
- mgy) 

P, • P0 exp ~, (12-39) 

.nd the pressure decreases exponentially wi th elevation. Equation (12- 39) is 

.nown as the baromnric ~qua/ion or the /all' of almosphrrn. It can also be derived 
rom the principles of hydrostatics and the equation of state of an ideal gas. 
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At the top of the container, y • L and 

PL = Nmg n 
A exp (mgL/kT) - I = A· 

Therefor9 

n - P~. (12-40) 

and the quantity n is the force exerted against the piston at the top of the con­
tainer. The work when the piston is displaced upward by an·amount dL is 

dW - D dL- PLA dL- PLdV, 

and the product n dL is the work when the gas expands. 
In 1909 Perrin• used Eq. (12-39) in one of the earliest precision determinations 

of Avogadro's number NA- Instead of gas molecules, he utilized particles of micro­
scopic size suspended in a liquid of slightly smaller density, thus reducing the 
effective value of"g". The number of particles at different levels was counted with 
a microscope. 

If~. and ~. arc the average numbers at heights y 1 andy1, then 

A%, = exp [- mg(y, - Ya)J. 
A% 1 kT 

(12-41) 

All of the quantities in this equation can be measured experimentally with the 
exception of the Boltzmann constant k, so that the equation can be solved fork. 
Then N 4 can be found, since k equals the universal gas constant R divided by N 4 , 

and R is known from other experiments. Perrin concluded that the value of N4 
lay between 6.S x JO'" and 7.2 x 10'", compared with the present best experi­
mental value of 6.022 x 10" molecules kilomoJe- •. 

12-5 THE PRINCIPLE OF EQUIPARTITION OF ENERGY 

It will be recalled that the principle of equipartition of energy was introduced in 
Section 9-6 merely as an inference lhat might be drawn from some of the results 
of the kinetic theory of an ideal gas. We now show how this principle follows from 
the M·B or classical distribution function and what its limitations are. 

The energy of a particle is in general a function of a number of different 
parameters. These might be the velocity components, the vertical elevation of the 
particles in a gravitational field, the angle that a molecular dipole makes with an 
electric field, and so on. Each of these parameters is called a degru of frudom. 
Let z represent any such parameter and •(z) the energy associated with that 
parameter. If the energy can be expressed as a continuous function of the param­
eter, as in the preceding sections, the M· B and classical distribution function lead 

• Jean Perrin, French physicist (1870-1942). 
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to the result that the average number of particles within a range t:.z of the parameter 
is given by an expression of the form 

tvr', = A exp [ -k•~z)J 6 z, 

where A is a constant independent of z. As examples, see Eq. ( 12- 24) for the case. 
in which z represents one of the rectangular components of the velocity, or Eq. 
(12-38) in which z represents the verr ical coordinate y. 

When the sum is replaced with an integral, the total number of particles, N, 
is given by 

N - A J exp [ -k•~•>J dz, 

the limits of integration being over all values of z. 
The total energy £(z) associated with the parameter z is 

E(z) = J <(z) d%, = A J <(z) exp [- '~i] dz. 

The mean energy t(z) of a single particle is 

i(z)- E(z) . 
N 

Now if the energy <(z) is a quadratic function of z, that is, if it has the form 
<(z) - az•, where a is a constant, and if the limits of z are from 0 to oo, or from 
- oo to +oo, then from Table 12- 1, 

J az• exp ( -az1/kT) d z 
1 

l(z) = - - kT. (12-42) J exp ( -az1fk T) dz 2 

That is, for every degree of freedom for which the conditions above are fulfilled, 
the mean energy per particle, in an assembly in equilibrium at the temperature T, 
is kT/2. This is the general statement of the equiparrition principle. 

The conditions above are fulfilled for the translational velocity components 
v,, v,: and v,, since the energy associated with each is mo!/2, mv!/2, or mo!/2 
and the range of each is from - oo to + oo. They are also fulfilled for the displace­
ment x of a harmonic oscillator, since the potential energy associated with x is 
Kx1f2, K being the force constant. 

The conditions are not fulfilled for the vertical coordinate y of a gas in a 
gravitational field, where the potential energy is mgy; the mean gravitational 
potential energy is not kT/2. Neither are they fu lfilled for the energy associated 
with molecular rotation, vibration, and electronic excitation, because of the 
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quantized character of these energies, which can take on only certain discrete 
values and cannot be expressed as a continuous function of some coordinate. The 
energy associated with them is not a simple linear function of the temperature. 

12-41 THE QUANTIZED LINEAR OSCILLATOR 

We consider next an assembly of N identical linear oscillators, assumed distin­
guishable so that we can use Maxwell-Boltzmann statistics. The properties of such 
an assembly form the basis of the theory of the specific heat capacity of polyatomic 
gases and of solids. 

A linear oscillator is a particle constrained to move along a straight line and 
acted on by a restoring force F ~ - Kx, proportional to its displacement x from 
some fixed p oint and oppositely directed. The equation of motion of the particle is 

d'x 
F = m dt' ~ -Kx, 

where m is the mass of the particle. If displaced from its equilibrium position and 
released, the particle oscillates with simple harmonic motion of frequ ency •· given 
by 

., =.!. JK[;,. 
2,. 

The frequency depends only o n K and m, and is independent of the amplitude x,.. 
The energy • of the oscillator is the sum o f its kinetic energy mv'f2 and its 

potential energy Kx'/2. Since the total energy is constant, and the kinetic energy 
is zero when the displacement has its maximum value x,., the potential energy at 
this displacement is equal to the total energy • and hence 

,.! Kx!.. 
2 

Thus the total energy is proportional to the squau of the amplitude, x,.. 
If the oscillators were compl~tely independent, there could be no interchange 

of energy bftween them, and any given microstate of the assembly would continue 
indefinitely. We therefore assume that the interactions between the particles are 
large enough so that there can be sufficient exchanges of energy fo r the assembly 
to assome all possible microstates consistent with a given total energy, but small 
enough so that each particle can oscillate nearly independently of the others. 

In classical mechanics, a particle can oscillate with any amplitude and energy. 
The principles of quantum mechanics, however, restrict the energy to some one 
of the set of values 

(12-43) 
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•here n1 = 0, I , 2, ... , and h is Planck's constant. An unexpected result is that 
1e oscillator can never be in a state of zero energy, but that in the lowest level the 
nergy ish•f2, in the next level it is Jh•/2, and so on. The levels are nondegenerate ; 
:>ere is only one energy state in each level; and g1 - I in each level. 

The quantum condition that the entrgy can have only some one of the set of 
a lues [(n1 + l /2)h•J is equivalent to the condition that the amplitudt can have only 
orne one of the set of values such that 

x:O = (n1 + ~) ; JI/Km. 
U sing Eq. (12-43), the partition function of the assembly is 

Z- !exp (-•
1
) - ! exp [-(n 1 + !) .!!!..]. 

I kT I 2 kT 

fo evaluate the sum, let z - h•/kT for brevity. Writing out the first few terms, 
ve have 

z ~ exp (-n + exp (- ¥) + exp (- ¥) + ... 

- exp ( - n{l + exp ( -z) + [exp ( -z)J' + .. ·}. 

rhe sum in the preceding equation has the form of the infinite geometric series 

I+ P + p' + .. · , 
.vhich equals 1/ (1 - p) as is readily verified by expanding the product ( I 
(I + p + p' + · · ·). Therefore 

Z ~ exp (- !) 1 
2 I - exp ( -z)' 

or 
Z = exp ( -h•/2kT) 

I - exp ( -h•/kT) 

- p) X 

(12-44) 

The temperature at which kT- /., is called the characterist ic temperature of 
the assembly and is represented by 0. Thus 

kO = ho, or 

It follows that 
,. 0 
kT ~r' 

0=!!!. 
k 

and in terms of 0 the partit ion function is 

z = exp ( -0/2T) 

I - exp (-Of T) 

(12-45) 

(12-46) 
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The value of the partition function at any temperature therefore depends, fo r 
a given assembly, on the ratio of the actual temperature T to the characteristic 
temperature 6, which thus provides a reference temperature for the assembly. 
The greater the natural frequency • of the oscillarors, the higher the characreristic 
temperature. Thus if the natural freq uency is of the order of frequencies in the 
infrared region of the electromagnetic spectrum, say 10,. Hz, • then 

O ,. !!! = 6.62 X 1()"',. J s X IO'' s-• == SOO K. 
k J.38 x 10-" J K- ' 

An actual temperature T of SO K is then approximately equal to 6/ 10, and a 
temperature of 5000 K is approximately equal to 10 0. 

The average fract ional number of oscillators in the jth energy level, from Eqs. 
( 12-16) and (12-43) is 

n ( (n, + l)l••) 
IV 1 I ( <1 ) l 2 
N- Z exp -k r •zexp- k T · 

Subsrituting Eq. (12-46) fo r Z and Eq. (12-45) for 0, 

~ ~ [r - exp ( ~8) J exp ( - n1 ~ ) · ( 12-47) 

At any temperature T, the occupation number decreases exponentially with the 
q uantum number n1, and decreases more rapidly, the lower the rem perature. 

At the temperature at which T • 8, 

(8/n• l, 

and 
!( 7:/ ~ 0.632 exp ( -n1). 

Thus for the four lowest energy levels, in which "J - 0, I, 2, and 3, we have 

Flo li- o.632, 
R, Fl, R, li - o.m, li - o.oss. li - o.on. 

Abour 63% of the oscillarors are in the lowest energy level, abour 23% in the next Tl 
level, ere. Togerher, rhe four lowest levels aecounr for about 98% of the oscillators. ter 

It is left to the reader to show that when T • 0/2, 

Ro 86 R, Fl, lil, li - o. s. li - 0.111, li - o.o16, li = o.oo2. 

• Heinrich R. Hertz, German physicist (1857-1 894). 
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Atrhis temperarure, abour87" of the oscillaton are in the lowest level, about 12" 
in rhe nexrlevel, ere. and almost allrhe parricles are in the firsr four levels. 

At a remperature T - 28, 

n. n, ll. n, N - 0.394, N - 0.239, N - o.I4S, N - o.o88. 

The first fou r levels then accounr for only about 86% of the oscillaron, the remainder 
being disrribured among rhe higher energy levels. 

The lengrhs or the verrical lines in Fig. 12-14 represenr rhe average fractional 
occuparion numbers ar rhe remperarures T - 8/2, T - 8, and T - 28. 

1.0 

0.8 

fl, 06 

N 
0.4 

0.2 

"J • 0 I l .1 

T • ~ 

lllli 
0 I 2 J 0 t 2 l 

T•D T• 20 

Fig. 12- 14 The dependence on 8/T of the average 
fracrional occuparion number of the first four ltvels 
of a linear oscillator. 

The total energy of the assembly, which in this case is its internal energy U, is 

U- NkT'dln z 
dT 

- Nk8[ I + n. 
exp (8/T) - I iJ (12-48) 

Thus for a given assembly of linear oscillators the internal energy is a function of 
temperature only. The heat capaciry Cy of the assembly is 

Cy = dU 
dT 

( 
8)' exp (8fT) 

- Nk - ~--~~~~ 
T (exp (8fT) - 1]2 

• 
(12-49) 
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Fia. 12-15 The internal energy 
and heat capacity of an assembly 
of linear oscillato11. 

12-7 

The curves in Fig. 12-1 S are graphs of the internal energy U and of the heat 
capacity Cv (both divided by Nk) as functions of TfO. The ordinate of the latter 
is proportional to the slope of the former. 

As T approaches 0 K, very nearly a ll of the oscillators are in their lowest energy 
level with energy h•/2 and the total energy U approaches the zeropoint energy 
Nh•/2, or, U/Nk - O.S. The internal energy changes only slightly with changing 
temperature and the heat capacity approaches zero. T he entropy of an assembly 
of linearJscillators also approaches zero as T approaches zero. 

Whe T » 0, 0/T « I, exp (0/T)- I ~ 0/ T, the term 1/2 is negligible com· 
pared with T/0, and U approaches NkT. The mean energy per particle, U/N, 
approaches kT which is the value predicted by equipartition for an oscillator with 
two degrees of freedom (its position and its velocity). The internal energy increases 
nearly linearly with temperature and Cv approaches the constant value Nk. 

12-7 SPECIFIC HEAT CAPA CITY OF A DIATO MIC GAS 

I t was shown in Section 12- 1 how the equation of state of a monatomic ideal gas, 
and its energy equation, could be derived by the methods of statistical thermo­
dynamics. Consider next a gas whose molecules are polyaromic. If the energy 
of a molecule does not depend on the space coordinates x, y, and z of its center of 
mass, and if there is no mutual potential energy between molecules, the partition 
function will be directly proportional to the volume V, as in Eq. (12-6) for a 
monatomic gas. The Helmholtz function F = -NkT(In Z- InN+ I) then 
has the same dependence on Vas for a monatomic gas and the gas has the same 
~quation of state, PV - nRT. 
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The specific .heat capacity, however, will differ from that of a monatomic gas 
because a polyatomic molecule can have an "internal energy" of its own, made up 
of energy of rotation, vibration, and electronic excitation. 

According to the classical equipartition principle, each degree of freedom 
associated with rotation and vibration shares equally with the three translational 
degrees of freedom, the mean energy of each being kT/2. The molal specific heat 
capacity at constant volume should equal R/2 for each degree of freedom and for 
a molecule with f degrees of freedom we should have c. - JR/2, which should be 
constant independent of temperature. 

This prediction is in good agreement with experiment for monatomic gases, 
for which there are three translational degrees of freedom only and for which c. is 
very nearly equal to 3R/2. At roo m temperature, however, the heat capacities of 
diatomic gases are nearly equal to SR/2, as if the molecules had an additional two 
degrees of freedom. Furthermore, the heat capacities are not constant, but vary 
with temperature and do not correspond to integral values off 

A diatomic molecule can be considered to have the dumbbell-like structure of 
Fig. 9- 5. In addition to the kinetic energy of translation of its center of mass, it 
may have energy of rotation about its center of mass and, since it is not a completely 
rigid structure, its atoms may oscillate along the line joining them. The rotat ional 
and vibrational energy are both quantized; and with each form of energy, as for 
an harmonic oscillator, there can be associated a characteristic temperature, 0,0 , 

for rotation and 8, 1" for vibration. The extent to which the rotational and vibra­
tional energy levels are populated is determined by the ratio of the actual tem­
perature T to the corresponding characteristic temperature. That is, the internal 
energies of rotation and vibration , and the corresponding specific heat capacities 
c,., and c.,. are funct ions of the ra tios T/0,., and T/8,.11, . We shall not give the . 
precise form of this dependence, but simply state that the graphs of the specific 
heat capacities c,... and c.,. have the same general form as the graph of c. fo r an 
harmonic oscillator shown in Fig. 12-15. At very low temperatures, both heat 
capacities approach zero; at temperatures large compared to the characteristic 
temperatures, both approach the classical value Nk. Thus at sufficiently high 
temperatures the corresponding molal heat capacities approach the classical value 
R, as for a particle with two degrees of freedom. 

What constitutes a "sufficiently" high temperature? This depends on the 
characteristic temperatures 8,., and 8,.11, . Table 12-2 lists some values of 8,0,. 

This temperature is inversely proportional to the moment of inertia of the molecule: 
the greater the moment of inertia, the lower the value of 8,.,. The highest value, 
about 86 K, is that for hydrogen, H,, since its moment of inertia is smaller than 
for any other diatomic molecule. Molecules with one hydrogen atom form another 
group wi th values of 0,., of approximately 20 K. For a ll others, the characterist ic 
temperature is of the order of a few degrees or less. Thus "room temperature," 
say 300 K, is much greater than the characteristic temperature for rotation, and 
the molal specific heat capacity for rotation approaches the value R. 
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Table Il- l Characteristic temperatures 
for rotation and vibration of diatomic 
molecules 

Substance s,.,. (K) 8, 1., (K) 

Ha ss.s 6140 

OH 27.S S360 

HCI JS.3 4300 

CH 2fJ.7 4100 

co 2.77 3120 

NO 2.47 2740 

Oa 2.09 2260 

Cia 0.347 810 

Bra 0.117 470 

Naa 0.224 230 

x. 0.081 140 

12-7 

Table 12-2 also lists the characteristic temperatures 8,,. for the same molecules. 
These are all very much higher than the characteristic temperatures for rotation, 
which means that a t room temperature, where T « 8,, •• practically all molecules 
are in their lowest vibrational energy level and the specific heat capacity for vibra­
tion is practically zero. Only at much higher temperatures do the higher vibrational 
energy levels begin to be populated. 

T hus at room temperature the specific heat capacities of most diatomic 
molecules have a contribution 3R/2 for t ranslation, plus R for rotation, making 
a total of SR/2 as is actually observed. 

Figure 12-16 is a graph of experimental values of c./R for hydrogen, plotted 
as a function of temperature. (Hydrogen is the only diatomic gas that remains a 
gas down to low temperatures, of the order of 25 K.) At very low temperatures; 
c.{R is equal to 3/2, the value for a monatomic gas. As the temperature is increased, 
c. increases, and over a considerable range near room temperature c.JR is about 
S/2, which is the value (aocording to equipartition) if two degrees of freedom of 
rotation or vibration, but not both, are added to the translational degrees of 
freedom. Only at very high temperature does cJR approach 7{2, the value pre- n 
dieted by equipartition. to 
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We can now understand in a general way the features of this graph. The 
characteristic temperatures for ro tation and vibration, for hydrogen, are 8,.., = 
85.5 K and e.,. - 6140 K. Below about SO K, the temperature T is very much 
less than either characteristic temperature, and practically all molecules remain 
in their lowest energy states of rotation and vibration. The specific heat capacity 
is therefore the same as that of a monatomic gas, 3Rf2. 

In the range from about SO K to about 250 K, the temperature T is of the 
order of magnitude of 6,., and the rotational states of higher energy begin to be 
populated. Above about 250 K, the molecules behave like classical rotators and 
make a contribution R to the specific heat capacity, which in this range equals 
5Rf2. Starting at about 500 K, some molecules move to states of higher vibrational 
e.nergy and c. approaches the limiting classical value of 7 R/2 . 
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Fig. 12- 16 Experimental values of t ,/R for hydrogen as a 
function of temperature plotted on a logarithmic scale. 

Many important features of the general theory have been ignored in the 
( relatively) simple treatment of the problem given here. Some of these are: (a) the 
difference between the behavior of molecules such as H, , whose atoms are alike, 
and those, such as NO, composed of unlike atoms; (b) the degeneracy of the rota· 
t ional energy levels as a result of space quantization; (c) the energy associated with 
electronic excitation at high temperatures; (d) the coupling between rotational 
and vibrational states; and (e) the fact that the vibrations are not precisely simple 
harmonic. However, the exact theory is apparently so firmly established that 
specific heat capacities of gases can be computed theoretically, from optical 
measurements, more accurately than they can be measured experimentally by the 
technique of calorimetry. 
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PROBLEMS 

12-1 In Section 12-1 the properties of a monatomic ideal gas were calculaied using the 
classical d istribution funcl ion. (a) Derive the equation o f s1a1e and specific heat capacity 
of a n ideal gas using, instead, 1he M-B dislribulion function . (b) Show tha t lhe M-B 
distribulion function leads to an expression for the enlropy of an ideal gas which is not 
extensive. 

Il-l In a two-dimensional gas the molecules can move freely on a plane, but are con­
fined within an area A . (a) Show that the partilion funcl ion for a two-dimensional 
monatomic gas of N particles is given by 

A2wmkT z--,.-. 
(b) Find the equal ion of state of the gas from ils Helmholiz function. 

11-3 Use the partition function of the previous problem to derive the heat capacity 
and enlropy of a two-dimensional mona1omic gas. 

12-4 In Fig. 12- 3, let Vz - Vw - v. - v,.., and Jet Ou .. - flu~ - Av1 ""'" O.Olu,... If N • 
Avogadro's number, 6.02 x 1010 molecules, com pule the average number of pa!iicles 
in each of the following elemenls of velocily space: (a) I he slice of lhickness <l.v,, (b) 1he 
rectangular parallelepiped common to two slices, (c) ihe volume element Av, Au, Av., 

(d) I he sphel-ical shell of radius V3 v., a nd thickness O.OiuM. 

12-5 (a) What is the "dislance" "• in Fig. 12-3, of a slice at r ight angles to ihe u,-uis, if 
the slice contains one-half of the number of particles as a parallel slice of the same I hick­
ness a1 lhe origin. Express your answer in terms of •M· (b) AI what radial "diSiance" v 
from the origin in velocity space is the densi ly p, one-half as great as I he origin. 

12-6 Find the fracliona l number of molecules of a gas having (a) veloci lies with X· 

components between u., and I.Oiv,., (b) speeds between u,. and I.Oiv., , (c) velocities 
with x-, y-, and •-components between u,. and I.Oiv.,. 

11-7 Show thai v., - V2kTfm. 

11-8 (a) Compute to three significant figures the rms, average, and most probable 
speeds of an oxygen molecule at 300 K. (b) Compu1e 1he mosl probable speed of an 
oxygen molecule a t the following temperaJUres : 100 K, 1000 K, 10,000 K. 

12- 9 Show that (UI) - <0' > o. This difference plays an imporlant pau in theory of 
fluctuations, and is the mean square deviation of the veloci ty from the average velocity. 

12- 10 Show thai I he average reciprocal speed (1 /v) is given by 2/V; v,,. - V2mfwkT. 

12- 11 (a) Express Eq. (12-18) in terms of I he kinetic energy<( - mv'/2) of the molecules. 
(b) Find the most probable and average energy of molecules having a dimibution of 
speeds given by Eq. (12- 18) and compare the resuiiS to mc:.0/2 and mi:2/2, respeciively. 

12- 12 Show that the number of molecules wilh positive x-components of velocity less 
N 

than some a rbi1rary value u is Ar, ... - l erf (x), where x = •I• .. and err (x) is the error 
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function defined as 

2 f." erf (x) - v; 
1 
,-•' dx. 

(b) Show that the number of moleculos with positive x-component5 of velocity larger 

1han the value v is .A"_,. - ~[I - erf (x)]. Compute the fraction of moleculos with 

x-components of velocity between (c) 0 and v,., (d) v,. and oo, (e) 0 and oo, (f) - • .. and 
+v,.. The value of erf ( I} - 0.8427. (g) Illustrate your answers graphically in terms of 
the velocity distribution function. 

12- 13 Show that the number of molecules with spuds lw than some arbit rarv value v 
is given by 

where x and err (x) are defined in the p revious problem. (b) Show that the number o f 
molecules with speeds greater than the arbitrary value is given by 

Compute the fraction of molecules with speeds between (c) 0 and v.,., (d) v,. and oo, and 
(e) 0 and oo. (f) Illustrate your answers graphically in terms of the speed distribution 
function. 
12-14 Show that • ..... for particles leaving a small hole in a furnace is given by ,; 4k1]m. 

12-IS Show that the number of molecules colliding with a surface of unit area per unit 
time, with components of velocity at right anglos to the surface greater than some a rbi trary 
value v = xv .. , is [nv,. exp ( - x'}J/2v;. 
12- 16 The oven in Fig. 12- 10 contains bismuth at a temperature of 830 K, the drum 
is IOcm in diameter and rotates at6000rpm. Find the distance between the point$ of 
impact of the molecules Bi and Bi, on the glass plate, G. Assume that all the molecules 
of each species escape the oven with the rms speed appropriate to tha t species. 

12- 17 A sph<rical bulb 10 em in radius is maintained at a temperature of 27°C, except 
for one square centimeter , which is kept a t a very low tempera ture. The bulb contains 
water vapor originally at a pressure of 10 Torr. Assuming that every water molecule 
striking the cold area condenses and sticks to the surrace, how long a time is required for 
the prwure to decrease to Ia-' Torr? 

12-18 A spherical bulb IOcm in radius is pumped continuously to a high vacuum. In 
the bulb is a small vessel, closed except for a circular hole 0.2 mm in diameter located at 
the center of the bulb. The vessel contains mercury at I00°C, at which temperature its 
vapor pressure is 0.28 Torr. (a) Compute the average speed r of the molecules of mercury 
vapor in the small vessel. (b) Compute the rate of effiu• of mercury through the hole, in 
milligrams hr-1• (c) How long a time is required for I microgram of mercury to be 
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To pump 

Figure Jl.-17 

deposited on a square centimeter of the inner surface of the bulb, in a direction making 
an angle of 4S0 with the normal to the hole? (Sec Fig. 12-17.) 
11-19 In a molecular beam experiment, the souroo is a tube containing hydrogen at a 
pressure P, - O.IS Torr and at a temperature T - 400 K. In the tube wall is a slit 
30 mm >< 0.025 mm, opening Into a highly evacuated region. Opposite the source slit 
and I meter away from it is a second detector slit parallel to the first and of the same size. 
This slit is in the wall of a small enclosure in which thcpressurcP0 can be measured. When 
the steady state has been reached: (a) What is tho discharge rate of the source slit in micro­
grams s"""'? (b) What Is tho rate of arrival of hydrogen at the detector slit , in micro­
grams s-1, and in molec:ulos s- • 1 (c) How many molec:ulos that will eventually 
reach the detector slit arc in tho space between source and detector a t any instant? (d) 
Wha t is the equilibrium pressure P0 in the detector chamber? 
12-20 Tho distanocs OS and SD in the appara tus of Estcrmann, Simpson, and Stem in 
Fig. 12- 11, are each I meter. Calculate the distance of the detector below the central 
position D, for cesium atoms having a speed equal to the rms speed in a beam emerging 
from an oven a t a temperature of 460 K. Calculate also the "angle of elevation" of the 
trajectory. The atomic weight of ocsium is 133. 
12-21 The neutron flux across an area at the center of the Brookhaven reactor is about 
4 >< 10" neutrons m-ts-1• Assume that the neutrons have a Maxweii-Boltunann 
velocity dist ribution corresponding to a temperature of 300 K ("thermal" neutrons). 
(a) Find tho number of neutrons per cubic meter. (b) Find the "partial pressure" of the 
neutron gas. 

12-11 Derive Eq. (12-27) from Eq. (7-31) assuming £ 0 = rg, Y1 -nand X 1 - L. 

12-13 (a) Obtain the expressions for Z, and z. given in Eqs. (12-31) and (12-32). (b) 
Obtain the expressions for nand r given in Eqs. (12- 34) and (12- 3S). 

12-14 For the gas in a cylinder in a gravitational field, discussed in Section 12-4, show 
that as g-+ 0, the number of molecules per unit volume approaches the constant value 
N/ V, and hence is the same at all elevations. In other words, in I he absence of a gravita· 
tiona! field tho molecules of a gas a re distributed uniformly throughout the volume of a 
container. 
12-lS Show that the net downward force exerted on tho container by I he gas, in Section 
12-4, equals tho weight of the gas in the container. 
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12-26 If the height of the atmosphere is very large. show that (a) n - 0, (b) r • 
s 

NkT/g. (c) E = 2NkT, (d) dS = Nk[(S/2)(dT/T)- (dg/g)J, and (e) that states at 

constant entropy arc related by 7"12/g - constant. 

ll-17 (a) Calculate the fraction of hydrogen atoms which can be thermally ionized at 
room temperature. (b) At what temperature will r 1 of the atoms be ionized 7 

11-28 When a gas is whirled in a centrifuge, its molecules can be considered to be acted 
on by a radially outward centrifugal force of magnitude moh. Show that the density 
of the gas as a func tion of r varies as exp (m•h'/2kT). · 

11-29 Find the mean gravitat ional potential energy per molecule in an infinitely h igh 
~ isothermal atmosphere. 

U-30 (a) Usc the principle of equipartition of energy to flnd the total energy, the energy 
per particle, and the heat capacity of a system of N distinguishable harmonic oscillators in 
equilibrium with a bath at a temperature T. The kinetic energy of each oscillator is 
mM + v: + v:l/2 and the potential energy is X(x' + y1 + z'J/2 wherex,y, and zare the 
displacements from an equilibrium position. ( b) Show that the expansivity of this system 
is zero because X • j - l • 0. 

ll-31 A molecule consists of four a toms at the corners of a tetrahedron. (a) What is the 
number of translational, rotational, and vibrational degrees of freedom for this molecule? 
(b) On the basis of the equipartition principle, what arc the values of c. and y for a gas 
composed of these molecules 1 

l l-31 Using Eq. (1 1-62) derive (a) Eq. (12-48) and (b) Eq. (12-49). (c) Show that when 
T » 9, Cv approaches Nk; and when T « 9, Cv approaches zero as e-41'1'. 

11- 33 Calculate the average fractional number of oscillators in thejth energy level N1/N 
for the four lowest energy levels when (a) T • 9/2 and (b) T - 29. 

11-34 Make sketches of the average fractional number of oscillators in (a) the ground 
state, and (b) the flrst excited state, and (c) in the second excited state as a function of 
Tf9. 

12~35 Making usc of Eq. (1 1-66), show that the entropy of an assembly of quantized 
linear oscillators is 

S • Nk {exp (::~ _ 1 - In (I - cxp ( - 9/TJJ}. 

where 9 • hrjk. (b) Show that Sapproaches zero as Tapproaches zero. (c) Why should 
Eq. (11-66) be used rather than Eq. (1 1-63)? 

1 
11-36 Consider 1000 diatomic molecules at a temperature 9,1,)2. (a) Ftnd tHe number 
in each of the three lowest vibrational states. (b) Find the vibrational energy of the 
system. 
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13-1 THE EINSTEIN THEORY OF THE SPECIFIC HEAT 
CAPACITY OF A SOLID 

In Section 9-8 and Fig. 3-10 it was shown that the specific heat capacity of many 
solids, at constant volume, approaches the Dulong-Petit value of 3R at high tem­
peratures, but decreases to zero at very low temperatures. The first satisfactory 
explanation of this behavior was given by Einstein, who proposed that the atoms 
of a solid be considered in the fi rst approximation as an assembly of quantized 
oscillators all vibrating with the same frequency 7. The principles of quantum 
mechanics had not been completely developed at the time this suggestion was made, 
and Einstein's original article assumed that the energy of a n oscillator was given by 

~, -= n1h•. 

The additional factor 1/2, which we introduced in Eq. ( 12-43), does not 
affect the method and we shall make usc of the expressions already derived in 
Section 12-6. We must make one change, however. T he atoms of a solid are free 
to move in thru dimensions, not just one, so that an assembly of N atoms is 
equivalent to 3N linear oscillators. Then from Eq. ( 12-48), the internal energy U 
of a solid consisting of N atoms is 

U .. 3Nkllr: [ I + l]. 
exp (lla/T) - I 2 

(13-1) 

where the Einstein ttmperature 1111 is defined as 

/lr. E!!! . 
k 

(13-2) 

The mean energy of an atom is 

l =- !!_ - 3kll11 [ I + !l, 
N exp (lle/T) - I 2J 

and the specific heat capacity at constant volume is 

c = 3R(~)" exp (lla/T) 
• T [exp (/lefT) - 1]1 

• 
(13-3) 

Figure 13-1 shows graphs of the dimensionless ratios </kllr. and cJ R, plotted 
as functions o f Tj/1.,_. The ordinate of the latter curve, at any temperature, is pro­
portional to the slope of the fo rmer. The general shape of the graph of c. is in 
agreement with the experimental curve shown in Fig. 3-10. The value of 118 (and 
hence of 7) for a particular substance is chosen so as to get the best fit between 
theoretical and experimental curves. However, it is not possible to find a value 
of liE that gives good agreement at both low and high temperatures. 

When T » 11.:. II,.JT is small and c. approaches the Dulong-Petit value, 

c . .. JR. 
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Fig. 13-1 Internal energy and specific 
heat capacity of a harmonic oscillator. 

387 

When T « OE, the exp onential term is large, we can neglect the in the de-
nominator, and 

(See Prob. 12-32.) 
When T approaches zero the exponential term goes to zero more rapidly than 

1/T' goes to infinity, and c. approaches zero in agreement with experiment and 
the third law. H owever, because of the rapid decrease of the exponential term, the 
theoretical values of c., at very low temperatures, decrease much more rapidly 
than the experimental values. Thus the Einstein theory, while it seems to indicate 
the correct approach to the problem, is evidently not the whole story. 

13- 2 THE DEBYE THEORY OF THE SPECIFIC HEAT 
CAPACITY OF A SOLID 

The simple Einstein theory assumes that all atoms of a solid oscillate at the same 
frequency. Nernst and Lindemann• found empirically that the agreement between 
theory and experiment could be improved by assuming two groups of atoms, one 
oscillating at a frequency • and the other at a frequency 2v. This idea was extended 
by Born,t von Karman,! and Debye, who considered the a toms, not as isolated 
oscillators all vibrating a t the same frequency, but as a system of coupled oscillators 
having a continuous spectrum of natural freq uencies. 

• Frederick A. Lindemann, First Viscount Cherwell , British physicist (1886-19p7). 
t Max Born, German physicist (1882- 1970). 
t Theodor von Karman, Hungarian engineer (1881- 1963). 
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As a simple example of coupled oscillators, suppose we have two identical 
particles connecte~ by identical springs, as in Fig. 13-2. If both particles are given 
equal initial velocities in the same direction, as indicated by the upper arrows, the 
particles will oscillate in phase with a certain frequency v1• If the initial velocities 
are equal and o pposite, as indicated by the lower arrows, the particles will oscillate 
o ut of phase but with a different frequency v, . If the initial velocities have arbitrary 
values, the resultant motion is a superposition of two oscillations of frequencies 
v1 and ••· The system is said to have two natural fr~qu~nci~s. 

I 

Fla. 13-2 Coupled oscillators. 

Now suppose that the number of particles (and springs) is increased. It is no 
great task to calculate the natural frequencies when the number is small, but as 
the number is increased there are too many simullaneous equations to be solved . 
It turns out, however, that if there are N particles m the chain, the system will have 
N natural frequencies, whatever the value of N 

Now extend these ideas to three dimensions. A simple model of a crystal 
consists of a three-dimensional array of particles connected by springs, and such 
an array has JN natural frequencies. Because of the impossibility of calculating 
these frequencies when N is as large as the number of molecules in a macroscopic 
crystal, Debye assumed that the natural frequencies of the atoms of a crystal would 
be the same as the frequencies of the possible stationary waves in a crystal if the 
crystal were a continuous elastic solid. This is a standard problem in the theory of 
elasticity, and we shall outline its solution without giving details. The procedure 
is closely analogo us to that described in Section 11-2, except that we are now 
dealing with real elastic waves and not with the mathematical waves of wave 
mechanics. 

As explained in Section 11-2, an elastic st ring of length L fixed at both ends, 
can oscillate in a steady state in a ny mode for which the wavelength A is given by 

A-!!: 
n ' 

where n = I, 2, 3, •.. , etc. 
The fundamental equation o~ any sort of wave motion states that the speed of 

propagation c equals the product of the frequency v and the wavelength l: 

c- •. t 
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It follows that for any frequency v, the number n is 

and 

2L 
n=-l' 

c 

n• = 4L' ~·. 
c• 

The theory of elasticity leads to the result that the natural frequencies of 
stationary waves in an elastic solid in the form of a cube of side length L are given 
by the same equation except tha t the possible values of n' nre 

n1 
.. n: + n: + n!. 

where n., n, , and n, are positive integers that can have the values I, 2 , 3, . J., etc. 
To lind the number of waves in any frequency interval, or the frtqutncy 

sputrum, we proceed in the same way as in Section 12-1 and Fig. 12-1. Let the 
numbers n,, n, , and n, be laid off on three mutually perpendicular axes. Each 
triad of values determines a point in n·space, wi th corresponding values of n and 
of~. Let '§ represent the total number of possible frequencies, up to and including 
that corresponding to some given n. This is equal to the number of points within 
an octant o f a sphere of radius n, the volume of which is (11/6) n', and since n -
(2Lfc)v, 

But L' is the volume V of the cube, and it can be shown that regardless of the 
shape of the solid we can replace L' with V. Then 

'§= ~!:: ~·. 
3 c' 

(13-4) 

However, three types of elastic waves can propagate in an elastic solid : a 
longitudinal or compressional wave (a sound wave) traveling wi th speed c1, and 
two transverse or shear waves polarized in mutually perpendicular directions and 
traveling with a different speed c1• The total number of possible stationary waves 
having frequencies up to and including some frequency~ is therefore 

'§ - ~ v(.!. + .!.)~•. (13-S) 
3 c~ c! 

According to the Debye theory Eq. ( 13-S) can a lso be interpreted as de· 
scribing the number of linear oscillators having frequencies up to and includin g the 
frequency ~. Thus, to be consistent with the notation of Section 12-2, ~ in Eq. 
(13-5) should be replaced by .A'" and 

.A'" = ~ v(.!. + 1)•'· 
3 c~ c~ 
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If there were no upper limit to the frequency, the total number of oscillators 
would be infinite. But a crystal containing N atoms constitutes an assembly of 
3N linear oscillators. Hence we assume that the frequency spectrum cuts off at a 
maximum frequency '• such that the total number of linear oscillators equals 3N. 
Then setting 5 - 3N and • = '•• 

(13-7) 

The wave speeds c1 and c, can be calculated from a knowledge of the elastic 
properties of a given material and hence '• can be calculated from this equation. 
In a material like lead, which is easily deformed, the wave speeds are relatively 
small, while in a rigid material like diamond, the speeds are relatively large. Hence 
the value of,,. for lead is much smaller than it is for diamond. 

That there should be a maximum frequency of the stationary waves that can 
exist in a real solid can be seen as follows. For a single set of waves of speed c, 
the maximum frequency "• corresponds to a minimum wavelength .< .. ,. = cfv., 
and Eq. (13-7) can be written 

(4")'11( Y)'" AmiA-9 "N' (13-8) 

But (V/N) is the average volume per atom and the cube root of this, (V/N)•h, is 
of tbe order of the average interatomic spacing. Hence the structure of a real 
crystal (which is not a continuous medium) sets a limit to the minimum wave­
length which is of the order of the interatomic spacing, as would be expected since 
shorter wavelengths do not lead to new modes of atomic motion. It follows from 
Eqs. (13-6) and (13-7) that 

The number of linear oscillators having frequencies between v and ,. + A• is 
then 

A%, -
9~ ,• a •. ... 

a nd the number per unit range of frequency is 

A%, 9N 1 

~-,.~"· 

(13-9) 

(13-10) 

Figure 1~-3 is a graph of A% ,/Av, plotted as a function of • · The actual 
number A.#l, of osciUators of frequency between • and v + A• is represented by 
the area of the shaded vertical strip, since the height of the strip is a%,ft.v and 
its width is A•. This is in contrast to the Einstein model, in which all oscillators 
have the same frequency. The total area under the curve corresponds to the total 
number of linear oscillators, 3N. 



13-2 THE DEBYE THEORY OF THE SPECIFIC HEAT CAPACITY OF A SOUD 

Fig. 13-3 The Debye frequency 
spec1rum. 

3t1 

The oscillators of any frequency~ constitute a subassembly of linear oscillators 
all having the sam~ frequency , as in the Einstein model . . Then from Eq. (12-48) 
the internal energy l!.U, of the subassembly, replacing 3N with l!..;V., is 

l!.U ~ 9N h•
0 

1:!.• 
' •!. exp (hv/kT) - 1 · 

(13-11) 

We omit the constant zero· point energy since this has no effect on the heat capacity. 
The point of view thus far, in this section and in the preceding one, has been 

to consider the atoms of a crystal as distinguishable particles obeying the M-B 
statistics. An alternative approach is to consider the elastic waves themselves as 
the "panicles" of an assembly. Each wave can also be considered as a particle 
called a phonon, and the assembly described as a phonon gas. Since the waves or 
phonons are indistinguishable, and there is no restriction on the number permitted 
per energy state, the assembly obeys the Bose-Einstein statistics. 

We must, however, make one modification in the expression previously 
derived for the distribution function in this statistics. This is because the number 
N of waves, or phonons, in contrast to the number of atoms of a gas in a container 
of specified volume, cannot be considered one of the independent variables speci­
fying the state of the assembly. If the assembly is a gas, we can arbitrarily fix both 
the volume V and the temperature T of a container, and still can introduce any 
arbitrary number N of molecules of gas into the container. But when the volume 
and temperature of a crystal are specified, the crystal itself, so to speak, deter­
mines the number of different waves, or phonons, that are equivalent to the oscilla­
tions of its molecules. Thus the crystal cannot be considered an open system for 
which N is an independent variable and the term JJ dN does not appear in Eq. 
(11-22). This is equivalent to setting JJ = 0 and hence exp (JJ/kT) = I. The 
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number of "particles" in a macrolevel between • and • + t:u is therefore 

ll..A' = __ ll.-:---~-­
exp (•/kT) - 1 

(13- 12} 

According to the principles of quantum mechanics, the energy of a wave (or 
phonon) of frequency • is 

where h is Planck's constant. Unlike a linear oscillator of frequency •, which can 
have any one of the energies (n1 + i )h•, where n1 - 0, I, 2, ... , etc., a wave of 
frequency • can have only the energy h•. Thus if a large amount of energy is 
associated with a given frequency, this simply means that a large number of waves, 
or phonons, all of the same energy, are present in an assembly. 

An energy interval between • and • + ll.< therefore corresponds to a frequency 
interval between • and • + ll.•. Thus the number of phonons with frequencies 
between • and • + cb i s 

ll..A' ll. (9, 
'~ exp(h/kT}- 1 ' 

(13- 13) 

where ll.~, is the number of states having frequencies between • + • + d•. 
The energy ll.U, of the waves in this frequency interval is 

ll.U h ll..A' hvll.~, 
' - • ' - exp (h•/kT} - 1 ' 

and comparison with Eq. (1 3- 11) shows that 

ll.~.~9~··ll. •• ·- (13-14) 

which is the same as the expression for the number of distinguishable oscillators 
in this frequency interval. That is, the degeneracy ll.~, of a macrolevel is equal to 
the number of distinguishable oscillators in the same interval. Equation (13-13) 
can therefore be written 

ll..A', - 9N v' ll.v . (13 15) 
·~ exp (hvfkT) - 1 -

There appears at first sight to be a discrepancy between the expression for 
ll..A', in the preceding equation and that in Eq. ( 13- 9). However, the symbol 
ll..A', docs not represent t he same thing in the two equations. In Eq. ~13- 1 5), 
ll..A', is the number of indistinguishable waves (or phonons) having frequencies 
between • and • + ll.v, in a system obeying the B-E statistics. In Eq. ( 13-9), 
ll..A', is the number of distinguishable oscillators having frequencies in the same 
range, in a system obeying M-B statistics. 
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The to tal energy U of the assembly is now obtained by summing the expression 
for flU. over all values of • from zero to "•• and after replacing the sum with an 
integral, we have 

9Ni•"' h .. u =- d•. 
•!. o exp (h/kT) - I 

(13-16) 

The De bye ttmperoturt 8 0 is defined as 

8 - h• .. o=T• (13-17) 

and 80 is proportional to che cut-off frequency • ... Some values are given in Table 
13-1. 

Table 13-1 Debye temperatures of 
some materials 

Substance BD(K) 

Lead 88 
Thallium 96 
Mercury 97 
Iodine 106 
Cadmium 168 
Sodium 172 
Potassium bromide 177 
Silver 21S 
Calcium 226 
Sylvine (KCI) 230 
Zinc 235 
Rocksah (NaO) 281 
Copper 315 
Aluminum 398 
Iron 453 
Fluorspar (CaF,) 474 
Iron pyrites (FeS,) 645 
Diamond 1860 

For convenience, we inlroduce the dimensionless quantities 

Then 

h> 
x= ­

kT' 
h•., 80 

X~- ~ -

• kT T. 

( 
T )'i'• x' dx U = 9NkT-
80 o exp (x)- 1 

(13-18) 
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This corresponds to Eq. (13-1) for the energy U according to the Einstein theory. 
Consider lint the high temperature limit, at which x • h>/kT is small. Then 

[exp (x) - IJ ~ x and the integral becomes 

x1 dx ::a -.! - _!!_ • f.·- x• o• 
o 3 3T1 

Then at high temperatures, 

U ~ 3NkT, c.- 3R. 

in agreement with the Einstein theory and the Dulong-Petit law. 
At intermediate and low temperatures, the value of the integral can be expressed 

only as an infinite series. To a good approximation, the upper limit of the integral 
when Tis very small can be taken as infinity instead of x,., since the integrand is 
small for values of x greater than x.,. The definite integrallhen equals "'/IS, and 
hence at low. temperatures, 

and by differentiation, 

U=-.,'NkT- · 3 ( T)' 
S 00 ' 

1211. ( T_\1 

c. - -s- R B;r (13-19) 

Equation (13-19) is known as the Debye T' law. According to this law, the 
heat capacity near absolute zero decreases with the cube of the temperalure, 
inslead of exponentially as in the Einslein theory. The decrease is therefore less 
rapid and !he agreement with experiment is much beller. Although !he Debyc 
theory is based on an analysis of elastic waves in a homogeneous, isotropic, con­
tinuous medium, experimental values of the specific heat capacity of many 
cryslalline solids are in good agreement with the Debye theory at temperatures 
below 00 /50, or when T/00 < 0.02. As the !em perature is increased, the specific 
beat capacity increases somewhat faster than the lheory would predict. There is 
recent experimental evidence that amorphous malerials do not appear to follow 
!he Debye 71' law even a11empera1ures below 00 /100, or when T/00 < 0.01. 

The heal capacity at any temperalure can be calculated by evalualing the inle· 
gral in Eq. (13-18), which gives !he internal energy as a funclion of T, and differen­
liating !he result wilh respect toT. As in the Einstein theory, lhe resull is a function 
of Tf00 only, and hence a single graph represents the temperature varia lion of c. 
for all substances. The curve in Fig. 13-4 (what can be seen of it) is a graph of 
c.fR , plotted as a function of T/00 , and the points are experimental values for a 
variely of materials. 

It will be seen from Fig. 13-4 that roughly speaking, when T/00 is grealer !ha n 
I, or when the actual temperature exceeds the Debye temperature, the syslem 
behaves "classically" and c. is nearly equal to !he "classical"' or "non-quantum" 
value JR. When the actual temperalure is less than the Debye tempera!Ure, 
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quantum effects become significant and c. decreases to zero. Thus for lead, with a 
Debye temperature of only 88 K, "room temperature" is well above the Debye 
temperature, while diamond, wirh a Debye temperarure of 1860 K, is a "quantum 
solid" even at room temperature. 

At intermediare temperatures there is good agreement between values of the 
specific heat capacity calculated by the Einstein and by the Debye theories. This 
agreement might be expected, since the Dulong-Petit theory is a first approximation 
that works at high temperatures. The Einstein theory is a second approximation 
which works for high and intermediate temperatures. The Debye theory is a third 
approximation that works at low temperatures when other effects do not dominate. 

13- 3 BLACKBODY RADIATION 

The thermodynamics of blackbody radiation was discussed in Section 8- 7 and 
we now consider the statistical aspects of the problem. The radiant energy in an 
evacuated enclosure whose walls are at a temperature T is a mixture of elecrro­
magnetic waves of all possible frequencies from zero to infinity, and it was the 
search for a theorerical explanation of the observed energy distribution among 
these waves that led Planck to the postulates of quantum theory. 

To apply the methods of sratistics to a batch of radiant energy, we consider 
the waves themselves as rhe "particles" of an assembly. Each wave can be con­
sidered a particle called a photon and the assembly can be described as a photon 
gas. Because the photons are indistinguishable and there is no restriction on the 
number per energy state, the assembly obeys the Bose-Einstein statistics. 
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The problem is very similar to that of a phonon gas discussed in the preceding 
section. The number of photons in the enclosure cannot be considered an inde­
pendent variable and the B-E distribution function reduces to the simpler form, 

ll.IV t:. r§, 
• = exp (h~fkT) - 1 

There is, however, a difference in the expression for the degeneracy t:.r§,. 
As we showed in the preceding section, the degeneracy of a macrolevel, in an 
assembly of waves (or photons) is equal to the possible number t:.t'§, of stationary 
waves in the frequency interval from • to v + t:.v. Let us return to Eq. (13-5), 

<'§~~!.• 
J ,~ , 

where<'§ is the number of stationary waves with frequencies up to and including~. 
Electromagnetic waves are purely transverse and there can be toro sets of waves, 
polarized in mutually perpendicular planes and both traveling with the speed of 
light c. Also, since empty space has no structure, there is no upper limit to the 
maximum possible frequency. Then interpreting (1 as the total number of possible 
energy states of all frequencies up to and including '• we have 

The degeneracy t:.r§, is therefore 

r§-~K .•. 
3 c• 

t:.r§ 81rV 't:. ·-7" Y, 

and the number of waves (or photons) having frequencies between v and • + t:.v 
is 

t:.% , • 81rV • ' t:.v. 
c' exp (h•/kT) - 1 

(13- 20) 

The energy of each wave is hv, and after di viding by the volume V, we have 
for the energy per unit volume, in the frequency range from • to • + t:.~. or the 
spectral energy dmsity t:.u., 

t:.u, = 87rh •' t:... (13-21) 
c• exp (h•/kT) - 1 

This equation has the same form as the experimental law (Planck's law) given in 
Section 8-7, and we now see that the experimental constants r, and c, in Eq. 
(8-50) are related to the fundamental constants h, c, and k, by the equations 

h 
c, ... k. (13- 22) 
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When numerical values of h, c, and k are inserted in these equations, the cal· 
culated values of c1 and c, agree exactly with their experimental values, within the 
limits of experimental error. 

At a given temperature T, and at high frequencies for which hv)) k T, the 
exponential term is large; we can neglect the I; and 

t.u. ~ S~h v' exp ( -hvfkT) C.~. 
c 

(13-23) 

An equation of this form had t>et.n derived by Wien• before the advent of quantum 
theory and it is known as Wien's !all'. It is in good agreement with experiment at 
high frequencies but in very poor agreement at low frequencies. 

However, at low frequencies for which hv « kT, [exp (hrfk T) - I] is very 
nearly equal to hr/kT and 

8.,.kT , 
Au .. ~T~ Av. ( 13-24) 

This equation had been derived by Rayleight and Jeans,! also before the quantum 
theory, and had been found to agree with experiment at low, but not at high, fre· 
quencies. That it cannot be correct in general can be seen by noting that as the 
frequency becomes very high, the predicted energy density approaches infinity. 
(This result is sometimes referred to as the "ultraviolet catastrophe.") 

It is interesting to note that Planck's first approach to the problem was purely 
empirical. He looked for an equation having a mathematical form such that it 
would reduce to the Wien equation when hrfk T was large, and to the R,ayleigh· 
Jeans equation when hrfkTwas small. He found that Eq. ( 13-2 1) had this p~operty, 
and his search for a theoretical explanation of the equation led to the development 
of quantum theory. 

Figure 13- 5 shows graphs of the dimensionless quantity ~:·(8;:~~), plotted 

as a fu nction of the dimensionless quantity hvfk T. The solid curve is a graph of 
Planck's Jaw, and the dotted curves are, respectively, graphs of the Rayleigh· 
Jeans Jaw, applicable when /~r « kT, and of Wien's Jaw, applicable when 
hv)) kT. 

The total energy density u., including nil frequencies, can now be found by 
summing t.u. over all values ofr from zero to infinity, since there is no limit to the 
maximum value of v. Replacing the sum with an integral, we have 

g.,."L"- •• Uy =---.., dJI; 
c o exp (lr •fkT) - I 

• Wilhelm Wien, German physicist (1864-1928). 
t John W. Strull, Lord Rayleigh, English physicist (1842- 1919). 
t Sir James H. Jeans, English mathematician (1877- 1946). 
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Planck 

Fig. 13-5 Graphs of Planck's Jaw, Wicn's Jaw, and lhc 
Rayleigh-Jeans Jaw. 

or, if we define a dimensionless variable x = ilv/kT, 

u - 87Tk' r•J... x• dx 
' - c3h3 o exp (x) - I 

The value of the definite integral is 7T'/I S, so 

g,'k' 
u, = 15c'h' T' = uT', 

where 

g,'k' u---. 
15c3h3 

t3-3 

(IJ.-25) 

(JJ- 26) 

Equation (IJ.-25) is the same as Stifan's law (Eq. (8-54)); and when the values of 
k, c, and hare inserted in Eq. (13- 26), the calculated and experimental values of" 
agree exactly, within the limits of experimental error. 

Thus quantum theory and the methods of statistics provide a theoretical basis 
for the form of Planck's law, and relate the experimental constants r1, r,, and " 
to the fundamental constants II, c, and k. Expressions for the internal energy, the 
entropy, and the Helmholtz and Gibbs functions of blackbody radiant energy were 
derived by the principles of thermodynamics in Section 8-7 and need not be 
repeated here. It will be recalled that the Gibbs function G = 0, which might also 
have been taken as a justification for setting}' • 0 in the B-E distribution function. 
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13-4 PARAMAGNETISM 

We now consider the statistics of a paramagnetic crystal. The properties of such 
crystals are chiefly of interest in the region of extremely low temperatures, of the 
o rder of a few kelvins or less. A number of simplifying assumptions will be made, 
but the procedure is the same as in more complicated cases. 

A typical paramagnetic crystal is chromium potassium sulfate, Cr,(SO, ).­
K,S0,24H,O. Its paramagnetic properties are due solely to the chromium atoms, 
which exist in the crystal as ions, Cr+++. Every electron in an a tom has not only an 
electric charge but also a magnetic moment /Ln of I Bohr* magneton, equal (in 
MKS units) to 9.27 x 10- u A m', as if the electron were a tiny sphere of electric 
charge spinning about an axis. In most atoms, the resultant magnetic moment of 
the electrons is zero, but the chromium ion Cr+++ has three uncompensated electron 
spins and a magnetic moment of 31'n· 

For every chromium ion there are 2 sulfur atoms, I potassium atom, 20 
oxygen atoms, and 24 hydrogen atoms, making a total of 47 other particles which 
are nonmagnetic. The magnetic ions are therefore so widely separated that there 
is only a small magnetic interaction between them. 

It was shown in Section 8- 8 that the thermodynamic properties of a para­
magnetic crystal could be calculated from a knowledge of the quantity F* ~ 
E - TS. Using the methods of sta tistics, the expression for F* can be derived in 
terms of the temperature Tand the parameters that determine the energy levels of 
the atoms in the crystal. Because the atoms can be labeled according to the 
p ositions they occupy in the crystal lattice, the system obeys M-B statistics, and as 
usual the first step is 10 calculate the partit ion function Z, defined as 

Z =Ill. '#1 exp-!!.... 
1 kT 

Because of their oscillatory motion, the molecules have the same set of vibra­
tional energy levels as those of any solid, and the total vibrational energy con­
stitutes the internal energy U,.,.. In addition, the small interaction between the 
magnetic ions, and their interactions with the electric field set up by the remainder 
of the la ttice, gives r ise to an additional internal energy (of the ions only) which we 
write as u,.,. Finally, if there is a magnetic field in the crystal , set up by some 
external source, the ions have a magnetic potential energy which, like the gravita­
tional potential energy of particles in a gravitational field, is a joint property of 
the ions and the source of the field and cannot be considered an internal energy. 
The total magnetic potential energy is £,,. 

The vibrational energy levels, the levels associated with internal magnetic and 
electrical interactions, and the potential energy levels are all independent. The 
partition function Z, as in the case of a gas in a gravitational field, can be expressed 

• Niels H. D. Bohr, Danish physicist (1885-1962). 
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as the product of independent partition functi ons which we write as Z,., •• z,.,, and 
Z". Thus 

z = z ••• z,.,z .... 
The magnetic ions constitute a subassembly, characterized by the partition 

functions z,., and Z"' only, and they can be considered independently of the 
remainder of the lattice, which can be thought of simply as a container of the sub­
assembly. A lthough the energy u,., and the partition function Z1., play important 
roles in the complete theory, we shall neglect them and consider that the total 
energy of the subassembly is its potential energy £• only. Thus we consider only 
the partition function Z"'. 

As shown in Appendix E, the potential energy of an ion in a magnetic field of 
intensity Jf' is -p..Jf' cos 0, where p. is the magnetic moment of the ion and 0 the 
angle between its (vector) magnetic moment and the direction of the field. For 
simplicity, we consider only a subassembly of ions having a magnetic moment of 
I Bohr magneton Jl.n· The principies of quantum mechanics restrict the possible 
values of 0, for such an ion, to either zero or 180°, so that the magnetic moment is 
either parallel or antiparallel to the field. (Other angles are permitted if the 
magnetic moment is greater than p.0 ). The corresponding values of cos 0 are then 
+I and -I, and the possible energy levels are -p.0Jf' and +p.0 .Jf'. The energy 
levels are nondegenerate ; there is only one state in each level, but there is no 
restrict ion on the number of ions per state. The partition function Z"' therefore 
reduces also to the sum of two terms: 

ZA' = exp (p.n.Jf') + exp { -p.n.Jf') = 2 cosh Jl.nJt', 
kT kT kT 

(13-27) 

since by definition the hyperbol ic cosine is given by 

cosh x = ![exp (x) + exp ( -~)). 

Let N 1 and N 1 represent respectively the number of ions whose moments are 
aligned paral1el and anti parallel to the field Jt'. The corresponding energies are 
•r = -p.0 .Jf' and 'I = p 8Jf'. The average occupation numbers in the two 
directions are then 

N - •1 
N1 =-exp-z kT' 

N 'I N1 = -exp- . 
Z kT 

The excess of those ions in the parallel, over those in the antiparallel alignment, 
is 

Rt - Nt = - exp - - - exp - =- 2 sinh --N[ ( •t) ( •1 )] N pn-J(' 
Z kT kT Z kT ' 

which reduces to 

(13-28) 



13-4 PARAMAGNETISM 401 

The net magnetic moment M of the crystal is the product of the magnetic 
moment p 11 of each ion and the excess number of ions aligned parallel to the field. 
Then 

n n f'uJf' 
M = (IYI ~ tvl)f'u = Np11 1anh kT. ( 13-29) 

This is the magnetic tqualion of s1a1e of the crystal, expressing the magnetic 
moment M as a fu nction of Jf' and T. Note that M depends only on the ratio 
Jt'"fT. 

The equation of slate can also be derived as follows. The function F* is 

F* = -NkTJnZ = -NkTin [2cosh"';A· ( 13-30) 

The magnetic moment M, which in this case corresponds to the extensive variable 
X, is 

M = - (oF") = Np11 tanh f'n.11". (13-3 I) 
o.Jr T kT 

In strong fields and at low temperatures, where p 0 .Jt')) kT, tanh (p0 Jf'(kT) 
approaches I and the magnetic moment approaches the value 

( 13- 32) 

But this is simply the sa1ura1ion magnetic mommt M .. ,. which would result if a ll 
ionic magnets were parallel to the field. 

At the other extreme of weak fields and high temperatures, p 0 .Jt' « kT, 
tanh (p0 .1t'fkT) approaches p11.Jt'(kT, and Eq. (13-31) becomes 

M = ( N::•y;. (13-33) 

But this is just the experimentally observed Curie law, slating that in weak fields 
a nd at high temperatures the magnetic moment is directly proportional to (£'/T), 
or I 

(13- 34) 

where Cc is the Curie constant. The methods of stat istics therefore not only lead 
to the Curie law, but they also provide a theoretical value of the Curie constant, 
namely, 

Np~ 
Cc = - k-. ( 13-35) 

Workers in the field of paramngneaism customarily use cgs units. The unit of 
magnetic intensity is I oersted' [(I Oe) equal to to-• A m'.J The Bohr magneton is 

Pu - 0.927 x to-•• erg Qe- 1, 

• Hans C. Oersted, Danish physicist (1777-1851). 
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and the Bollzmann constant is 

k - 1.38 x Jo-11 erg K- 1• 

Ir the number of part icles is Avogadro's number N •• equallo 6.02 x IOU cgs units, 
the Curie constant as given by Eq. (13-33) is 

N.S~t · 
Cc - -k- - 0.376 em' K mole- •. 

The complele theory leads 10 tho resull that for chromium ions cr+++, of magnetic 
moment 3S~th the value of Cc is S times as greal, or 

Cc - S x 0.376 - 1.88 em' K mole- •. 

The experimentally measured value is 

Cc - 1.84 em' K mole-• 

in good agreement with the predictions of quantum theory. 

The ratio M/M,., is 
..!!.._ = tanh l'n.lf'. 
M .. , kT 

(13-36) 

Figure 13-6ps a graph of the magnttizalion cur~ of the system, in which the ra tio 
M /M, .. is plot ted as a function of p0 .1f'/kT. The magnetization curve represents 
the ba lance struck by the system between the ordering effect of the external fie ld 
Jf', which is to a lign a ll ioni1= magnets in the direction of the field, and the dis­
ordering effect of thermal agitation, which increases with temperature. In weak 

Flg. l l-6 Magnelizalion curve of a para­
magnetic crystal. 
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fields the values of the two energy levels are nearly equal, both are nearly equally 
populated, and the resultant magnetic moment is very small. In strong fiel~s. the 
difference between the energy levels is large, the ordering effect predominates, and 
nearly all magnets line up in the lower energy level where they have the same 
direction as .1('. 

It will be seen from Fig. 13-6that saturation, as predicted by quantum theory, 
is very nearly attained when p0 Jt'fkT - 3, or when 

.Jt' = ~ .. 45 kOe K-1• 

T fAD 

Hence, if T - 300 K, a field of 13.5 x 10' Oe would be req uired for saturation. 
On the other hand, if the temperature is as low as I K, a field of 4.5 x 10' Oe 
would produce saturation, and at a temperature ofO.I K, a field of only 4.5 x lOS 
Oe would be required. (Modern superconducting electromagnets can produce 
magnetic intensi ties up to 1.5 x 105 Oe.) 

We now calculate the other thermodynamic properties of the system. The 
total energy£, which in this case is the potential enecgy £ 0 , is 

(a In Z1 ) 
E =E • .,. NkT ----ar-

1 

- - Nk --tanh -- . (
p n.Jt') fA n.Jt' 

k kT 
(13- 37) 

Comparison with Eq. (13-29) shows that the potential energy is 

£ 0 = - .;('M. (13- 38) 

The potential energy is negative because of our choice of reference level; that 
is, the potential energy of a magnetic dipole is set equal to zero when the dipole is 
at right angles to the field. 

The heat capaci ty at constant .Jt' is 

Cr - ( a~ ai'lr 
• Nk ( fAnJ!'I.' sech•fAn.Jt'. 

krl kT 
(13-39) 

Figure 13-7 shows graphs of £ 1, and C1 , (both divided by Nk) as functions of 
kTfp0.Jt'. The curves differ from the corresponding curves for the internal energy 
and heat capacity of an assembly of harmonic oscillators because there are only 
two permitted energy levels and the energy o f the subassembly cannot increase 
indefinitely with increasing temperature. 
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Fie. 13-7 The specific po1ential energy llnd specific 
heat capacity at constant magnetic intensity, both 
divided by Nk, for a paramagnetic cryslal as a 
function of kT/1•n H· 

1:14 

Let us compare the heat capacity C1 of the magnetic ion subassembly with the 
heat capacity c, o f the enti re crystal. LetT - I K and Jt'- 10' Oe. Then 

kT 
l'uJI' "" I.S, 

J'nJt' 
sech1 kT "" 0.81, 

and by Eq. (13-39), 
C1 ""Nk( I.S)-1 x 0.81 "" 0.36 Nk. 

Assuming there are SO nonmagnetic particles for every magnetic ion, and taking a 
Debye temperature of 300 K as a typical value, we have from 1he Debye T' law, 

Cv ""Nk(SO) x l ~w' (3~)'. 
"'o.s X 10- • Nk. 

At this temperature, then, the heat capacity of the magnetic ions is about 100,000 
times a.s great as the vibrational heat capacity of the crysral lauice. Much more 
energy is required to orient the ionic magnets than to increase the vibrational energy 
or the molecules or the latt ice. It is this energy or orientation which allows the cooling 
or the lattice during the process ofad iabalic demagnetization described in Section 8-8. 

T he entropy of the subassembly can now be calculated from the equation 
P - E- TS. From Eqs. ( 13-30) a nd ( 13-37) we have 

£ - F" [ ( p.,..Jf) p.,.Jf' P.nA'J S = - -- = Nk In 2cosh-- - --tanh--. 
T kT kT kT 

(13-40) 
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Fie. 13-8 Th~ entropy of a paramagneti~ 
crystal. 

Figure 13- 8 is a graph of S/Nk, plotted as a function of kT/p11.YI'. AI a given 
value of .:11', S approaches zero as T approaches zero. At this temperature, all 
dipoles are in their tower energy state; there is only one possible microstate; and 
S = k tn 0 = k tn I = 0. At the other limit , when kT » p 0 .YI', 

cosh (p0 .YI'fkT)- I, (p0 Jt'/kT)- 0, tanh (p 11Jt'fkT)- I , 

and S- Nk In 2. The entropy is also a function of (Jt'/T) only. In a reversible 
adiabatic demagnetization, S and hence (.;;f'/ T) remains constant. Thus as .:11' 
is decreased, T must decrease a lso in agreement with the thermodynamic result. 

13- 5 NEGATIV E TEMPERATURES 

Consider again a system with just two possible magnetic energy levels, in which the 
magnetic moment p 11 o f a particle can be either parallel or anti parallel to a mag­
netic intensity .;;f', The energy of the lower level, in which l'u is parallel to .Yi', is 
<1 = - p 11.Yi'; and that of the upper level, in which p 11 is opposite to .:11' , is 
<2 = +p8 .YI'. In the equilibrium state at a temperature T, the average occrpation 
numbers of the levels are 

N (-••) n = -exp -
I z kT • 

N ( -••) N, = :zexp kT . 
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The ratio NJN, is 

or 

n, (••- ''} -=exp --
IJ, kT 

T- ![ ••- ,, J 
k In IJ, - In IJ~' 

13-5 

(13-41) 

and we can consider this as the equation defining T, in terms of<, ' " IJ, and IJ,. 
If <2 > <1 and N, > IJ,, the right side of the equation is positive and Tis positive. 
The situation ean be represented graphically as in Fig. 13-9(a), in which the 
lengths of the heavy lines correspond to the average occupation numbers N, and 
n,. I 

N N 

R, 

« ,- -p~ 

(1) (b) 

Fig. 13-9 (a} In the state or stable equilibrium the occupation 
number N, or the level or lower energy is larger than the 
occupation number N, or the level or higher energy. 
(b} Population inversion immediately after the magnetic 
intensity Jt' has been reversed. 

Now suppose the direction of the magnetic intensity is suddenly reversed. 
Those magnetic moments that were parallel to the original field, and in the state 
of lower energy <1, are opposite to the new field and are now in the higher-energy 
state, while those that were opposite to the original field, and in the higher·energy 
state ••· are parallel to the new field and are now in the lower-energy state. Even­
tually, the moments in the higher-energy state will Oop over to the new lower­
energy state, but immediately after the field has been reversed, and before any 
changes in occupation numbers have taken place, the situation will be that de­
picted in Fig. 13- 9(b). The average occupation number Ri of the new upper state 
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is the same as the number IV, in the original lower state, and the occupation number 
IVj of the new lower state is the same as the number IV, in the original upper state. 
We say there has been a population inversion. Then if we consider that the tem­
perature of the system is defined by Eq. (13-41), and if T' is the temperature 
corresponding to Fig. 13-9(b), 

. 1[ •• - •. J T --
- k In Nj - In N~ . 

Since IV; is greater than IVj , the denominator on the right side of the equation is 
negative and T ' is negative. 

Negative temperatures can be looked at from another viewpoint. At a tem­
perature T = 0, all magnets arc in their lower·energy states. As the temperature is 
increased, more and more magnets move to the state of higher energy and when 
T co + oo, both states are equally populated. Then one might say that if the 
number in the higher state is eve~ gr.l!ater than that in the lower state, as it is when 
there is a population inversion, the temperature must be holler than infinity. 
We thus have the paradoxical result that a system at a negative temperature is 
even hotter than at an infinite temperature. 

In paramagnetic substances, the interactions between the ionic magnets and 
the lattice are so great that the substance cannot exist in a state of population in­
version for an appreciable time. However, it was found by Pound, Purcell, and 
Ramsey, in 1951, that the nuclear magnetic moments orthe lithium atoms in LiF 
interact so slowly with the lattice that a time interval of several minutes is required 
fo r equilibrium with the lattice to be attained, a time long enough for experiments 
to be made showing that a population inversion actually existed. 

13- 6 THE ELECTRON GAS 

The most important example of an assembly obeying the Fermi-Dirac statistics 
is that of the free electrons in a metallic conductor. We assume that each atom in 
the crystal lattice parts with some (integral) number of its outer valence electrons 
and that these electrons can move freely throughout the metal. There is, of course, 
an electric field within the metal due to the positive ions and which varies widely 
from point to point. On the average, however, the effect of this field cancels out 
except at the surface of the metal where there is a strong localized field (or potential 
barrier) that draws an electron back into the metal if it chances to make a small 
excursion outside the surface. The free electrons arc therefore confined to the 
interior of the metal in m~ch the same way that gas molecules are confined to the 
interior of a container. We ~peak of the electrons as an electron gas. 

The degeneracies of the energy levels are the same as those of free particles 
in a box, with one exception. There are two sets of electrons in a metal, identical 
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except that they have oppositely directed spins. The Pauli exclusion principle, 
instead of asserting that there can be no more than one particle per state, now 
permits t•·o electrons per state provided they have oppositely directed spins. This 
is equivalent to doubling the number of sta tes in a macrolevel, or the degeneracy 
fit§ of the macrolevel, and permitting only one electron per state. Hence, instead 
of Eq. (12-17) we have 

t. <§ s,m•v 'l'l 
.,• ~u v. 

It will be more useful to express the degeneracy in terms of the kinetic energy 
• - jmu'. Then since 

• 2· 
v - -. m 

it follows that 

If for brevity we set 

then 

1( 2)"' flu = 2 ;;; .-•11 l'l<, 

(2m)111 
t. <§, - 4,y hi r 111 l'l<. (13-4)) 

(2m)
111 

A e 4,y hi , (13-44) 

l'l <§, • A•'" l'l«. (13-45) 

The degeneracy therefore increases with the square root of the energy. Then from 
the F-0 distribution function, Eq. (I J-40), the average number fl.AI' of electrons 
in a macrolevel is 

A% - A~. ~ A ,v• ~f. 
exp [(• - p)/kT) + I exp [(• - p)fkT) + I (13-46) 

The chemical potential p can be evaluated from the requirement that 2 1'lA" = 
N, where N is the total number of electrons. Replacing the sum with an integral , 
we have 

L
., . ,lit 

N- A d<. 
• exp [(• - p)/kT) + 1 

The integral cannot be evaluated in closed form and the result can be expressed 
only as an infinite series. The result, first obtained by Sommerfeld, • is 

[ "'(k9' "'(kT)' J p • •r I ·-- - + - - + ... . 
12 •r 80 •r 

(13-47) 

The quantity •r is a constant for a given metal and is called the Ftrmi mugy. 
As we shall show, •r is a function of the number of electrons per unit volume, N/V, 

• Arnold J. WI Sommerfeld, German physicist (1868- 1951). 
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so the preceding equation expresses p. as a fu nction ofT and N/V. When T = 0, 
p.0 = ••·· The distribution function at T = 0 is then 

6%0 = 6 '§, 

exp [(• - <y)fkT] + I 
(13-48) 

The significance of the Fermi energy ••· can be seen as follows. In all levels 
~or which < < ••·· the difference (• - .,.)is a negative quanti ty, and at T = 0, 

~- E'F 
--- = -00, 

kT 

The exponential term in Eq. (13-48) is then zero and in all levels for which 
E < f'l-', 

6A'0 = 6 '§, = A•'" 6<. {I 3-49) 

That is, the average number of electrons in a macrolevel equals the number of 
states in the level, and all levels with energies less than • •· are fully occupied with 
their quota of o ne electron in each state. 

T, 

Fll. 13- 10 Graphs of the distribution function of the 
free electrons in a metal, at T = 0 and at two higher 
temperatures T1 and T2. 

In all levels for which • > 'F• the term (< - <p) is positive. Hence at T = 0 
the exponential term equals + oo and 6%" = 0. Thus there are no electrons in 
these levels and the Fermi energy <p is the maximum energy of an electron at 
absolute zero. The corresponding level is called the Fermi level. 

The solid curve in Fig. 13- 10 is a graph of the number of electrons per unit 
energy interval, 6A~"0/6• = A•'"• at T = 0. The curve extends from • = 0 to 
< = .,., and is zero a t all energies greater than <p. 

An expression for the Fermi energy can now be obtained from the requirement 
that 2 6%0 = N. Replacing the sum with an integral, introducing the d istri­
bution function at T = 0, and integrating over all levels from "zero to ••·· we have 
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or, after inserting the expression for A, 

•F ~ ..!!:( 3N)tn. 
8m 1rV 

(13-50) 

Thus as stated earlier, •F is a function of the number of electrons per unit 
volume, N/ V, but is independent of T. 

As a numerical example, let the metal be silver, and since silver is monovalent we 
assumd one free elec1ron per atom. The density of si lver is 10.5 x I OS kg m->, its 
atomic weight is 107, and the number of free electrons per cubic meter, N/ V, equals 
the number of atoms per cubic meter which is 5.86 x 1020• The mass of an electron 
is 9.11 x 1o->1 kg and h - 6.62 x l<r" J s. Then 

<p - 9.1 X J0- 10 J - 5.6 cV. 

The to tal energy U of the electrons is 

u - ! •d.A", (13- 51) 

or, replacing the sum with an integral, 

U = AJ."' •"' d<. 
o exp ((• - p.)/kT) + I 

Again, the integral cannot be evaluated in closed form and must be expressed 
as an infinite series. The result is 

(13-52) 

When T = 0, 

(13- 53) 

It is len as a problem to show that the same result is obtained if one inserts 
in Eq. (13-51) the expression for the distribution function at T- 0, and integra tes 
from • = 0 to < = <y. 

The mean energy per electron at absolute zero is 

Hence for silver, 

- U0 3 ._o = - = - f . 
N 5 F 

;. = ~ x 5.6eV "' 3.5eV. 
5 

The mean kinetic energy of a gas molecule a t room temperature is only about 
0.03 eV, and the temperature at which the mean kinetic energy of a gas molecule 
is 3.5 eV is nearly 28,000 K. Hence the mean kinetic energy of the electrons in a 
metal, even a t absolute zero, is much greater than that of the molecules of an 
ordinary gas at temperatures of many thousand kelvins. 
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At a temperature of 300 K, and for silver for which <r = 9.1 X 10-" J , 

kT = 1.38 X 10_,. X 300 = 4.58 X ro-•. 
• • 9.1 x to-" 

Thus at this temperature the terms in powers of (kTf<,·), in the series expansion in 
Eq. (13-47), are all very small and to a good approximation one can consider that 
p = •r at any temperature. 

The dotted curves in Fig. 13-10 are graphs of the distribution function twY {!1<, 
at higher temperatures T1 and T,, where T, > T1• It will be seen that the occupation 
numbers change appreciably with increasing temperature, only in those levels near 
the Fermi level. T he reason for this is the followi ng. Suppose the energy U of the 
metal is gradually increased from its value U0 at T = 0, thus gradually raising its 
temperature. In order to accept a small amount of energy, an electron must move 
from its energy level at T = 0 to a level of slightly higher energy. But exc~t for 
those electrons near the Fermi level, all states of higher energy are fully occupied 
so that only those electrons near the Fermi level can move to a higher level when 
the temperature is increased. With increasing temperature, those levels just below 
the Fermi level become gradually depleted, electrons at still lower levels can move 
to those that have been vacated, and so on. 

For the particular level at which< = p, the quantity(< - p) ~ 0, and at any 
temperature above T- 0, the exponential term in the distribution function equals 
I , and the occupation number is 

!1% = j!i '§,. 

If the temperature is not too great, then to a good approximation p = <r 
and to this approximation we can say that a t any temperature above T = 0, the 
Fermi level is SO% occupied. 

The heat capacity at constant volume, Cy, is given by 

Cy - (:~t 
and from Eq. ( 13-52), 

"'(kT) [ 3"'(k9' ] Cy = - - Nk I -- - + · · · . 
2 • • 10 •• 

(13-54) 

If the temperature is not too great, we can neglect terms in powers of (kT/•v) 
higher than the fi rst, and to this approximation 

"'(kT) Cy = -- Nk. 
2 •• 

(13- 55) 

Replacing Nk with nR, where n is the number of moles, and dividing both 
sides by n, we have for the molal specific heat capacity of the free electrons in a 

metal, "'(kT) 
c = - - R (13-56) 
" 2 EJ> , 
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which is zero at T = 0 and which increases linearly with the temperature T. For 
silver at 300 K, using the value of (kTf•.-) previously calculated, 

c. ~ 2.25 X 10-'R. 

The molal specific heat capacity of a monatomic ideal gas, on the other hand, 
is 

3 
c.~ lR. 

Thus although the mean kinetic energy of the electrons in a metal is very much 
larger than that of the molecules of an. ideal gas at the same temperature, the energy 
changu only very slightly with changing temperature and the corresponding heat 
capacity is extremely small. This result served to explain what had long been a 
puzzle in the electron theory of metall ic conduction. The observed molal specific 
heat capacity of metallic conductors is not very different from that of noncon­
ductors , namely, according to the Dulong-Petit law, about 3R. But the free elec· 
Irons, if they behaved like the molecules of an ideal gas, should make an additional 
contribution of 3R/2 to the specific heat capacity, resulting in a value much larger 
than that actually observed. The fact that only those electrons having energies 
near the Fermi level can incuast their energies as the temperatuJe is increased 
leads to the result above, namely, that the electrons make only a negligible contri­
bution to the heat capacity. 

To calculate the entropy of the electron gas, we make use of the fact that in a 
reversible process at constant volume, the heat How into the gas when its tempera­
ture increases by dT is 

dQ, = CydT = TdS; 

and hence at a temperature T the entropy is 

S =f.T dQ, ~J.T Cy dT . 
o T o T 

Inserting the expression for Cv from Eq. (13-54) and carrying out the integration, 
we obtain 

S = Nk-- I-- - + · ·· "'(kT) [ "'(kT)' ] 
2 <v 10 •r 

(1 3-57) 

Hence the entropy is zero at T = 0, as it must be since there is only one 
possible mi4rostate at T = 0 and at this temperature n = I, S = kIn n = 0. 

The Helmholtz function F is 
F = U - TS, 

and from the expressions derived above for U and S, 

F - ~ N•,·[l _ 5,-'(kT)'+ . . ·] . 
5 12 ... 

(13-58) 
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T he p ressure P of the electron gas is given by 

and since 

it follows that 

P=-(ot\ ovlr' 

p = ~ N•r[t + 5"'(kT)'+ .. ·]. 
5 V 12 •r 

(13- 59) 

This is· the equation o f state of the electron gas, expressing P as a fu nction of V 
and T. 

Com parison with Eq. (13-52) shows that the pressure is two-th irds of the 
e nergy density 

p = ~!:!.. 
JV 

For silver, N/V "' 6 x tO'' elec trons per cubic meter and '• "" 10 x JO-lt J. 
Hence at absolute zero, 

P "' l x 6 x tO" x 10 x JO- lt "'24 x tO' N m- • 

"" 240,000 atm! 

In spite of I his tremendous pressure, the electrons do not all evaporate spontaneously 
from the metal because of the potential barrier at its surface. 

P ROBLEMS 

13- 1 (a) Show that the entropy or an assembly or N Einstein oscillators is given by 

S - 3Nk {exp (:;~ _ 1 - In [I - exp ( -9.,/T))}. 

(b) Show that the entropy approaches zero as Tapproaches zero and (c) that the entropy 
a pproaches 3Nk[l + ln(T/O.,J) when Tis large. (d) Make a p lot or S/R versus T/92 . 

13-2 (a) From Fig. 3-10 find the characteristic Einstein temperature 9;: for copper such 
that the Einstein equation for c. agrees with experiment at a temperature of 200 K. (b) 
Using this value of 8;:. calculate c. at 20 K and 1000 K and compare with the experimental 
values. (c) Make a sketch oro., versus tempera ture so that the Einstein equation for c. 
will yield the experimental values. 

13- 3 The characteristic Debyetemperature for diamond is 1860 K and the characteristic 
Einstein temperature is 1450 K. The experimental value or c. for diamond, at a tem­
pera ture of207 K, is 2.68 x 10' J kilomote-t K- 1• Calculate c. at207 K from the Einstein 
and Debye equations and compare with experiment. 
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13-4 (a) Show that the heat capacity of a one-dimensional array of N coupled linear 
oscillators is ~iven by 

f.• .. x11!~ dx 
Cy • 3Nkr,.1 

0 
(e• _ l)l' 

where x - lr•/kT, and it is assumed that both longitudinal and transverse waves can 
propagate along the array. (b) Evaluate this expression for Cv in the low and high 
temperature limits. 

13-5 To show that the Debye specific heat capacity a t low tempera1ure can be deter­
mined from measurements of the velocity of sound, (a) show that 

- ~(3N)'" 60 k 4,.v 
where 

..!. - !(~ + ~): c' 3 c, c. 
a nd (b) show that the specific heat per kilogram c, is 

J6,.• k' r> r• 
c, - Tiii,c'- 1.22 x 1o" pe'' 

where pis the density of the material. (c) Calculate the average value of the sound velocity 
in copper. For copper , p is approximately 9000 kg m ... and c, - 0.15 J kg-' K-• at s K. 
(d) Calculate a value for 60 and for •,. for copper. (e) Calculate the value of Am•• and 
compare to the intera tomic spacing, assuming that copper has a cubic structure. 

13-1 Calculate values (a) for c1 and c1 of Eq. (13-22) and (b) for the Stefan-Boltzmann 
constant"· 
13-7 (a) Show that for electromagnetic radiation the energy per unit volume in the wave­
length range between A and A + dA is given by 

S..lrc dA 
du, • A' exp (lrc/Akn - I · 

(b) Show that the value of A for which 6 u, is a maximum is given by A,.T - 2.9 x 1o-• 
m K. This is known as Wien's displacement Jaw. (c) Calculate A,. for the earth, assuming 
the earth to be a blackbody. 

13-8 (a) Show that Wien's Jaw can be derived by assuming that photons obey M-B 
statistics. (b) Show that Wien's law results in a total energy densi ty which is nearly the 
same as that derived in Section 13-3. 
13-9 If the magnetic moment I' • Jl'n of an atom is large enough, there will be 2J + I 
possible angles 6 between the magnetic moment a nd the applied magnetic intensity Jf' 

corresponding 10 magnetic levels having energies ~J • mJpl where nrJ has values 
between -J aod +J. (a) Show that Z1 will be given by 

. h (2J + I)I'Jt' 
Sin 2kT z- _ _ .::..:_ 

. I'Jt' 
smh 2/cT 

( 1 3~) 
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[Hint: Sec the derivation of Eq. (12-44).) (b) Show that the net magnetic moment of the 
system is given by 

[
(2J + I) p.Jl' p.Jl'] 

M • Np. --
2
- coth (2J + I) 2kT - coth 2kf . 

Th is is called the Brillouin• function. (c) Show that the net magnetic moment follows 
Curie's law in the limit of high temperatures and low fields. (d) In the limit of low tem­
perature and high fields, show that all the dipoles are aligned. (e) Show that the expression 
for the net magnetic moment derived in part (b) reduces to Eq. (13- 29) when 2J + I • 2 
andg- 2. 

13- 10 Use Eq. (13- 60) of the previous problem to calculate the entropy o f N distin­
guishable magnetic dipoles. Evaluate the expression in the limit of high and low tem­
peratures and make a graph or the entropy as a function ofT and .II'. 

13-11 A paramagnetic salt contains 10" magnetic ions per cubic meter, each with a 
magnetic moment of I Bohr magneton. Calculate the difference between the number of 
ions aligned parallel to the applied intensity of 10 kOe and that aligned anti parallel at 
(a) 300 K, (b)4 K, if the volume of the sample is 100 em•. Calculate the magnetic moment 
or the sample at these two temperatures. 

13-12 Use the statistical definitions or work, total energy, and net magnetic moment 
to show that the work of magnetization is givtn by dW - -Jl'dM. (Hint: See Section 
3- 13.1 1 
13-13 Derive expressions for the magnetic contribution to the entropy and the heat 
capacity at constant magnetic intensity .II' for the system d iscussed in Section 13-4. Sketch 
curves of these properties as a funct ion of .11'/T. 

13-14 Calculate the mean spe<d, the root-mean-square speed and the mean-reciprocal 
speed in terms of uF • (2<~nr)''' for an electron gas at 0 K. 
13-15 (a) Show that the average number or electrons having speeds between • and 
u + du is given by 

lwY _ 8nm'JI u' Av 

• lr' exp [(jmu' - p.)JkT] + I · 

(b) Sketch Ao~Y J Au as a function or u' at T - 0 K. 

13-16 (a) Calculate '•· for aluminum assuming 3 electrons per aluminum atom. (b) 
Show that for aluminum at 1000 K , 1• difTers from ,,. by less than 0.01 %. (c) Calculate 
the electronic contribution to the molal specific heat capacity or aluminum at room 
temperature and compare it to JR. (The density or aluminum is 2.7 x 10' kg m-• and 
its atomic weight is 27.) 

13-17 The Fermi velocity is defined as Vp • (2<y/m)111 and tht Fermi temperature as 
Tv • ' F/k. (a) Calculate values of the Fermi velocity, momentum, and temperature for 
electrons in silver. (b) Determine the magnitude of the second term in Eqs. (13-47), 
(13- 52), (13- 54), (13- n}, (13-58), and (13- S9) at room temperature. (c) At what ttm· 
pera ture does the second term contribute approximately a I % correction in the above 
equations? 

• Leon N. Brillouin, French physicist (1889-1969). 
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JJ-18 Find the mean energy per electron by substituting the expression for ll./V' into 
Eq. (13-51). 

IJ-19 Derive Eqs. (13-57), (1 3-58), and (13-59). 

I J-ZO In a one-dimensional electron gas tJ.<§, - T v'2mf< /J., where L is the length of 

h'N' 
the sample of N electrons, (a) Sketch .A'"O(•) as a function of'· (b)Show that <y • 

32
mL' . 

(c) Find the aver11ge energy per electron at 0 K. 

IJ-Z1 (a) Use the data shown in Fig. 7-7 to determine the Fermi energy of liquid He' 
which can also be considered as a gu of particles obeying Fermi-Dirac statistics. (b) 
Determine the Fermi velocity and temper11ture for He'. (See Problem 13- 17). 

13-22 The free electrons in silver can be considered an electron gas. Calculate the com­
pressibility and expansivity of this gas and compare them to the experimental values for 
silver of 0.99 x 10- 11 m' N-1 and 56.1 x Jo-t K-1, respectively. 
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A 

Selected differentials from a condensed 
collection of thermodynamic formulas 
by P. W. Bridgman 

Any par1 ial derivative of a state variable of a thermodynamic system, with respect 
to any other state vuriable, a third variable being held constant [for example, 
(oufov)rJ can be written, from Eq. (4-20), in the form 

(~ I~ (oufoz)r 
vuvu)r- ---

(oufoz)r 

where z is any arbitrary state fu nction. Then if one tabulates the partial aerivatives 
of all state variables with respect to an a rbi trary function z, any partial derivative 
can be obtained by dividing one tabulated quant ity by another. For brevity, 
derivatives of the form (oufoz)r are wri tten in the table below in the symbolic 
fo rm (ou)r. Then, for example, 

(~) _ (ou)r _ T(oufoT)p + P(oufoP)r = TP _ P 

ou r (ou)r -(oufoP)r 1e ' 

which agrees with Eq. (6-9). Ratios (not derivatives) such as d'q,./dup can be 
treated in the same way. For a further discussion, see A Condtnud Coi/J:t/on of 
Thumodynamics Formulas by P. W. Bridgman (Harvard University Press, 1925), 
from which the table below is taken. 

P constant 

can,.- 1 
(ou),. = (ovfoT),. 

(os),. = cp/T 

(oq)p- ,,. 

(ow)!' = P(oufoT)ro 

(ou),. = c,. - P(iJufoT)p 

(iJh)p = Cp 

(og)ro = -s 
(of),. = - s -P(iJu/iJT)p 

419 

T constant 

(iJP)r- -1 

(ov)r = -(oufoP)r 

(os)r ~ (iJvfoT)p 

(oq)r - T(ou/oT), 

(ow)r - -p(ou/oP)r 

(ou)r = T(ouf oT),. + P(oufoP)r 

(oh)r - -• + T(ovfoT),. 
(og)r - -v 

(iJf)r - P(oufoP)r 
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h constant 

(oP).- - c1, 

(or). - v - T(oufoTlJ. 

(o•>• - - cp(ou/oP)r - T(oufoT)1~ 
+ u(oufoT) ,, 

(oq).- vcr 

(ow). = -P[cp{oufoP)r + T(oufoT)~ 
- u(oufoTlJ.J 

~ 
(oP), - - cpfT 

(oT), - - CoufoT)p 

(ou), - - ! [cp{oufoP)r + T(oufoT)J.J 
T 

(oq), - o 

(ow), - - !. [cp{oufoP)r + T(ou(OT)~J rr 
p 

(ou), - T [cr(oufoP)r + (T oufoT)J.J 

(oh), - - vcp/T 

(og), - - ! [uc P - sT(oufoT), .J 
T 

(Of), = ! [Pcp(oufoP)r + PT(oufoT)j, 
T 

g constant 

(oP>, = s 
cor>, - . 
(ou), - u(oufoT),, + s(oufoP)r 

(os), = .!. [vcp - sT(oufoTlrl 
T 

(oq), = -sT(oufoTlr + ucr 

(ow), = P[u(oufoT)" + s(oufoP)rl 

u constant 

(oP). - -(oufoT)p 

(oT). - (oufoP)r 

(os). =! [c1i}ufoP)r + T(oufoTll ·l 
T 

(oq). = c1.(ovfoP)r + T(oofoT)J. 

(ow). = o 
(ou). = c1.(oufoP)r + T(oufoT)j. 

(olr). = c1.(oufoP)r + T(oufoT)J, 
- u(oufoT), , 

(og). = -u(ovfoT)1• - s(ovfoP)r 

(of). ~ -s(oufoPlf· 



B 

The Lagrange method of undetermined 
multipliers 

In an algebraic equation such as 

ax+ by= 0, (B- 1) 

one is accustomed to consider o ne of the variables, say x , as the inclepenclent 
variablo and the other variable, y, as the clepenclent variable. The equation is then 
considered as imposing a relation between the dependent and independent variables 
in terms of the coefficients a and b, namely, in this case, y = -(afb)x. 

Suppose, however, that both x andy are independent variables. Then y may 
have any value regardless of the value of x, and we can no longer require that 
y = - (a/b)x. The equation ax + by = 0 can be satisfied for any pair of variables 
x and y only if a = 0, b = 0. 

Suppose next that x and y are not completely independent but must also 
satisfy a condition equation, which we take, for example, as 

X+ 2y = 0. (B-2) 

What can we now say about the coefficients a and bin Eq. (B-1)? One p rocedure 
is to consider Eq. (B- l) and the condition equation (B-2) as a pair of simultaneous 
linear equations. We solve Eq. (B-2) for x and substitute in Eq. (B- 1): 

X= - 2y 

a(-2y) +by= 0, 

b = 2a. (B-3) 

Then Eq. (B- 1) is satisfied for any pair of values of a and b that satisfy Eq. (B-3), 
provided the values of x andy satisfy the condition equation (B-2). 

If the number of independent variables and condition equations is small, the 
procedure above is adequate. But when these numbers become very large, there 
are too many simultaneous equations to solve. In this case, we use the Lagrange• 
method of undetermined multipliers. Each condition equation is multiplied by an 
undetermined constant A. If there are k condition equations, there are k such 

• Joseph L. Lagrange, French mathematician (1736-1813). 
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multiplters: l, A,. ... , A •. In our problem there is only one such equation and 
one multiplier A. Then from Eq. (B-2), 

.lx + 2Ay = 0. (B-4) 

Now add this to Eq. (B-1), giving 

(a + A)x + (2A + b)y = 0. (B-S) 

Now assign a value to A such that the coefficient of either x or y is zero. If we choose 

x, then (a + A) = 0; A = -a. (B-6) 

Equation (B-5) then reduces to 
(2A + b)y = 0, (B-7) 

which contains only one of the variables. But since either one of the variables can 
be considered independent, Eq. (B-7) is satisfied only if 

(2A +b) = 0; b ~ -2A. (B-8) 

Then from Eqs. (B-6) and (B-8) we have 

which is the same~ Eq. (B-3). 
b = 2a, (B- 9) 

In effect, the usc of Lagrange multipliers leads to an equation, Eq. (8-S), 
which has the same property as if both x andy were independent, since the coeffi­
cient of each is zero. 

We now use the Lagrange method of undetermined multipliers to explain how 
Eqs. (8-29), the equations of phase equilibrium, are a necessary consequence of 
Eq. (8-27), which expresses the condition that the Gibbs function shall be a 
minimum, subject to the condition equatio ns (8- 28). If the values of the dn\11's 
in Eq. (8-27) were completely independent, the equation could be satisfied for an 
arbitrary set of the dn\11's only if the coefficient of each were zero. The method of 
undetermined multipliers takes the condition equations inti) account so as to 
eliminate some o f the terms in Eq. (8-27) to obtain an equation in which the re­
maining dn\1hs are independent, so that the coefficient of each can be set equal to 
zero. The procedure is as follows. 

We multiply the first of the condition equations (8- 28) by a constant .l1 whose 
value for the present is undetermined. The second equation is multi plied by a 
second constant l,, the next by a constant .l3 , and so on. These equations are then 
added to Eq. (8-27). T he result is the equation 

<.uP' + l,) dn: 0 + (p:" +. A1) dn:'' + · · · + (p:•' + .l1) dn:•l 
+ <.u:" + A1) dnl'' + (.ul'' + A,) dn~" + · · · + (!4'' + .l,) dn~·~ 

-':J.' 
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The total number of dnl11's in this equation is kTT, one for each of the k con­
stituents in each of the TT phases. For any constituent i, arbitrary values may be 
assigned to the dn,'s in all phases but one, making a total of(,. - I) arbitrary 
values. The remaining dn1 then takes up the slack, since 

·-· Idnl11 - 0. 
I• I 

Then since there are k constituents, the total number of dnl11's which can be given 
arbitrary values, or the number that are independent, is k(,. - I) - k,. - k . 
Let us therefore assign values to the (as yet) undetermined multipliers, such that 
for each constituent I, in some one o f the phases j, the sum (,ul11 + .11) - 0. For 
example, let us select phase I and assign a value to 11 such that in phase I 

(,u\11 + l,) = 0, or ,u\11 = -l,. 

Then the product (,u\11 + 11) dn\11 is zero regardless of the value of dn\11 

and this term drops out of the sum in Eq. (B- 10). In the same way, we let 

{.ul11 + l,)- 0, or ,ul11 = - .1,, 
and so on for each of the k constituents. This reduces the number of dnl11's in 
Eq. (B-1 ) by k, leaving a total of hr - k. But since this is the number of dnl11's 
that can be considered independent, it follows that the coefficient of each of the 
remaining dnl11's must be zero. Therefore for any constituent i in all)' phase j, 

,u:IJ a -A,. 

Therefore the chemical potential of any constituent i has the same value - 11 
in all phases, which leads to the equations of phase equilibrium, Eqs. (8-29). 
Note that the values of the .lo's themselves need not be known ; the only significant 
aspect is that the values of the chemical potentials of every phase are equal, 
whatever these values may be. 

One can consider that, in t./fut, the method of Lagrange multipliers makes a// 
the dnl11's in Eq. (B- 10) independent, since the coefficient of each is zero , but the 
coefficients are zero for different reasons. In phase I , the coefficients ~re zero 
because we assigned values to the .l's to make them zero. In the other phases, the 
coefficients are zero because the remaining dnl" 's are independent. 

The choice of phase I in the preceding argument was not essential; we could 
equally well have started with any other phase and, in fact, could have selected 
different phases for each constituent. In any case, we would eliminate the same 
number k of dnl11's from Eq. (B-10), and the remainder would be independent. 



c 
Properties of factorials 

In the derivations of the distribution functions of particles obeying the various 
statistics, many properties of the factoria l are used. In this appendix we derive 
these properties by investigating the gamma function r(s),. Stirling's approximation 
for calculating factorials of large numbers is also developed. 

The factorial of a positive integer n is written nl and defined as 

n! = n(n - l )(n - 2) · · · I. (C-1) 

From this ~efinition it follows that 

(n + I)! ~ (n + l)n!. (C- 2) 

Equation (C-2) can be used to determine 0 ! and ( -n)! 
If n - 0, Eq. (C- 2) gives I! = (01) and 

0! = I. (C-3) 

l fn =-I, Eq. (C-2) resul ts in the expression 0! = 0(-1)!. Since 0! =I , 
we can take (-I)! to be oo, that is 

(-I)!= oo. (C-4) 

Ho wever, this involves division by zero which is undefined mathematically. The 
gamma function is an expression for values of n which may not be integer, 
which yields Eqs. (C- 1) to (C- 3) for integer n. In the limit that n approaches -I, 
the gamma function approaches oo. 

Integrals of the form 

f(s) = [ a(t)e-•' dt 

are called Laplace• transforms. They are very useful in many branches of science 
and engineering. The gamma function is a Laplace transform in which s - I and 
a( I ) - I" where n need not be an integer. Thus 

/(I ) - r(n + 1) = [ t"e-• dl. 

• Marquis de Pierre S. Laplace, French mathematician (1749- 1827). 
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For n ~ -I, integration by parts yields 

f.~ t •e-• dt = -t•e-• [ + n f.~ r•-'e-• dt. 

T he first term on the right is zero at both limits since .-• approaches zero faste­
than r• approaches infinity at the upper limit. Then 

J.~ r•e-• dt = n [ ,•-•e-• dt 

or 

r (n + I) - nr (n). 

The gamma function can be successively integrated by parts so that 

and if n is an integer 
r (n + I) = n(n - l)(n - 2) · · · I, 

r(n +I) = n!. 

If n = 0, the gamma function can be integrated directly and 

r(J) = J.~ .-• a = 1. 

Since by Eq. (C-7), r(J) = 0!, 
0! =I , 

in agreement with Eq. (C-3) . 

(C-6) 

(C-7) 

(C- 8) 

The integral of Eq. (C- 5) diverges if n ~ -I, but by rewriting Eq. (C-6) as 

(C-9) 

the definition of r(n) can be extended to negative integers. If 0 < n < I, r(n) 
can be determined from Eq. (C-9). Using this recursion formula again, the values 
of r (n) for - I < n < 0 can be found from the values for r (n) when 0 < n < I, 
and so on. Thus r(n) is determined for all non integer values of n. 

However, since r (l) = I the method fails for n = 0, since division by zero 
is undefined. Thus 

lim r(n) =lim n- 'r(n + I) = ±00. (C- 10) 
ft-+0 ft-+ 0 

Similar behavior is found for all negative integers. 
For small values of n the factorial can be evaluated by direct computation. 

However, it is often necessary to evaluate n! for large values of n. The factoria l 
of a large number can be found with sufficient precision by Stirling's approxima­
tion which we now derive. 

The natural logarithm of factorial n is 

In (n!) = In 2 + In 3 + · · · + Inn. 
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Fig. C-1 A graph of Inn as a function 
of n. 

This is exactly equal to the area under the step curve shown by dotted lines 
in Fig. C-1, between n - I and n - n, since each rectangle is of unit width and 
the height of the first is In 2, that of the second is In 3, etc. This area is approxi­
mately equal to the area under the smooth curve y - In n between the same limits, 
provided n is large. For small values of n the step curve differs appreciably from 
the smooth curve, but the latter becomes more and more nearly horizontal as n 
increases. Hence approximately, for large n, 

Integration by parts gives 

In (n !) = J"ln n dn. 

In (n!)- n ln n - n + I , 

and if n is large we may neglect the I, so finally 

In (n !) - n In n - n. 

This is Stirling's approximation. 
An exact analysis leads to the following infinite series. 

n! = J2,m {!!)"[I + ...!.. + _I_ - _ill_ + .. ·J. 
e 12n 288n' 5 l840n' 

If all terms in the series except the first are neglected, we obtain 

In (n !) = i In 2" + i In n + n In n - n. 

(C-11) 

(C- 12) 

(C-13) 

If n is very large compared with unity, the first two terms of this expression are 
negligible also, and we get Eq. (C-11). 



D 

An alternative derivation of distribution 
functions 

At the end of Section 11-5, it was· noted that when the number of particles in an 
assembly becomes large, the occupation numbers of the levels in the most probable 
macrostate are very nearly the same as the average occupation numbers for the 
assembly. This is not only true for particles obeying B-E statistics, but it holds 
equally well for the other statistics. Thus when the system is in equilibrium, the 
distribution of particles among levels can also be determined from the occupation 
numbers of the macrostate with the maximum thermodynamic probability, sub­
ject to the constraints that the total energy and the total number of panicles of the 
assembly is constant. 

When one looks at a large number of identical assemblies, one macrostate 
occurs the most often. The assumption is that this macrostate is the distribution of 
particles among levels for the system in equilibrium. Therefore the properties of 
t he system are determined by the distribution of particles among levels that has 
the maximum thermodynamic probability. In the text we assume that the prop­
erties of the system are determined by the average occupation numbers of the 
levels. In the limits of large numbers of particles both methods lead to the same 
distribution functions, as we shall show. 

We now describe the conventional procedure for calculating occupation 
numbers in the most probable macrostate, or, the most probable occupation 
numbers. If we let ?f'"• represent the thermodynamic probability of the most 
probable macrostate, the entropy S is set proportional to the logarithm of "If'"•, 
that is, 

S = k8 1n 'If'"•. 

To find the most probable macrostate, we use the usual criterion for thel maxi­
mum value of a function, namely, that its first variation is equal to zero. (Strictly 
speaking, it should also be shown that this leads to a maximum value and not to a 
minimum.) We shall illustrate by considering the Maxwell-Boltzmann statistics, 
although the same procedure can be followed in the other statistics as well. 

427 
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In the M-B statistics, the thermodynamic probability of a macrostate is given 
by Eq. (I 1-21), 

gNI 
ir M- 8- N! IT ...L 

1 N1! 
(0-1) 

Instead of maximizing ill", it is simpler to maximize In if/', since if if/' is a 
maximum, its logarithm is a maximum also. Then considering the thermo­
dynamic probability of the most probable macrostate, 

In -tr• = InN! + L N1 In g1 - L In N1 !. (0-2) 
I I 

We assume that N)) I, and that in any level j, N1 )) I, so that we can use the 
Stirling apvroximation (see Appendix C), and 

InN! - N InN- N, 

Then 
In N1!- N1 1n N1 - N1• 

In -tr• = N InN- N +I N1 In g1 - I N1 In N1 +I N1• 

But I N1 = N, so 
I I I 

In -tr• = N InN +I N1 In g1 -I N1 In N1 - N In N - I N1 In.!!.. (D-3) 
I I I Nl 

Now compare this macrostate with a neighboring macrostate in which the 
occupation numbers are slightly different. Let the occupation number of any level 
j differ from its most probable value by ~N1 • Since ~N1 « N1, we can use the 
methods of differential calculus, considering ~N1 as a mathematical differential . 
T he differential of In tr• is then, since Nand g1 are constants, 

6 In tr• =I In g1 6N1 - L 6N1 - L In N1 6N1• (0-4) 
I I I 

Since the total number of particles is the same in the two macrostates, any 
increases in the occupation numbers of some levels must be balanced by decreases 
in the occupation numbers of other levels: and hence I 1 6N1 - 0. Since In ill"* 
is to be a maximum, we set 6 In -tr• - 0. Then 

or 

(O- S) 

If the N/s were indtptndtnt, then as explained in Appendix B, this equation 
could be satisfied only if the coefficient of each 6N1 were zero. But the 6N,'s arc 
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not independent. We have shown above that 

6N = 2 6N1 - 0; (D-6) 
I 

and since the total energy U - 21 <1N1 is the same in both macrostates, any in­
crease in energy resulting from an increase in the occupation number of a level 
must be balanced by a decrease in the energy of other levels and a second condition 
equation is 

6U = 2•1 6N1 =0 (D-7) 
I 

We therefore use the Lagrange method of undetermined multipliers described 
in Appendix B. Multiply the first condition equation, Eq. (D-6), by a constant 
which for later convenience we write as In "• multiply the second by a constant 
- p, and add these products to Eq. {0-5), obtaining 

~ (In*.+ In«- P•;) 6N1 = o. 

In effect, the 6N,'s are now independent and the coefficient of each must be 
zero. Hence for any level j, 

In.!! + In" - P•1 • 0, (D-8) 
N, 

or 
N1 = «g1 exp(- P<1) , (D-9) 

which is the distribution function for the most probable occupation numbers, 
expressed in terms of the constants " and p. 

Now sum the" preceding equation over allj's, and let 

Z = 2 g1 exp(- P<1) 
I 

where Z is the single particle partition function described in Section 11- 14. Then 
since 21 N1 • N, it follows that 

and from Eq. (D-9), 

N 
a. :: z· 

N1 N 
- =- exp( - P•1). 
g, z 

(0-10) 

{D-11) 

To evaluate the constant p, we insert in Eq. (D-3) the expression for In (g;/N1) 

from Eq. (D-11), and setS - ku In tr•, giving 

S = ku[N InN- 2 N1 InN + 2 N1 In Z + p 2 •1N1], 
J J J 

or 
S = Nku In Z + Pk0 U. (D-12) 
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If the energy levels are functions of the volume V (or some other extensive 
parameter), then Z is a function of P and V and has the same value in two equi­
librium states in which the values of P and V are the same. The entropy difference 
S between the states, since In Z is a constant, is 

t:.S - #o t:.U. (0-JJ) 

From the principles of thermodynamics, the entropy d ifference between two 
equilibrium states at the same temperature and volume is 

It follows that pk8 - l {T, or 

P-=-'- . 
k8 T 

Hence Eq. (0-12) can be written 

and 

S- Nk8 lnZ + Y.., 
T 

F :aU- TS = - Nk0 T inZ. 

The chemical potential f' is 

and hence 

f' - (~F) =- -k0 T In Z, 
~N T.Y 

-I' 
lnZ =- -, 

k 8 T 

I f' 
- = exp--. 
Z k0 T 

The distribution function, from Eq. (0 - 1 1), can now be written as 

!!..!. "" N exp f' - '•. 
g1 k0 T 

(0-14) 

(D-15) 

(D-16) 

(D-17) 

(D-18) 

(D-19) 

Comparison with Eq. ( I 1-44) shows that the distribution function for the most 
probable occupation numbers is given by the same expression as that for the 
arNrage occupation numbers. 

One objection to the conventional procedure is that if an N1 is calculated from 
the preceding equation, the value obtained is not necessarily an inleger, while the 
actual occupation number of a level is necessarily integral. If we consider the right 
side of Eq. (0-19) does give the correct values of the average occupation numbers, 
this equation can be interpreted to mean that the occupation numbers in the most 
probable macrostate are the nearest integer to their values averaged over all 
macrostatesi Since the occupation numbers are all very large, the "nearest integer" 
will differ by only a ulalively small amount from the average. 
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A more serious objection is the following. One of the terms in the expression 
for the thermodynamic probability of a macrosta te in the Fermi-Dirac statistics 
is (g1 - N1) !. If In (g1 - N1)! is evaluated by the Stirling approximation, and the 
procedure above is followed, one does obtain the same expression for the most 
probable occupation numbers as that for their average values. But in the F·D 
statistics, the difference (g1 - N1) is not necessarily a large number and may in 
fact be zero if a level is fully occupied. The use of the Stirling approximation to 
evaluate In (g1 - N1)1 is therefore questionable, even if it leads to the right answer. 
The procedure followed in Section 11- 10, however, does not require the use of 
Stirling's approximation and is valid provided only that the N,'s themselves arc 
large numbers. 



E 

Magnetic potential energy 

Each magnetic ion in a paramagnetic crystal is a small permanent magnet and is 
equivalent to a tiny current loop as in Fig. E-l . The ion has a magnetic moment 
p., which if the ion actually did consist of a current I in a loop of area A, would 
equal (in the system of units we arc using) the product /A. The moment can be 
represented by a vector perpendicular to the plane of the loop. 

If the moment vector makes an angle 9 with the direction of an exteroal 
magnetic field of intensity .;t', a torque T of magnitude JJ.;t' sin 0 is exerted on the 
loop, in such a direction as to align the magnetic moment in the same direction as 
.;t'. In Fig. E-l, this torque is clockwise. In the usual sign convention, the angle 
8 is considered positive when measured counterclockl<'ise from the direction of 9, 
so we should write 

T - -p.;tt' sin 8. (E-l ) 

If the loop is given a small counterclockwise displacement, so that the angle 8 
increases by dO, the work of this torque is 

dW = T dO - -p..;t' sin 0 dO. 

The increase in magnetic potential energy o f the loop, dt0 , is defined as the 
negati~ of this work, just as the increase in gravitational potential energy of a 
body of mass m, when it is lifted vertically in a gravitational field of intensity g, 
is the negative of the work of the downward gravitational force -mg exerted o n it. 
Hence 

d•0 - p.;tt' sin 9 d8. (E-2) 

The total change in potential energy when the angle 9 is increased from 91 

to 9, is 

f. 
.. 

'• - '• - p. Jt' sin 8 dO = JW('(cos 61 - cos OJ. . . '• 
Let us take the reference level of potential energy as that at which the moment 

is at r ight angles to the field, where 0 = 90• and cos 0 = 0. Hence if we set 

432 
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Fig. E- 1 A magneuc 10n of magnelic 
moment I' is equivalent 10 a small 
current loop. 

81 - 90° and '•• = 0, and let c1,, and 01 refer to any a rbitrary angle 0, 

c0 - 0 - p.Jt'(O - cos 8), 
and 

•• = -p.Jt' cos 0. (E- 3) 

When the angle 8 is less than 90°, as in Fig. E- 1, cos 0 is positive and the 
potential energy •., is negative. That is, the potential energy is less than tha t in the 
reference level. When 0 is greater than 90°, cos 8 is negative and •. is positive. 

Let ll.A~", be the number of a tomic magnets whose moments make angles with 
the field between 6 and 6 + 68. Each of these has a component mom~nt in the 
direction of the field of p. cos 0, and the moment due to these is 

6M = fl.AI', p. cos 8. 

The total moment M of the entire crystal is 

M - 1: fl.AI', p. cos 8. 

In the same way, the total potentia l energy E,, of the crysta l is 

E" = -1: liJV', p.Jf' cos 8. 

It follows from the two preceding equations that 

E.= - Jt'M. 

(E-4) 

(E- 5) 
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I 
I Answers to Problems 

Chapter 1 

1-1 (a) no; (d) yes. 
1-l (a) excensive; (d) incensivc. 

1-3 (a) JO>kgm->; (b) to->m1 kg-1; (c) 18 x to-'m'kilomole-1; (d) 1.29kgm- •, 
o.n5 m' kg-'. 22.4 m' ki lomole-1. 

1-4 Abouc tOO Torr. 

1-5 (b) I.Ot x tO' N m- •. 

1-6 (a) 4. 

1-7 (c) decrease. 

1-8 t B K, t85 K, t93 K, t97 K. 

1-9 (a) 328 K; (b) 6.84 em; (c) no. 

1-10 (a) a - 1.55 x to-•, b - -115; (b) t l2 degrees; (c)5.97 em. 

1- 11 (a) 73.3; (b) 26.7 degrees. 

I-ll (a) 672; (b) t80 degrees. 

1-13 (a) A - 3.66 x tO-' aim K- 1, B - 321 degrees, C- 3.66 x to-> K- 1; (b) t30 
degrees; (c) O. t2 arm; (d) - «>. 

(b) a - 2.5 degrees m v-1, b - 0; 

(c) 

l - ts (a) -t95.so•c; (b) t 39.23 R; (c) -320.44°F. 

1- 16 (a) t 4.20 kelvins; (b) t4.20 deg C; (c) 25.56 rankines; (d) 25.56 deg F. 

1-17 (a) no; (b) yes. 
1- 21 (a) reve~>ible isobaric process; (b) q uasiscacic isochermat process; (c) irreve,.ible 
(adiabacic) compression; (d) irrevmible isochoric process; (e) reversible isochermal 
process; (f) irrevmibte adiabacic process. 

Chapter 2 

Z- 2 (a) 5.7 x to-1 m• kilomolc-1; (b) 8.8 kilomoles; (c) 5.3 kilomolcs. 

2-3 (a) A - Pl/ RT1 ; (c) 800 K. 

2-4 (a) 0.25 m; (b) 500 Torr. 

435 
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l-5 (a) ~56 K. 

%- 6 0.18 m. 
%-7 8.66d. 

%-9 (a) 300 K; (b) 6.24 m' kilomolc-•; (c) 150 K, 120 K; (d) 10m'; (c) 8 kg. 

%-10 (a) 0.308 kilomoles ; (b) 9.86 kg; (c) 3.96 x 10" N m-•; (d) 0.277 kilomoles. 

%-11 (a) I m'; (b) ISO K ; (c) 200 K, 0.67 m'; (d) 22S K, 0.75 m'. 

l -13 (b) 0.06, 0.22, 0.51. 

l - 14 (a) 4.87 x 107 N m- •; (b) 5.10 x 107 N m-•; (c) 8.31 x 10' and 8.70 x 10' 1 kilo· 
molc- •K- 1• 

l-19 6.S x 101 N m-•. 
%-:!3 (a) fJ • (u - b)/uT, K • (u - b)'/RTu. 

2-25 v • •o cxp (aT'/P), a/b • l. 
l-26 (a) f.oa.; (b) L,J.YA)-1; (c) -l!.FfoYA. 

2-27 (a) 2.88 x 101 N ; (b) 6 m. 

l-29 (a) 0.031 m' kilomolc-•; (b) 0.042 m' kilomolc- •. 

2-30 (b) 0.270. 

l-32 [(• - b)(uRT + a)JIT(a(u - b) - ,SRn. 

l-33 (a) Rf(u - b); (b) R/(• -b); (c) (exp ( -a/uRT)X• - b)-1(R + afvT). 

l-35 (b) 10""1'(6.4 + 3.3 X lo-'T)m' N-1; (c) - 3.3 X 10- 11 m1 N-1 K - 1; 

(d) S.2 X 10""1• 

Ch•pter' 3 

3-1 1.69 x 10° 1. 

3-2 1.91 X I()> 1. 

3-3 - 3nRT J8. 

3-4 2.03 J. 

3-5 1.13 1. 

3-6 (b) Work on the gas; (c) 8.1S x 10' 1, 0.4341; (d) 0.4 m0, 1.44 x Ia-' m'. 

3-7 (a) W • RTin ((v1 - b)/(u1 - b)] + a((l/v1) - (l /v1)]; (b) 4.26 x 10' J; 
(c) 4.3 x 10' J. 

3-8 (b) d'W • nRdT + nRTdP/P. 

3-9 (a) d'W •-Ft..(dF/YA+ «dT); (b)W,. •-Ff.oa.(T1 -T1); (c)WT • 
- 4(FI- Ff>/2 YA. 

3-10 (a) d'W • -Cc-J{'dJt'/T + Cc-Jf"dTfT'; (b)W_... • -CL..;t''(lfT, - I/T1) ; 

(c) w., • -(Ccf2T)(.JY; - Jt"l). 
3-JJ - 3(/10 V + C0/TJJt';/2. 
3-13 -2.03 X 10° J. 

3-14 (a) -3.11 x 10' 1; (b) -4.32 x 10' J ; (c) I SO K; (d) 1.2S x I()> N m-•. 

~16 W, • 0, W, • 11.2 X J()' J, W, • -8.08 X J()' 1, Wok o • 3.12 X JO' J. 
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3- 17 (a) 6 x 101 J ; (b) clockwise. 

3-18 (a) 2.51 x J0- 8 J ; (b) counterclockwise. 

3-19 CcYf"/T. 

3-22 2.8 X 104 J . 

3-26 (a) 60 J ; (b) 70 J are liberated; (c) Q,., - SO J, Q, .• ~ 10 J. 

3-27 (a) t.v •. , - Q,.,- 1001, t.u,_, - 900J, - t.u, .• - 1000 1, w._,- Q, .• -
AUcrcle ·- 0 , Q C)'dO - wcr~lc = -500 J. 
3- 28 (a) Q - n[a(T2 - T1) + b(Tl - TlJ + c(I/T2 - I/T1)]; 

(b) f 1, - a + b(T, + T1) - c/T1T1 ; (c) 24.0 x 10' and 26.0 x 103 J kilomole-• K- 1. 

3-29 (a) O.S89 J kilomoJe-•K-1; (b) 73.6J kilomoJe- • K-1; (c) 18SO J ; (d) 37.3J kilo­
mole- • K- 1• 

3-30 (a) 118 J; (b) 124 J; (c) 118 J . 

dJ 
3-31 (a) C - 9'dr, 

3-32 (b) 1.39 X 104 ] , 

3-33 (a) 1.24 X ICJ3 J ;(b)4000 J ;(c) 1.16 X IO' J. 
3-35 (a) -S.JS X 104 J ; (b) W, - -5.25 X 10' J; (C) W4 - -0.98 X ICJ3 J. 
3-36 (a) -3.6 X 10' J kg-l; (b) -4.22 X 10' J kg-l. 

Chapter 4 

4- 2 (a) a. 
4-3 (b) S/(3(T, + T,)). 
4-4 (a) a = 24.0 J kilomole-1 K-1, b - 6.9 x JQ-3 J kilomole-1 K-2 ; (b) 2.03 x 104 J 
kilomole-1• · 

4-1 (a) 27 x 10' : 4.02 x JQ- 1; (b) ~R:R; (c) 0.60 ; (d) almost all. 

4-8 (b) a+ R. 
4-ll (a) q,_,_, - 19 RT1/2, q,_4 _, - 17 RT1/2, q,_, - 9 RT,; (b) 3 R. 

4- 16 !!. T - (2n,.nu - n~ - n1Jafc, V(n,. + nJJ)2. 

4- 18 (a) a/(c,rr); (b) c,T- 2afv- RTv/(v- b); 
(c) (2av(v -b)' - RTv'bJfcp(RTv' - 2a(v - b)2) . 

4-21 (a) nc.Tof2; (b) 3Tof2; (c) 5.25 T0 ; (d) 4.75 nc.T0• 

4-22 885 K. 

4-23 (a) Wr " - 3.46 x 10' J, Ws - -2.5 X 10' J ; (b) Wr - -3.46 X 103 J ; Ws­
-4.43 X 10' J. 

Process V,(m3) T,(K) W(J) Q(J) W(J) 

a 32 400 6.73 X 101 6.73 X 101 0 
4-24 

b 13.9 174 2.74 X 101 0 -2.74 X 101 

c 32 400 0 0 0 
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<4-lS (b) 

Process 4T(K) 4Y(m') 4P(atm) W(J) Q(J) 

T- const 0 22.4 -O.S J.S7 X 10' J.S7 X JO' 

P - const 273 44.8 0 2.27 X 10' S.68 X 101 

Y -cons! -438 0 -MOl 0 -S.4S x 101 

Q -o l6S -67.2 0.901 - 2.04 X 101 0 

Cycle 0 0 0 1.8 X 101 1.8 )( 10° 

Process 4U(J) 4/f(J) 

T• const 0 0 

P • const 3.41 )( 10' S.68 X 10' 

V • const -S.4S X 10° - 9.09 X 10° 

Q -o 2.04 x 10° 3.41 )( 10° 

Cycle 0 0 

<4-26 (a) T(v - b)'.IR -constant, (P + afo'Xv - b)'•.+RIIR - constant, 
(b) W • c.(T, - T1) + (afv, - afo1). 

<4-30 (a) 900 Calories ; (b) 1600 Calories; (c) 300 and 400 Calories. 

<4-31 (b) lower T1• 

<4-32 '1C • T,fT1• 

<4-33 73 K, l30 K. 

<4-34 (a) 0.2S, 3; (b) 0.167, s. 
<4-36 (a) 2.34 x 105 watts; (b) S.S ; (c) 1.52 x 10' J ; (d) 6.06 x 107 J. 
4-37 13.6 

<4-38 3.1 watts, about 0.3Y.. 

Chepter 6 

5-l 83.3 K and 166.6 K. 

5-3 (a) 12.2 1 K-1 ; (b) 6.06 x 10' J K- 1• 

5-4 (a) Q,., • 2192J, Q ... •I0,966J, Q,_. • -6S16 J, Q4 .• • -S480J ; 
(b) 0.996 x IO'Nm-•; (c) s •. , •S.S4 JK-1, s ... = II.OJK-1, S,.4 • -S.S4JK- 1, 

S, .• • - II.OJ K-1• 

5-5 (a) 0; (b) 0.167 J K- 1• 
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H 293JK-•. 

s-7 (a) 1200 J absorbed at 300 K, 200 J given up at 200 K; (b) -3 J K-1, -I J K-1, 

4 J K- 1; (c) 0. 

s-s (a) m J K-•; (b) -1n J K- •. 

H (a) 0.171 J K - 1; (b) -0.1 71 J K- 1• 

5-10 (a) am In (T,}T1) + bm(T, - T1); (b) 2.47 x 101 J kilomolc-• K - •. 

s-13 (a) engine; (b) 250R J, -IOOR J ; (c) 0.6; (d) 0.667. 

s-ts 
As •• 0 ,(J K-1) AS...,(J K - 1) AS.(J K-1) 

(a) 6.93 -5.0 1.93 

(b) 11.0 -6.67 4.33 

(c) -6.93 20.0 13.1 

s-16 (a) (J,$11, 0 - tlOOJ K- 1, AS..,- - 1120 1 K- 1, AS.- 1801 K- 1; (b) (),Su,o a 

1300 JK- 1,AS,., • - 1210JK-I,S• a90 JK-I. 

5- 17 290 K, 190 J K- 1• 

s-20 (c) 7i or part (b). 

s-22 -0.533 RT, ~ w, S 0, 0 S Au S 0.33:5 RT1, 0 S AS S 0.693 R. 

s-21 No. 

6-1 (a) P•v - T{Jv; (c) 0. 
6-2 (a) 3360 J kilomolc-• K-•; (b) 0.133. 

6-3 (a) R; (b) R In vfv0• 

. I 
6-4 (a)(),$- 3 aVT + rf P dV +constant; (c) .(T). 

6-7 (a) - (T{i - 1)/•; (c) 0. 

6-17 3.68 J K-1• 

6-18 (b) (c. + RXT- T1) + h,, c1.(T- T0) + ho-
6-19 (a) a + bT- R; (b) 1 - a In <nTo) + b(T- T0) - R In P/P0 + 10, 

h - a(T- T0) + b(T'- 71>/2 + ho; (c)(a - R)(T- To) + b(T' - 71)/2 + uo. 

6-20 (a) 3.73 x to• J ; (b) us x tO' J K - •. 

6-22 (a) -4.6 Jkg-1; (b) - I 53 Jkg-1; (d) 0.394 K . 

6-25 (a),..... -0.22 K; (b) 0; (c)....., 3.3 K . 

6-26 (a) -253 J ; (b) -253 J ; (c) -91 1. 

6-28 (a)~ • 0, I' ~ -b/c1. ; (b) 'I • -b/<,.1' = 0. 

6-29 -2.1 K. 
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6-30 (a)&T - O,Il>s • l.91 x 104 J kilomole- • K- 1;(b)ll.T• - 146 K,lu - 6.1 x 10' 
J kilomole-• K- 1• 

6-32 19.3 atm. 

6-33 (a) 0.02 K atm- 1; (b) 0.098 K atm-•; (c) - 0.27 K, 12.3 K. 

6-34 3S.3 K. 

6-38 (oV{oM)s,T • MV/C~.nR 

Ch• pter 7 

7- 6 (a) P(v +A) • RT, s • - R In (P/P0 ) + A'P; (b) h • P(A'T- A), 
u - T(A'P - R), f- Rn ln (P/P0)- I ); (c) cp • PA"T, c, - 2A'P + A•r p-

P'A'' RT 
R - R ; (d) •- P(RT _ AP). P- (R- A'P)/(RT - AP) ; {e) I• - (A - A'T)/PA•r. 

7-ll (b) -IO' J, -SO J K- 1, - I.S X IO' J, - 1.48 X IO' J , -800J,3.6 J K-•. 

7-23 (a) -J.JS x IO'Nm-• K- 1 ;(b)268atm; (c)J.31 x IO'Nm- • K- 1 ;{d)24.6atm. 

7- 2S (a) 200 K, 1.01 atm ; (b) 1,. - 0.492 J kilomole- •, 1,. • 0.328 J kilomole- •, /11 -

0.164 J kilomole-•. 

7-17 (a) - 0.1 S K . 

Chapte r I 

8- l (a) (n,. + nJJ)R In 2. 

8-2 (a) t• t• j; (b) t• ~.I a tm; (c) - l.S + 107 J; (d) +S x 10' J K- 1• 

8-S (a) 2; P a nd T. 

8~ (c) K is not a function of P and K - ,-•C'!RT, 

8-7 2. 

8-8 (a) A - T, % Cd; 8 - T; C - T, % Cd; D - 0; E - T, % Cd; (c) k = 22,000 K 
kg kilomole-•. 

8-10 (a) 1.28 x Jo-2 Torr; (b) 76.3 atm. 

8- ll (a) 0.146 J m-•; (b) A • O.OSS J m-•, c_, - 6.82 x 10-• J m-• K- 1, s - ~.28 x 
J0--4 J m-• K-1 ; (cl2.S K. 

8-13 (a) du(A2 - A1); (b) l(A1 - A1) . 

8- IS (a) c, - c1 •I•'Tf•, • • -
1

1 (!!.) , • • -
1

1 (.!!...) ; (b) r,/r1 • •/•, . ar, a~ r 
8- 17 (a) 4.2 x lo-1 J K-1;(b) 12.6 J ;(c)20.3 J ;(d) -7.7J. 

8-18 (c) &G- - 20.3 J, ll.H • - 7.74 J. 

8-19 - 228 X 10' J. 
du 4 

8-20 (b)) (V1 - V1); (c) l u( V1 - V1). 

8- 22 (a) 378 K; (b) 2.04 x 10-• and S.l4 x 10--4 N m- l, 

8-24 (a) bff/T. 

8-2S (a) - 0.8JS J ; ( b) - 1.631, -1.63 J,O, -0.81S J ;(c) 1000c;(d)7.93 x 101• 
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8-28 (g) 8.00 X 10' J; (h) -2.02 X 10' J, - 3.96; (i) 5.98 x 10' J ; (j) 0.300; (k) 5.48 X 

10' J , 0.275. 

8-29 (a) 220 Btu lbm- 1; (b) 70 Btu Ibm-•. 

8-30 (c) c - 8.7. 

Chapter 9 

g_1 (a) 3.2 x 10" molecules; (b) 3.2 x 1010 molecules. 

g_2 3300 A. 
9-3 (a) 6.9 x JQ-•; (b) same as (a). 

9-4 (a) 1.7 x JO->; (b) 2.8 x Jo-•. 
9-5 (a) O.oJ; (b) 1.7 x JQ- 7, 2.8 x JQ-•; (c) 1.64 x 1018 v0 molecules m-• s-•, 9.4 X 

1020 molecules m-2 s-1. 

9-6 (a) 20ms-•, 20ms-1; (b) 12.5ms-1, 14.6ms- 1;,jcl !Oow- 1, 12.2ms-1 ; (d) 

10m s-•, 14.1 m s-1 ; (e) li.S m ,-•, 12.7 m s-1. 

9-7 (c) 2 vof3; (d) 0.707 v0• 

9-8 (b) 3.4 x IO" v0 molecules m- • s-1; (c) 4.5 x IO" c0 molecules m-• s-1• 

9- 10 Force per unit length - n'mvt/2. 

9-ll (a) 1360 m s-1; (b) 2400 K; (c) 0.31 eV. 

g_12 (a). 2.9 x IO" impacts s-1 ; (b) 120m. 

g_13 (a) 7.2; (b) 1.22 x to-• atm. 

9- 14 (a) 2, x 10" molecules em-•; (b) 3.3 x 1023 impacts s-1 ; (c) same as (b); (d) mean 
energy is about 0.1 of heat of vaporization per molecule. 

9- 15 (a) 9.4 x JQ-• g em-• , - •; (b) about the same. 

g_J6 2.77 VfVA. 

9- 17 (a) 1017 molecules; (b) 1.6 x to-3 Torr. 

1', 
9-18 1'1 = l [I + cxp ( -i!At/2 V)]. 

9-20 (b') v,m, «: 1'11
' . 

9-21 (a) 3 translational, 3 rotational, and 2(3N - 6) vibrational; (b) 9R, I. II. 

9-23 (a) 1.5 x 10' J ; (b) 1.36 x 10' m s- 1• 

Chapter 10 

lG-3 (a) 3.2 x w-" m'; (b) 5.2 x 10-• m; (c) 9.6 x 10' s-1• 

lG-4 I oc p-t, z oc /'. 

JG-5 (a) 5 x 10-10 m; (b) 7.9 x Jo-11 m'; (c) 7.9 x 10' m- 1 ; (d) 7.9 x 10' m- 1
; (c) 

0.45; (f) 0.88 X 10- • m; (g) 1.3 X Jo-1 m. 

JG-6 4.4 X 10-s S. 

IG-7 (a) 3.2; (b) 0.05. 

IG-8 (a) 3.7 X 10'; (b) 1.35 X JO'; (C) 1.8 X 10'; (d) 1.8 X 10'; (e) 7.4 X 10'; 
(f) l.S X 10'; (g) - 0. 
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l!HI (a) 6; (b) 6; (c) 6. 

Io-10 1.2 x to-10 m. 
1o-11 (a) 10 em; (b) 6l 1•A. 

Io-12 (a) 4.9 x to-10 m; (b) 160; (c) 2.7 m s- 1; (d) 160; (e) 48. 

Io-13 (a) 7.2 x to- 14 s; (b) 7.78 x to-• m, 34 atomic distances; (c) 0.2; (d) 632 s. 

lo-IS 4 X 1~. 

to-16 (a) •li.Jr.,. - 9.6 x to-• N s m'"' K- 111; (b) 4.2 x w-•• m; (c) 2.8 x to-•• m, 
2.1 x 1o-10 m. 

to-17 (a) A oc T' 11 ; (b) 0.058 J K-1 m-• s-•. 

Jo-ts (a) 2.52 x to-< m' . - •, 1.03 x 1~ m' s- 1; (b) D oc T' 12m'11r 1• 

Io-1!1 (a) -1.22 x 1015 (moleculesm-•)m-1;(b)(2.32 x IOU +4.75 x 1011)molecules 
s-•; (c) (2.32 x IOU - 4.75 x 1011) molecules s-1; (d) 9.50 x 1016 molecules s- 1, 

0.70pgs-1• 

to-zo (a) 1.26 x w-• N s m-•; (b) 0.98 x 1~ m' s-1; (c) 9. 1 x to-• J m- • s-1 K- •. 

Chapter 11 

ll-3 10'. 

11-4 (b) 45, so, 120, 7$, 60, 100. 

11-5 (a) S; (b) S, 4, 3, 2, I; (c) 16, 32, 24, 8, 4; (d) IS, 84. 

11-6 (a) 6.SS X 10'; (b) 1.52 X 10'2; (c) 2,. 

11- 8 ( b) 2427; (c) 3.68, 1.79, 0.838, 0.394, 0.189, O.o78, O.oJS; (d) 7.00. 

11-9 (a) ~4 macrostates; (d) 2.584, l.S8S, 0.877, 0.485, 0.250, 0.135, 0.058, 0.027. 
11-10 (b) 6; (c) 36. 

11-12 (a) 8 macrostates ; (d) 2.278, 1.722, 1.056, 0.667, 0.222, 0.056. 

11-13 (d) 2.500, I.S91, 0.95$, 0.530, 0.265, 0.114, 0.0378, 0.0075. 

11-14 (a) 6N1 - 6N1 - I ; (b) S.SS x 1011, 4.13 x 1012 

11-15 (a) 729; (b) 60; (c) 6<; (d) 126. 

Macrostates I 2 

B-E 4S so 
u-t6 rr. F·D 0 0 

M-B 4,500 2,400 

j 4 

B-E 0.744 
F-D 0.769 
M-B 0.861 

ll-17 0.423 k 8 , 0.797 k 8 , 0.539 k 8 • 

11-18 (b) 0.395 k 8 • 

3 

1.333 
1.38$ 
1.362 

3 4 

120 7S 
60 0 

10,800 400 

2 I 

2.100 0.822 
1.923 0.923 
1.694 1.083 

s 6 

60 100 
12 6 

3,840 4,320 
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11-19 (b) 3; (c) 19S; (d) 2.923, l.38S, 0.462, 0.231; (r) -2.06 k8 • 

11-21 (b) 12 ; (c) 2.7S, !.SO, 0.1S; (e) -1.81 k8 • 

11-21 (b) 8SOS; (c) 2.86, 1.43, o.m. 0.143; (d) - 3.4 k8 • 
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11-29 (a) 4 x 1o-•ev, 6.Sl k 8 ; (b) 127 K; (c) 2 + exp ( -23.2/T); (d) 4 x 1o-•ev, 
4.43 k 8 , 14.4 K, I + 2 cxp ( -23.2/T). 

11-34 (a) I + exp ( -</k8 T); (b) [I + exp ( -</koT)j1, [I + exp (</koTJI'; 
(c) N<[l + exp (</k8 T))-1 ; (d) Nk8 In [I + exp( -c/k 8 T)) + Nc(711 + exp (</koTJ))- 1

; 

(e) Nko(</ks T)' exp (•/k8 T)[I + exp (<fk»T)I'. 

11-35 (a) E- -pJII'0N/6, M = Np/3; (b) tJ.E - ,..JII'0N/12, tJ.M - 0 ; (c) tJ.M -pN/3. 

11-36 (b) U = 0, S - N(pJII'f2T) tanh (!'JII'fk 8 T) + Nk8 In 2 cosh (pJII'fk8 T). F• • 
-Nk8Tin 2 cosh (p.JII'fk 0 T), M • - N(pf2) tanh (p.JII'f2k0 T); (c) Ntanh (pJII'f2ksT>. 
N[l -tanh (pJII'f2k8 T)). 

::~:··~
1

: Nk[ln V + !In T +!In 
2
";k + ~ J. 

12-2 (b) ' • Nk7]A. 

[ 
Alwmk!"] 

12-3 (a) Cv • Nk; (b) S - Nk 2 + In -;:n,t J 
12-4 (a) 1.2S x 10" molecules; (b) 2.6 x 10" molecules, (c) S.4 x 1011 molecules; 
(d) 2.0 x 10" molecules. 

12-5 (a) 0.83 v,.; (b) 0.83 v.,. 
12-1 (a) 2.08 X IQ-3; (b) 8.3 X 10->; (c) 9 X 1o-•. 

12-8 (a) v., • 394m s-1 ; ii • 44S m s-•, v,... • 482 m s-•; (b) 227m s-1, 719 m s-•, 
2270 m ,-•. 

12-11 (b) <,. - kT/2, i • 3kT/2. 

12-12 (c) 0.421 ; (d) 0.079; (e) 0.500; (r) 0.843. 

12-13 (c) O.S73; (d) 0.427; (c) 1.00. 

12- 16 3.6 x 1o-• m. 

12-17 3.26 s. 

12-18 (a) 198m ,-•; (b) 13.S mg hr1 ; (c) 118 s. 

12- 19 (a) S.81pgs-1; (b) 3.49 x 1011 molecules s-•; l.l71•1•gs-•; (c) 1.36 x 10' mole­
cules; (d) 3.26 x 10- • Torr 

12- 20 0.086 mm, 2.S x 1 o-• dcg. 

12-21 (a) 6.34 x 1013 neutrons m ·•; (b) 2.63 x to-' N m-•. 

12-27 (a) lo-"'; (b) J.S7 x 10' K. 

12-29 kT. 

12-30 (a) 3kT. 

12-31 (a) 12; (b) 9kT, 1.11. 

12-36 (a) 86S, 117, 16; (b) 149 kOvlb• 
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Choptor 13 

13-2 (a) 246 K ; (b) 172 J kilomole- 1 K-1, 24.9 x 10' J kilomole- 1 K- 1. 

13-3 1.12 x 10' J kilomole-• K- 1, 2.66 x 1o-• J kilomole- 1 K- 1. 

13-4 Cy - (6Nk1/h•~)T, Cy - 3Nk. 
13-5 (c) 2.24 x 10' m r 1; (d) 292 K, 6.1 x 10'' Hz; (e) 3.69 x lo-10 m, 2.27 x 
lo-l•m. 

1~ (8)6.17 X lo-<'J s4 m-1,4.8 X lo-11 K s;(b) 7.62 X lo-11 J m-• K-". 

13-7 (c) I a-' m. 

13-11 (a) 2.24 x 1011 atoms; (b) 1.66 x 10'0 atoms; (c) 2.08 x JO-• oecm', 1.54 
Oe cm0• 

13-13 S - NJSuJf' tanh (p8 .;t'fkT)/T- Nk In 2 cosh (p 0.;t'fkT). Cy - Nk(J•uJf'/kT)' 
tanh (piJ.;t'fkT). 

13-14 0.1S vF, 0.71 v,.. l .S vj:1. 

13-16 18.7 X Jo-lt J ; (c) 1.09 X lo-1 R. 

13-17 (a!_l.4 X 10' ~ s-1, 1.3 X lo-t' kg m s-1, 6.S X 10' K; (b) 8.9 X 10-4,6.4 X JQ-4, 
2.1 X 10 , 8.9 X 10 , 8.9 X Ia-'; (c) 3200 K . 

13-20 (c) •,/3. 

13-21 (a) 2.13 x l a-' eV; (b) 2.46 K, 11 6 m s-1. 

13-22 2.81 x 1o-u m' N- 1; 3.4 x Jo-1 K- 1. 



Index 

Absolute temperature, 13, 124, 166 
Absolute zero, 127 

en1ropy at, 196, 325 
third Jaw, 196 
unauainability or, 199 

Adiabatic, boundary, 7, 75 
compressibili ty, 157 
demagnetization, 231, 404 
e•pansion, 325 
first law, 72 
inaccessibility, 172 
isentropic, 130 
processes, 72, I 00, I 08, 130, 23 1 
work, 72, 110, 262 

Answers to problems, 435 
Arithmetic mean speed, 2S6 
Assembly, 307 
Atmospheres, law or, 369 
Average speed, 256 
Avogadro's number, 370 

Barometric equation, 369 
Bernoulli's equation, 89 
Blackbody radiation, 225, 395 
Bohr magneton, 399 
Boiling, 38, 243 
Boltzmann constant, 261, 339 
Boltzmann statistics, 320 
Bose·Einstein s1a1istics, 312 
Bose-Einstein distribution runction, 327 

applied to phonons, 391 
applied 10 photons, 395 

Boundary, 3 
adiabatic, 7, 1S 
diathermal, 7 

Boyle's law, 27, 167 
Bridgman method, 419 
Brillouin runction, 415 
British thermal unit, 78 

Calorie, 78 
Calorimetry, 81 
Caratheodory principle, 172 
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Carnol cycle, Il l 
with ideal gas, 112 
with phase lransit ion, 235 
with radiant energy, 244 
with surrace film, 243 
temperature-enlropy diagram, 132 
and thermodynamic temperature, 124, 

146 
ror three-variable system, 171 

Carnotengine, 113, 140, 145 
Carnot rerrigerator, II 5 
Celsius temperature, 13 
Ctntigrade temperature, 13 
Characteristic equation, 183, 337 
Characteri5tic temperature, 373 

Debye, 393 
Einstein, 386 
ror linear oscillator, 373 
ror rotation, 377, 378 
ror vibration, 377, 378 

Characteristic variables, 182 
Charge flow, 41, 67, 223, 285 
Chemical equilibrium, 16, 196, 214 
Chemical potential, 207, 209, 214 

and statistics, 330, 336 
Classical, dislribution runction, 333 
C lassical statistics, 345, 350 
Classical theory o r specific heat capacity, 

or gases. 267 
or solids, 271 

Clausius-CI•peyron equation, 193 I 
Clausius inequality, 144 
Clausius statement or second law, 138 
Closed sy5tem, 3, 137 
Coefficient or expansion, 4S, 46 (su 

Expansion coefficient) 
or perrormance, II 5 
or selr-diffusion, 294 
or thermal conductivity, 292 
or viscosity, 266 

Collision cross section, 279 
macroscopic, 280 
microscopic, 280 
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Collision frequency, 284 
Collisions, wrth moving wall, 262 

with wall, 2S4 
Compressibility, adiabatic, l S7 

of copper, 46 
of electron gas, 416 
of helium, IS I 
of ideal gas, 47 
isothermal, 46, 47 
of mercury, 46 
of van der Waals gas, S9 

Condition equation, 2 13, 421 
Conductivity, electrical, 28S 

thermal, 292 
Configuration work, 70 
Conservation of energy, 87 
Constant volume gas thermomecer, 9 
Constituents, 210 
Conversion factors, back cover 
Cooling, magnetic, 231 
Copper, f(>mpressibility, 46 

Debye ~emperature, 393 
specific heat capacity, 82, 16-. 
thermal expansion, 46 

Corruponding statu, Sl 
Critical constants, table, 36 

van der Waals gas, 49 
Cri tical pressure, 3S 
Critical point, 36 
Critical temperature, 3S 
Critical volume, 3S, 278 
Cross section, 291 
Curie constant , 401 
Curie's law, 41, 230 

statistical derivation, 401 
cycle, Carnot, Ill, 23S 

Rankine, 239 
Cyclic process, S4, 69, n 
Dalton's law of partial pressures, S7, 264 
Daniell cell, 223 
Debye temperature, 393 
Debye theory of specific heat capaclly, 387 
Degeneracy of a macrolevel, 3Y. 

of a state, 306 
Degrees of freedom, 266, 370 

rotational, 266 
translat ional, 266 
vibrational, 266 

Demagnetization, adiabatic, 231 , 404 
Density, 4 

reduced, I SO 

Derivatives, partial, 42 
second-order partial, S3 

Dewar flask, 8 
Diather mal boundary, 7 
D iatomic gas, S1, 269, 376 
Dielectric work, 6S 
Dieterici equation of state, 60 
D ifference between specific heat capacities, 

99, lSI 
D ifferent ials, exact, S3 

inexact, 69, 77 
D iffusion, 294 
Disorder. 324 
Dissipative work, 71, 78 
D istinguishable paNicles, 308, 320, 334, 

391,399 
Dislribut ion function, Bose-Ejnstein, 327 

classical, 333 
Fermi-Dirac, 331 
Gaussian. 360 
Maxwell-Boltzmann, 334, 430 
speed, 3SS, 362 
velocity, 3S9 

Drude theory, 28S 
DuLong-Petit Law, 81,271,394 

Efficiency, 113, 140, 145, 239 
Einstein theory of specific heat capacity, 

386 
Elastic waves, 388 
Electrolytic cell, 223 

equatton of state, 41 
work, 67 

Elcetron gas, distribution function, 331 
thermodynamic propert ies, 407 

Elect ron-volt, 262 
Electronic conduction, 285 
Electronic mean free path, 283 
Empirical temperaiUre, 9, 124, 166 
Energy, free, 179, 180 

internal, 73, 98, 270 
kinetic, 86, 261 , 266, 270 
levels, 305 
potential , 86, 184, 228, 266, 366, 403 
states, 305 
total, 86, 228, 403 

Energy equation, 98 
for ideal gas, lOS 
surface, 98, lOS 
for van der Waals gas, I I S 

Energy, equipartition of, 264, 370 



Engine, Carnot, 113 
steam, 233 

Enginuring applications, 233 
Ensemble, 307 

average, 311 
Enthalpy, 84, 100 

characteristic equation, 183 
and heat flow, 100 
heats of transformation, 84 
Joule experiment, 107 
statistical expression, 340 
thermodynamic potential, 181 
th ird law, 196 

Enthalpy of ideal gas, 159 
pure substance, 157 
solid, 174 
water, 100, 234, 235 
van der Waals gas, 174 

Entropy. 127 
at absolute zero, 198 
disorder, 324 
increase of, 123, 135 
irreversibility, 135 
Nemst heat theorem, 198 
principle of increase of, 123, 135 
reversibility, 136 
second law, 123 
statistical interpretation, 323, 427 
thermodynamic stability, 178, 188 
third law, 196 

Entropy diagrams, h-s-P, 234 
Mollier, 235 
T-S, 132 

Entropy of Einstein oscillators, 413 
electron gas, 412 
ideal gas, 159, 354 
mixing, 208 
mullivariable systems, 170 
open systems, 209 
paramagnet, 229 
pure substances, 157 
solids, 163 
van der Waals gas, 161 

Equations of state, 24 
Curie's law, 41 
oieleclric, 41 
electrolytic cell, 42 
liquid, 48, 163 

mullivariable systems, 184 
paramagnet, 41,401 
radiant energy, 227 
solid, 48, 163 
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surface, 41 
Equations of stare of gases, D ieterici, 60 

Hirn, 277 
ideal gas, 25, 251,-258, 353 
kinetic theory, 251,258,277 
sta tistical thermodynamics, 353 
van der Waals, 28, 277 
virial, 30 

Equilibrium, chemical, 16 
mechanical, 16 
metastable, 186 
stable, 124, 186, 427 
thermal, 16 
thermodynamic, 17 
unstable, 186 

Equipartit ion of energy, 264, 370 
Error function , 380 
Escaping tendency, 214 
Escermann, Simpson, and Stern, cxperi· 

men!, 242 
Exact different ial, 53, 170 
Exclusion principle, 317, 408 
Expansion coefficient, 45 

of copper, 46 
of electron gas, 416 
of helium, 150 
of ideal gas, 45. 
linear, 46 
of mercury, 46 
of solid, 173 
of van der Waals gas, 59 
volume, 45 

Expansion, free, 70, 325 
Extensive variable, 3 

Factorials, 424 
Fahrenheit temperature, 14 
Fermi energy, 408 
Fermi temperature, 415 
Fermi velocity, 415 
Fermi-Dirac distribution function, 33 1 

408 
Fermi-Dirac statistics, 317 
First Jaw of thermodynamics, 73 

analytic form, 76 
combined with second law, 148 
general form, 86 

First-order phase transitions, 192 
F ixed points, 15 

table, 16 
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Flow processes, Joule-Thomson experi-
ment, lOS 

nozzle, 89 
steady flow, 87 
turbine, 89 

Free energy, 179, 180 
Free expansion, 70, 104, 325 
F reezing, 38, 84, 188, 194 
fundamental constanls, back cover 
Fusion, heat or, 84 

Gamma function, 424 
Gas constant, universal, 2S, 260 
Gases, electron, 407 

ideal, 25, I 59, 258 
photon, 395 
van der Waals, 28, 160, 276 
vapor, 36 

Gaussian distribution, 360 
Gay-Lussac- Joule experiment, I 03 
Generalized Helmhollz function, 184, 229, 

341, 368, 401 
Gibbs-Duhem equation, 241 
Gibbs function , 180 

characteristic variables, 183 
chemical potential, 206 
open systems, 210 
and partilion function, 339 
phase transitions, J 90 
stable equilibrium, 180, 189 
statistics expression, 339 
third law, 197 _ 

Gibbs function of ideal gas, 180, 33' 
radiant energy, 228, 398 

Gibbs-Helmholtz equations, 183 
G ibbs paradox, 241 
Gibbs phase rule, no chemical reactions, 

214 
chemical reactions, 216 

Grand partition function, 347 
Gravitational field, 366 

Heat (.-~ Heat flow) latent, 83, 191 
mechanical equivalent of, 77 
or transformation, 83, 191 

Heal capacity, 80 (stt Specific heat 
capacity) 

Heat engine, 11 3, 233 
Heat flow, 74 

and absolute temperature, 124 
and enthalpy. 100 
tnd entropy, 128 

inexact differenlial, 77, 149 
irreversible, 133 
reversible, 131 
statistical interpretation, 326 
and third law, 196 

Heat reservoir, 83 
Heat of transformation, 83, 191 

fusion, 84 · 
lambda, 192 
sublimation, 84 
or a surface fi lm, 219 
vaporization, 84, 192 
or water, 8S, 130 

Helium, critical constants, 36 
density, lSI 
lambda transition, 33, 192 
P-o-T surface for, 39 
specific heal capacity of, lSI 
thermodynamic properties or, 150 
three, 194, 202, 416 
van der Waals constants or, '28 

Helmholtz function, 178 
characteristic variables. 183 
generalized, 184, 341 
open systems, 210 
and partition function, 337 
stable equilibrium, 179, 188 
statistics expressions, 337 

Helmholtz function of electron gas, 412 
ideal gas, 181 
paramagnet, 229 
radiant energy, 228 
surface film, 220 
van der Waals gas, 181 

Hill and Lounasmaa data, ISO 
1•-s-P surfaces, 234 
Hydrostatic pressure, 4, 163 

Ice, phase diagram, 35 
point, 12, 195 

Ideal gas, 25 
adiabatic processes, 108, 262 
and Boflzn1ann constant, 260, 339 
and Carnol cycle, 112 
compressibility, 47 
diatomic, 267, 376 
energy equation, lOS 
enthalpy or, 108, 159 
entropy or, I 59, 3S4 
equation or state, 2S, 258, 3S3 
expansivity, 45 



Ideal gas (contd.) 
Gibbs function of, 180 
in gravitational field, 366 
Helmholtz function of, 181 
internal energy of, lOS, 261, )SJ 
isothermal work, 64 
Joule coefficient, 104 
Joule-Thomson coefficient, I 08 
kinetic theory, 2S1 
monatomic, 269 
partial pressure, 207, 264 
P-v-T surface for, 26 
Sackur-Tetrode equation, 3S4 
specific heat capacity, 267, 3S4, 376 
statistical thermodynamics, 339, ·JSO 
temperature, 113, 121, 167 

Increase of entropy, 123, IJS 
Inequality of Clausius, 144 
Inexact differential, 69, n 
lnftection point, 49 
Integrating denominator, 169 
Intensive variable, 3 
' ntermolecular forces, 276, 278 
'nternal energy, 74 

chemical potential, 209 
energy equation, 98 
isolated system, 188 
kinetic theory, 262, 267 
open systems, 209 
and parrition function, 338 
and specific heat capacity, 99 
statistical interpretation, 326, 338 
surface, lOS 
thermodynamic potential, 181 
and total energy, 88, 184 

nternal energy of blackbody radiation, 
276, 396 

Debye solid, 386 
Einstein solid, 386 
electrolytic cell, 224 
•lectron gas, 410 
ideal gas, 104, 3S3 
linear oscillators, 37S 
paramagnet, 239 
surface ftlm, 219 
van der Waals gas, II S, 161 
water, 84 

nternational practical temperature scale, 
IS 

nternational steam table calorie, 79 
nvarianl systems, 21 S 
nversion curve, 107, 16S 

Inversion point, 107 
Inversion population, 407 
Inversion temperature, 16S 
Irreversible proce.u, 18 
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dissipative work, 71 
entropy changes, 133 
entropY. production, 136 
and Gobbs function, 180, 189 
and Helmholtz function, 179, 188 
Rankine cycle, 240 
throllling. 106 

Isentropic process, 100, 108, ISS 
isothermal, 170 
on multivariable systems, 170 
on paramagnets, 230 
second law, 130 
third law, 199 

Isobaric process, 18, 26, 101 
entropy change in, 131 
expansivity, 43 
phases transitions, 37, 187 
work, 64 

l sochoric process, 18, 26, 99 
entropy change in, 130 
work, 64 

Isolated system, 3, I 36, 188 
Isothermal compressibility, 47 
Isothermal process, 18, 26 

compressobility, 47 
entropy change, I 30 
isentropic, 170 
phase transitions, 188 
work, 6S 

lsovolumic processes, 18 

Joule coefficient, 104, 164 
experiment, 104 

Joule-Thomson coefficient, I 07, 164, 200 
experiment, 106 

Kelvin absolute temperature, 13 
Kelvin-Joule experiment, 107, 164 
Kelvin-Planck statement or second law, 

139 
Kelvin temperature scale, 13, 126 
Kilomole, 4 
Kinetic energy of systems, 86 

or particles, 261, 3SS 
and thermal conductivity, 292 

Kinetic theory (stt Chapters 9 and 10), 
assumptions. 2S I 

heat capacity, 267,271 
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Kinetic theory (contd.) 
ideal gu, 258 . 
transpon coefficients, 286, 292, 294 
van der Waals gu, 276 

Lagrange method of undetermined multi­
pliers, 421 

Lambda point, 40, 192 
Latent heat, 83, 191 (su Heat of trans­

formation) 
Law of atmospheres, 369 

conservation of energy, 87 
corresponding states, 51 

Laws of thdrmodynamics, first, 73 
second, 123, 138, 139, 172 
third, 198, 199 
zeroth, 6 

Linear cxpansivily, 46 
Linear oscillator, 372 
Liquid, 163 

drop, 221 
saturated, 34, 188, 238 

Macrolevel, 350 
Macroscopic propeny, 2, 302 
Macrostate, 307 

most probable, 427 
MagnetiC moment, 399, 432 

saturation, 401 
Magnetism, equation of state, 41 

statistical thermodynamics of, 399 
thermodynamics of, 228 
work, 6S 

Magnetic potential energy, 228, 432 
Maxwell-Boltzmann distribution function, 

334 
Maxwell-Boltzmann speed distribution 

function, JSS, 362 
Maxwell-Boltzmann statistics, 320 
Maxwell-Boltzmann velocity distribution 

function, 359 
Maxwell-Boltzmann distribution function, 

applied to Debye solid, 387 
applied to Einstein solid, 386 
applied to linear oscillator, 372 
applied to paramagnetism, 399 

Maxwell relations, ISS, 230 
Mean free path, 281 

electronic, 283 
table, 290 
in transport properties, 288 

Mean free time, 284 

Mean square speed, 259 
Mechanical equilibrium, 16 
Mechanical equivalent of heat, 77 
Mercury, compressibility, 46 

expansivity, 46 
specific heat capacity, 82 

· van der Waals cons1an1s, 28 
Metlllurgical limit, 238 
Microscopic property, 2, 302 
Microstate, 307 
Miller and Kusch experiment, 365 
Mixing, entropy of, 208 
Molal specific value, 4 
Mole fraction, 206 
Molecular beam, 362 
Molecular diameter, 278, 290 
Molecular nux, 254, 289 
Molecular weight, 4, 243, 293 
Mollier diagram, 234 
Monatomic ideal gas, 267, 350 
Monovariant systems, 215 
Most probable speed, 357 
Multivariable system, 169, 184, 341 

Negative temperatures, 405 
Nernst heat theorem, 198 
Neutral equilibrium, 192 
Nozzle, now through, 89 

Occupation number, 307 
average, 31 I 
most probable, 430 

Ohm's law, 286 
Open systems, 3, 206 

chemical potential, 208 
phase «Juilibrium, 210 
and stallstical mechanics, 323, 327 

Oscillators, 266, 372, 386 

Paramugnetism, adiabaticdcmagnt:litation, 
230 

Brillouin runction, 415 
Curie's law, 4 1 
equation or stare, 41 
potential energy, 433 
statistical thermodynamics, 399 
thermodynamics, 228 
work, 65 

Partial derivatives, 47 
mixed second-order, 53, ISO 
relations between, Sl, 102 

Partial pressure, 57, 264 



Parricles, distinguishable, 307, 320 
indistinguishable, 307, 312, 317, 333 

Partition function, 336 
grand, 347 
ideal gas in gravitational field, 367 
linear oscillator, 373 · 
magnetic, 400, 414 
monatomic ideal gas, 350 

Path function, 70, 77 
Pauli exclusion principle, 317, 408 
Performance, coefficient of, I IS 
Phase diagram, cadmium-bismuth system, 

242 
helium, 39 
substance contracting upon freezing, 3 I 
substance expanding upon freezing, 32 
water, JS 

Pha~ equilibria, Clausius-Clapeyron equa­
roon, 193 

many phases, 210 
two phases, 190 

Phase rulei chcmicul reactions, 216 
no reac1ions, 21 S 

Phase transitions, 30, I 90 
order of, 192 

Phonon gas, 391 
Photon gas, 39S 
Planck, constant, 304 

Kelvin-statement of second Jaw, 139 
radiation law, 226, 396 
third law, 198 

Platinum resistance thermometer, 7, 15 
Population inversion, 407 
Porous plug experiment, lOS 
Potential energy, 86, 184, 342 

gravitational, 366 
mallnetic, 288, 403, 432 
oscollator, 266 

Pressure, 4 
critical, 3S, 49 

isobaric, 18, 37, 101, 130 
isochoric, 18, 99, 130 
isothermal, I 8, 170 
reversible, 18, 130 
quasistatic, 17, 18 
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Property, thermodynamic, 3, S4 
Pure substance, IS7 
P-IJ-T surface, helium, 39 

idea I gas, 26 
liquid, 42 
solid, 42 
substance contracting upon freeting, 31 
substance expanding upon freezing, 32 
van der Waals gas, 29 
water, JS 

Quantum theory, 302 
of electron gas, 407 
of linear oscillators, 372 
of paramagnetism, 399, 432 
of specific heat capacities, 376, 386, 387 

Quuistatic process, 17, 18 

Radiation, blackbody, 22S, 39S 
thermometry, IS 

Rankine cycle, 239 
Rankine tempenuure, 14 
Ratio of specific heat capacities, 108 
Rayleigh-Jeans Jaw, 397 
Reactions, chemical, 16, 138, 196, 216 
Redua:d variables, density, ISO 

pressure, SO 
temperature, SO 
volume, SO 

Refrigerator, Carnot, I l l, 140 
magnetic, 230, 404 

Reservoir, heat, 83 
Resistance thermometer, germanium, 8 

platinum, 7, IS 
kinetic inte rpretation, 2S9 
partial, S7, 264 
radiation, 226 

Reversible engine, II 3, <13 
Reversible processes, 18 136, 148 

adiabatic, 108 
redua:d, 3S 
statistical interpretation, 326, 338 
vapor, 34, 216, 221 

Probability, thermodynamic, 310 
Process, 17 

adiabatic, 18, 72, 130, 231 
cyclic, S4, 69, 77 
irreversible, 18, 133, 136 
isentropic, 130, 170, 230 

cycles, I I I , 233 
entropy change in, 130 
heat now in, 130, 326 
work in, 63, 72, 326 

Root mean square speed 261, 3S8 

Sackur-Terrode equa tion, 3S4 
Saturated liquid, 34, 188, 238 
Saturated vapor, 34, 187 
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Second law of thermodynamics, Cara-
theodory principle, 172 

Clausius slatement, 138 
and first law, 148 
increase of entropy, 123 
Kelvin·Pianck statement, J 39 

Second·order mixed partial derivatives, 53, 
150 

Second-order phase-transitions, 192 
Self-diffusion coefficient, 294 
Shafl work, 87 
Solid, 163 

specific Ileal capacity, 271, 386, 387 
Specific heat capacity, 80 

classical theory, 267 
at constant pressure, 80, 101, JS4 
at constant volume, 80, 99, 152, 161 
of copper, 82 
Debye, 387 
of diatomic gas, 376 
differences, 108, 151 
Dulong-Petit law, 81 
Einstein, 386 
of electron gas, 411 
of gases, 108, 267 
of helium, I 51 
of mercury, 82 
molecular, 293 
of a monatomic gas, 267 
o f a paramagnet, 229, 404 
ratio, 108 
of a solid, 271 
of a surface film , 220 
of water, 134 

Specific value of an extensive variable, 3 
Speed, average, 358 

distribution function, 3SS, 362 
mean square, 259 
most probable, 3S7 
root mean square, 26 l , 358 

Sponta neous process, 196 
Stable equilibrium, 212 

and entropy, 188 
and Gibbs function, 189 
and Helmholtz function, 188 
and spontaneous process, 188 

Standard form for thermodynamic 
formulas, 149 

State variable, 3 
extensivej3 
intensive, 3 

Statist ical thermodynamics, 2, 2SO, 302, 
337 

Statistics, Bose-Einstein, 312 
classical, 345 
Fermi·Dirac, 317 
Maxwell-Boltzmann, 320 

Steady now, 87 
Bernoulli's equation, 89 
nozzle, 89 
porous plug, 106 
turbine, 89 

Steam cycle, 235 
Steam point, II 
Stefan's law, 227, 398 
Stefan-Boltzmann law, 227, 398 
Stirling's approximation, 313, 42S 
Stretched wire, 40, 65 
Sublimation, 39, 194 
Sum over states, 336 
Superconductor, 245 
Supercooled, 187 
Superheated, 188 

steam, 238 
Surface film, equation of state, 41 

tension, 218 
thermodynamics of, 218 
work, 68 

Surroundings, 3 
Survival equation, 281 .• 283 
System, 3, 307 

closed, 3 
isolated, 3 
open, 3 

T ds equations, ISS 
Temperature, S 

absolute, 13 
absolute zero, 127, 196 
Celsius, 13 
centigrade, 13 
characteristic, 373, 377 
critical, 35 
Debye, 393 
Einstein, 386 
empirical , 9, 166 
Fahrenheit, 14 
Fermi, 415 
fixed points, 16 
ice point, 12, 195 
International Practical Scale, 15 
Kelvin, 13 
negat ive, 405 



TemperaiUre (contd.) 
Rankine, 14 
reduced, SO 
re ference, IS 
steam point, 12 
thermodynamic, 13, 124, 166 
triple potnt, 13, 33, 19S 

Thermal conductivity, 292 
Thermal efficiency. 140 
Thermal equilibnum, 6 
Thermal expansion, 4S 
Thermocouple, 8 
Thermodynamic equilibrium, 16 
Thermodynamic formulas, 4 19 
Them>odynamic laws, 6, 73, 123, 138, 139, 

172, 198, 199 
Thermodynamic potentials, 181 
Thermodynamic probabili ty, 3 12, liS, 319, 

322 
T hermodynamic system, 3 
Thermodynamic tempent ture, 13, IS, 124, 

166 
T hermodynamics, classical, 2 

stati<tical, 302 
Thermometer, constant volume gas, 9 

germanium, 8 
platinum, 7, I S 
thermocouple, 8 

Thermometry, Carnot cycle, 124 
constant volume gus, 9 
ideal gas, II, 127 
radiation, 15 
resistance, JO, IS 
thermocouple, 8 , IS 

T hermomolecular pressure rat io, 273 
Thermoscope, 7 
Third law of thermodynamics, 196 

and magnet ism, 230, 404 
Nernst heat theorem, 198 
Planck s tatement, 198 
statistical interpretation, 324 
unattainability statement, 199, 232 

Transformation, heat of, 83. 191 
Transport phenomena, diffusion, 294 

thermal conductivity, 292 
viscosity, 286 

T riple point, cell, 10 
and e nthalpy, 8S 
and Gibbs function, 191 
heats of tr~nsformation at, 8S 
phase equi libria, 21S 
table, 33 

o f water, I 0, 19S 
T·s diagrams, 132 
Turbine, 89 
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Ultraviolet catastrophe, 397 
Unattainability statement of third law, 

199, 232 
Universal gas constant, 2S 

per molecule, 261 

Van der W aals gas, constants, 28 
critical constants, 49 
energy equation, 161 
equation of state, 28, 30, 276 
Helmholtz funct ion, 181 
Joule and Joule·Thomson coefficients, 

16S 
kinetic theory, 276 
law of corresponding states, Sl 
P-v-T surface, 29 
thermodynamic properties, 160 

Vapor, 36 
Vapor pressure, 36, 19 S 

hquid d rop, 221 
pressure dependence, 216 
saturated, 36 
supercooled, 187 
superheated, 36 

Vaporization, heat of, 84, 192 
Variable, extensive, 3 

intensive, 3 
specific, 3 
state, 3 

Variance, 214 
invariant systems, 2 1 S 
monovariant systems, 21 S 

Velocity, distribution of molecular, 3S• 
Fermi, 4 1S 
fluid, 87 
Maxweii· Boltzmann distribut ion, 3S9 
space, 3S6 

Viroal coefficients, 30 
Viscosity, coefficient of, 286 

table , 290, 293 
Voltaic cell (su Electrolytic cell) 
Volume, crit ical, lS, 278 

molecular, 278 
reduced, SO 
specifoc, 4 

\Vater, critical constants, 3 · 
density, 20, 174 

l 
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Water, critical constants (contd.) 
heat of fusion, 141 
heat of vaporization, 84, 8S, 130 
ice point, 12 
P·IJ-T diagram, 32, 3S 
specific heat capacity, 134 
steam point, 12 
surface tension, 219 
triple pqint, 10, 13, l9S 
van deriWaals constants, 28 
vapor pressure, 218 

Wien's law, 397 
Wire, equacion of state, 40 

work, 6S 
Work, adiabatic, 72, 110 

configuration, 70 
depends on path, 69 
dielectric, 67 
dissipative, 71, 78 
electrolytic cell, 67 
-energy theorem, 62 
external, 63 

., 

free expansion, 70 
inexact differential, 69 
irreversible, 71, 137 
isentropic, llO 
isobaric, 64 
isochoric, 64 
iJothcrmal, 6S 
magnetic, 6S 
maximum, 179 
in a phase change, 84 
shaft, 87 
statistical interpretation, 326 
surface film, 68 
van der Waals gas, 163 

Young's modulus, 41 

Zartman and Ko experiment, 363 
Zero, absolute, 127, 196, 199 
Zeroth law of thermodynamics, 6 
Zustandssumme, 336 

I 


