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Préface

This text is a major revision of An Introduction to Thermodynamics, Kinetic Theory,
and Statistical Mechanics by Francis W. Sears. The general approach has been
unaltered and the level remains much the same, perhaps being increased somewhat
by greater coverage. The text is still considered useful for advanced undergraduates
in physics and engineering who have some familiarity with calculus.

The first eight chapters are devoted to a presentation of classical thermo-
dynamics without recourse to either kinetic theory or statistical mechanics. We
feel it is important for the student to understand that if certain macroscopic
properties of a system are determined experimentally, all the properties of the
system can be specified without knowing anything about the microscopic properties
of the system. In the later chapters we show how the microscopic properties of the
system can be determined by using the methods of kinetic theory and statistical
mechanics to calculate the dependence of the macroscopic properties of a system on
thermodynamic variables.

The presentation of many topics differs from the earlier text. Non-P¥T
systems are introduced in the second chapter and are discussed throughout the
text. The first law is developed as a definition of the difference in the internal energy
of a system between two equilibrium states as the work in an adiabatic process
between the states and in which the kinetic and potential energy of the system do
not change. The heat flow is then the difference between the work in any process
between two equilibrium states and the work in an adiabatic process between the
same states. Care is taken to explain the effects of changes in kinetic and potential
energy as well. After the discussion of the first law, various examples are presented
to show which properties of the system can be determined on the basis of this law
alone.

The statement that “in every process taking place in an isolated system the
entropy of the system either increases or remains constant™ is used as the second
law. It is made plausible by a series of examples and shown to be equivalent to the
“engine” statements and the Carathéodory treatment. Thermodynamic potentials
are presented in greater detail than in the earlier text. A new potential F* is
introduced to make consistent the thermodynamic and statistical treatments of
processes in which the potential energy of a system changes. The discussion of
open systems, added in Chapter 8, is necessary for the new derivation of statistics.
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Kinetic theory of gases is treated in Chapters 9 and 10. Although the coverage
appears to be reduced from the previous edition, the remaining material is dis-
cussed from the point of view of statistics in Chapter 12.

The derivation of the distribution functions for the various types of statistics
is completely different from previous editions. Discrete energy levels are assumed
from the outset. The number of microstates belonging to each macrostate is

calculated in the conventional manner for Bose-Einstein, Fermi-Dirac and Maxwell- |

Boltzmann statistics. The entropy is shown to be proportional to the natural
logarithm of the total number of microstates available to the system and not to the
number of microstates in the most probable macrostate. The distribution of
particles among energy levels is determined without the use of Lagrange multiplier:
and Stirling’s approximation, by calculating the change in the total number of
microstates when a particle in a particular energy level is removed from the system.
The logarithm of this change is proportional to the change of entropy of the system.

Only the single-particle partition function is introduced and it is used to derive

the thermodynamic properties of systems. The coverage is much the same as the /

earlier text except that it is based entirely on discrete levels. The chapter on
fluctuations has been omitted.

The number of problems at the end of each chapter has been expanded. Some
of the problems would become tedious if one did not have access to a small calcu-
lator. The International System (SI) has been adopted throughout. Thus the units
are those of the MKS system and are written, for example, as J kilomole** K~! for
specific heat capacity.

The section on classical thermodynamics can be used for a course lasting one
quarter. For a one-semester course it can be used with either the chapters on
kinetic theory or statistical thermodynamics, but probably not both, unless only
classical statistics are discussed, which can be done by using the development given
in the sections on Bose-Einstein statistics and taking the limit that g, > N,.

Weappreciatethe helpful comments of thereviewers of the manuscript, especially
L. S. Lerner and C. F. Hooper, who also gave part of the manuscript a field test.
One of us (GLS) wishes to thank his colleagues at Rensselaer for many helpful
discussions. J. Aitken worked all the problems and checked the answers. Phyllis
Kallenburg patiently retyped many parts of the manuscript with great accuracy
and good humor. The encouragement of our wives and tolerance of our children
helped considerably in this undertaking. Criticisms from teachers and students will
be welcomed. '

Norwich, Vermont FW.sS.
Troy, New York G.L.s.
October 1974
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2 FUNDAMENTAL CONCEPTS

1-1 SCOPE OF THERMODYNAMICS

Thermodynamics is an experimental science based on a small number of principles
that are generalizations made from experience. It is concerned only with macro-
seopic or large-scale properties of matter and it makes no hypotheses about the
small-scale or microscopic structure of matter. From the principles of thermo-
dynamics one can derive general relations between such quantities as coefficients
of expansion, compressibilities, specifig heat capacities, heats of transformation,
and magnetic and dielectric coefficients, especially as these are affected by tem-
perature. The principles of thermodynamics also tell us which few of these rela-
tions must be determined experimentally in order to completely specify all the
properties of the system.

The actual magnitudes of quantities like those above can be calculated only
on the basis of a molecular model. The kinetic theory of matter applies the laws
of mechanics to the individual molecules of a system and enables one to calculate,
for example, the numerical value of the specific heat capacity of a gas and to
understand the properties of gases in terms of the law of force between individual
molecules.

The approach of statistical thermodynamics ignores the detailed consideration
of molecules as individuals and applies statistical considerations to find the distri-
bution of the very large number of molecules that make up a macroscopic piece of
matter over the energy states of the system. For those systems whose energy states
can be calculated by the methods of either quantum or classical physics, both the
magnitudes of the quantities mentioned above-and the relations between them can
be determined by quite general means. The methods of statistics also give further
insight into the concepts of entropy and the principle of the increase of entropy.

Thermodynamics is complementary to kinetic theory and statistical thermo-
dynamics. Thermodynamics provides relationships between physical properties
of any system once certain measurements are made. Kinetic theory and statistical
thermodynamics enable one to calculate the magnitudes of these properties for
those systems whose energy states can be determined.

The science of thermodynamics had its start in the early part of the nineteenth
century, primarily as a result of attempts to improve the efficiencies of steam engines,
devices into which there is an input in the form of heat, and whose output is
mechanical work. Thus as the name implies, thermodynamics was concerned with
both rhermal and mechanical, or dynamical, concepts. As the subject developed
and its basic laws were more fully understood, its scope became broader. The
principles of thermodynamics are now used by engineers in the design of internal
combustion engines, conventional and nuclear power stations, refrigeration and
air-conditioning systems, and propulsion systems for rockets, missiles, aircraft,
ships, and land vehicles. The sciences of physical chemistry and chemical physics
consist in large part of the applications of thermodynamics to chemistry and
chemical equilibria. The production of extremely low temperatures, in the neigh-
borhood of absolute zero, involves the application of thermodynamic principles

-



1-3 STATE OF A SYSTEM. PROPERTIES 3

to systems of molecular and nuclear magnets. Communications, information
theory, and even certain biological processes are examples of the broad areas in
which the thermodynamic mode of reasoning is applicable.

In this book we shall first develop the principles of thermodynamics and show
how they apply to a system of any nature. The methods of kinetic theory and
statistics are then discussed and correlated with those of thermodynamics.

1-2 THERMODYNAMIC SYSTEMS

The term system, as used in thermodynamics, refers to a certain portion of the
Universe within some closed surface called the boundary of the system. The
boundary may enclose a solid, liquid, or gas, or a collection of magnetic dipoles,
or even a batch of radiant energy or photons in a vacuum. The boundary may be a
real one, like the inner surface of a tank containing a compressed gas, or it may
be imaginary, like the surface bounding a certain mass of fluid flowing along a
pipe line and followed in imagination as it progresses. The boundary is not
necessarily fixed in either shape or volume. Thus when a fluid expands against a
piston, the volume enclosed by the boundary increases.

Many problems in thermodynamics involve interchanges of energy between
a given system and other systems. Any systems which can interchange energy with
a given system are called the surroundings of that system. A system and its sur-
roundings together are said to constitute a universe.

If conditions are such that no energy interchange with the surroundings can
take place, the system is said to be isolated. If no matter crosses the boundary,
the system is said to be closed. If there is an interchange of matter between system

and surroundings, the system is open.

1-3 STATE OF A SYSTEM. PROPERTIES

The state of a thermodynamic system is specified by the values of certain experi-
mentally measurable quantities called state variables or properties. Examples of
properties are the temperature of a system, the pressure exerted by it, and the
volume it occupies. Other properties of interest are the magnetization of a mag-
netized body, the polarization of a dielectric, and the surface area of a liquid.

Thermodynamics deals also with quantities that are not properties of any
system. Thus when there is an interchange of energy between a system and its
surroundings, the energy transferred is not a property of either the system or its
surroundings.

Those properties of a system in a given state that are proportional to the mass
of a system are called extensive. Examples are the total volume and the total energy
of a system. Properties that are independent of the mass are called intensive.
Temperature, pressure, and density are examples of intensive properties.

The specific value of an extensive property is defined as the ratio of the value
of the property to the mass of the system, or as its value per unit mass. We shall



4 FUNDAMENTAL CONCEPTS 1-4

use capital letters to designate an extensive property and lower case letters for the
corresponding specific value of the property. Thus the total volume of a system
is represented by ¥ and the specific volume by v, and
0=—.
m
The specific volume is evidently the reciprocal of the density p, defined as the
mass per unit volume:

-t
L

Since any extensive property is proportional to the mass, the corresponding
specific value is independent of the mass and is an intensive property.

The ratio of the value of an extensive property to the number of moles of a
system is called the molal specific value of that property. We shall use lower case
letters also to represent molal specific values. Thus if n represents the number of
moles of a system, the molal specific volume is

v=—.
n

Note that in the MKS system, the term “mole™ implies kilogram-mole or
kilomole, that is, a mass in kilograms numerically equal to the molecular weight.
Thus one kilomole of Oy means 32 kilograms of O,.

No confusion arises from the use of the same letter to represent both the
volume per unit mass, say, and the volume per mole. In nearly every equation
in which such a quantity occurs there will be some other quantity which indicates
which specific volume is meant, or, if there is no such quantity, the equation will
hold equally well for either.

In many instances, it is more convenient to write thermodynamic equations
in terms of specific values of extensive properties, since the equations are then
indepencient of the mass of any particular system.

1-4 PRESSURE

The stress in a continuous medium is said to be a hydrostatic pressure if the force
per unit area exerted on an element of area, either within the medium or at its
surface, is (a) normal to the element and (b) independent of the orientation of the
element. The stress in a fluid (liquid or gas) at rest in a closed container is a hydro-
static pressure. A solid can be subjected to a hydrostatic pressure by immersing
it in a liguid in which it is insoluble and exerting a pressure on the liquid. The
pressure P is defined as the magnitude of the force per unit area and the unit of
pressure in the MKS system is 1 newton* per square meter (I N m~2). A pressure of

* Sir Isaac Newton, English mathematician (1642-1727).
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exactly 10° N m~* (= 10® dyne cm~2) is called 1 bar, and a pressure of 10-* N m-?
(= 1 dyne cm~*) is | microbar (1 u bar).

A pressure of | standard atmosphere (atm) is defined as the pressure produced
by a vertical column of mercury exactly 76 cm in height, of density p = 13.5951 g
cm™, at a point where g has its standard value of 980.665 cm s~%, From the equa-
tion P = pgh, we find

1 standard atmosphere = 1.01325 x 10° dyne cm—® = 1.01325 x 10* N m-%,

Hence 1 standard atmosphere is very nearly equal to 1 bar, and 1 g bar is very
nearly 10~-% atm.

A unit of pressure commonly used in experimental work at low pressures
is | Torr (named after Torricelli*) and defined as the pressure produced by a
mercury column exactly | millimeter in height, under the conditions above;
therefore 1 Torr = 133.3 Nm™%

1-6 THERMAL EQUILIBRIUM AND TEMPERATURE.
THE ZEROTH LAW

The concept of temperature, like that of force, originated in man’s sense per-
ceptions. Just as a force is something we can correlate with muscular effort and
describe as a push or a pull, so temperature can be correlated with the sensations of
relative hotness or coldness. But man’s temperature sense, like his force sense, is
unreliable and restricted in range. Out of the primitive concepts of relative hotness
and coldness there has developed an objective science of thermometry, just as an
objective method of defining and measuring forces has grown out of the naive
concept of a force as a push or a pull.

The first step toward attaining an objective measure of the temperature sense
is to set up a criterion of equality of temperature. Consider two metal blocks A
and B, of the same material, and suppose that our temperature sense tells us that A4
is warmer than B. If we bring 4 and B into contact and surround them by a thick
layer of felt or glass wool, we find that after a sufficiently long time has elapsed
the two feel equally warm. Measurements of various properties of the bodies,
such as their volumes, electrical resistivities, or elastic moduli, would show that
these properties changed when the two bodies were first brought into contact but
that eventually they became constant also.

Now suppose that two bodies of different materials, such as a block of metal
and a block of wood, are brought into contact. We again observe that after a
sufficiently long time the measurable properties of these bodies, such as their
volumes, cease to change. However, the bodies will not feel equally warm to the
touch, as evidenced by the familiar fact that a block of metal and a block of wood,

* Evangelista Torricelli, Italian physicist (1608-1647).
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both of which have been in the same room for a long time, do not feel equally
warm. This effect results from a difference in thermal conductivities and is an
example of the unreliability of our temperature sense.

The feature that is common in both instances, whether the bodies are of the
same material or not, is that an end state is eventually reached in which there are
no further observable changes in the measurable properties of the bodies. This
state 1s then defined as one of thermal equilibrium.

Observations such as those described above lead us to infer that all ordinary
objects have a physical property that determines whether or not they will be in
thermal equilibrium when placed in contact with other objects. This property is
called temperature. 1f two bodies are in thermal equilibrium when placed in contact,
then by definition their temperatures are equal. Conversely, if the temperatures
of two bodies are equal, they will be in thermal equilibrium when placed in contact.
A state of thermal equilibrium can be described as one in which the temperature
of the system is the same at all points.

Suppose that body A, say a metal block, is in thermal equilibrium with body
B, also a metal block. The temperature of B is then equal to the temperature of 4.
Suppose, furthermore, that body A is also separately in thermal equilibrium with
body C, a wooden block, so that the temperatures of C and A are equal. It follows
that the temperatures of B and C are equal; but the question arises, and it can only
be answered by experiment, what will actually happen when B and C are brought
in contact? Will they be in thermal equilibrium? We find by experiment that
they are, so that the definition of equality of temperature in terms of thermal
equilibrium is self-consistent.

It is not immediately obvious that because B and C are both in thermal equilibrium
with 4, that they are necessarily in thermal equilibrium with each other. When a zinc
rod and a copper rod are dipped in a solution of zinc sulfate, both rods come to
electrical equilibrium with the solution. If they are connected by a wire, however, it
is found that they are not in electrical equilibrium with each other, as evidenced by
an electric current in the wire.

The experimental results above can be stated as follows:

When any two bodies are each separately in thermal equilibrium with a third, they
are also in thermal equilibrium with each other.

This statement is known as the zeroth law of thermodynamics, and its correct-
ness is tacitly assumed in every measurement of temperature. Thus if we want to
know when two beakers of water are at the same temperature, it is unnecessary to
bring them into contact and see whether their properties change with time. We
insert a thermometer (body A) in one beaker of water (body B) and wait until some
property of the thermometer, such as the length of the mercury column in a glass
capillary, becomes constant. Then by definition the thermometer has the same
temperature as the water in this beaker. We next repeat the procedure with the
other beaker of water (body C). If the lengths of the mercury columns are the same,



1-6 EMPIRICAL AND THERMODYNAMIC TEMPERATURE 7

the temperatures of B and C are equal, and experiment shows that if the
two beakers are brought into contact, no changes in their properties take
place.
Note that the thermometer used in this test requires no calibration—it is only
necessary that the mercury column stand at the same point in the capillary. Such
an instrument can be described as a thermoscope. It will indicate equality of tem-
perature without determining a numerical value of temperature.

Although a system will eventually come to thermal equilibrium with its sur-
roundings if these are kept at constant temperature, the rate at which equilibrium
is approached depends on the nature of the boundary of the system. If the boundary
consists of a thick layer of a thermal insulator such as glass wool, the temperature
of the system will change very slowly, and it is useful to imagine an ideal boundary
for which the temperature would not change at all. A boundary that has this
property is called adiabatic, and a system enclosed in an adiabatic boundary can
remain permanently at a temperature different from that of its surroundings
without ever coming to thermal equilibrium with them. The ideal adiabatic
boundary plays somewhat the same role in thermodynamics as the ideal friction-
less surface does in mechanics. Although neither actually exists, both are helpful
in simplifying physical arguments and both are justified by the correctness of con-
clusions drawn from arguments making use of them.

Although we have not as yet defined the concept of /ieat, it may be said at this
point that an ideal adiabatic boundary is one across which the flow of heat is zero,
even when there is a difference in temperature between opposite surfaces of the
boundary.

At the opposite extreme from an adiabatic boundary is a diathermal boundary,
composed of a material which is a good thermal conductor such as a thin sheet of
copper. The temperature of a system enclosed in a diathermal boundary very
quickly approaches that of its surroundings.

1-6 EMPIRICAL AND THERMODYNAMIC TEMPERATURE

To assign a numerical value to the temperature of a system, we first select some
one system, called a thermometer, that has a thermometric property which changes
with temperature and is readily measured. An example is the volume V¥ of a liquid,
as in the familiar liquid-in-glass thermometer. The thermometers used most
widely in precise experimental work, however, are the resistance thermometer and
the thermocouple.

The thermometric property of the resistance thermometer is its resistance R.
For good sensitivity, the change in the thermometric property of a thermometer,
for a given change in temperature, should be as large as possible. At temperatures
that are not too low, a resistance thermometer consisting of a fine platinum wire
wound on an insulating frame is suitable. At extremely low temperatures, the
resistivity of platinum changes only slightly with changes in temperature, but it
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has been found that arsenic-doped germanium makes a satisfactory resistance
thermometer down to very low temperatures.

The thermocouple consists of an electrical circuit shown in its simplest form in
Fig. 1-1(2). When wires of any two unlike metals or alloys are joined so as to form
a complete circuit, it is found that an emf & exists in the circuit whenever the
junctions A and B are at different temperatures, and this emf is the thermometric
property of the couple. To measure the emf, a galvanometer or potentiometer must
be inserted in the circuit, and this introduces a pair of junctions at the points where
the instrument leads are connected. If these leads are of the same material, usually
copper, and if both of these junctions are at the same temperature, called the
reference temperature, the emf is the same as in a simple circuit, one of whose
junctions is at the reference temperature. Figure 1-1(b) shows a typical thermo-
couple circuit. Junctions B and C are kept at some known reference temperature,
for example by inserting them in a Dewar flask * containing ice and water. Junction
A, the test junction, is placed in contact with the body whose temperature is to be
determined.

Test junction A

Junction A Junction B
Metal |
To potentiometer
Reference junction
Metal 2 Copper
() ()

Fig. 1-1 Thermocouple circuits: (a) simple circuit and (b) practical circuit showing the
test junction and the reference junction.

* A Dewar flask is a double-walled container. The space between the walls is evacuated to
keep heat from entering or leaving the contents of the container. It was invented by Sir

James Dewar, British chemist (1848-1923).
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Another important type of thermometer, although it is not suitable for routine
laboratory measurements, is the tant vol, gas ther ter, illustrated
schematically in Fig. 1-2. The gas is contained in bulb C and the pressure exerted
by it can be measured with the open tube mercury manometer. As the temperature
of the gas increases, the gas expands, forcing the mercury down in tube B and up in
tube 4. Tubes 4 and B communicate through a rubber tube D with a mercury
reservoir R. By raising R, the mercury level in B may be brought back to a reference
mark E. The gas is thus kept at constant volume. Gas thermometers are used
mainly in bureaus of standards and in some university research laboratories. The
materials, construction, and dimensions differ in various laboratories and depend
on the nature of the gas and the temperature range to be covered.

Fig. 1-2 The constant-volume gas thermometer.

Let X represent the value of any thermometric property such as the emf & of a
thermocouple, the resistance R of a resistance thermometer, or the pressure P of a
fixed mass of gas kept at constant volume, and 8 the empirical temperature of the
thermometer or of any system with which it is in thermal equilibrium. The ratio
of two empirical temperatures 0, and 0,, as determined by a particular thermom-
eter, is defined as equal to the corresponding ratio of the values of X:

b _ X,
6 X
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The next step is to arbitrarily assign a numerical value to some one temperature
called the standard fixed point. By international agreement, this is chosen to be the
triple point of water, the temperature at which ice, liquid water, and water vapor
coexist in equilibrium, We shall see in Section 8-2 that the three states of any
substance can coexist at only one temperature.

To achieve the triple point, water of the highest purity which has substantially
the isotopic composition of ocean water is distilled into a vessel like that shown
schematically in Fig. 1-3. When all air has been removed, the vessel is sealed off.
With the aid of a freezing mixture in the inner well, a layer of ice is formed around
the well. When the freezing mixture is removed and replaced with a thermometer,
a thin layer of ice is melted nearby. So long as the solid, liquid, and vapor coexist
in equilibrium, the system is at the triple point.

Thermometer

Fig, 1-3 Triple-point cell with a thermometer
in the well, which melts a thin layer of
ice nearby.

If we now assign some arbitrary value 0y to the triple point temperature, and let
X represent the corresponding value of the thermometric property of a thermom-
eter, the empirical temperature 6 when the value of the thermometric property is
X, is given by
2. X
6 X
or
X
0=10, X (1-1
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Table 1-1 lists the values of the thermometric properties of each of four different
thermometers at a number of temperatures, and the ratio of the property at each
temperature to its value at the triple point. The first thermometer is a copper-
constantan thermocouple, the second is a platinum resistance thermometer, the third
is a constant volume hydrogen thermometer filled to a pressure of 6.80 atm at the
triple point, and the fourth is also a constant volume hydrogen thermometer but
filled to a lower pressure of 1.00 atm at the triple point. Values of the thermo-
metric properties are given at the normal boiling point (NBP) of nitrogen, the
normal boiling point of oxygen, the normal sublimation point (NSP) of carbon
dioxide, the triple point of water, the normal boiling point of water, and the normal
boiling point of tin.

Table 1-1 Comparison of thermometers

(Cu-Constantan) P Py R (H,, P (Hy, P
System &, T R, F ¥ const) 7 V const) 7
mV * | ohms* * | P,atm * | P,atm ’
N, (NBP) 0713 0.12 1.96 0.20 1.82 (027 029 0.29
O, (NBP) 0.95 0.15 250 0.25 213 (031 033 0.33
CO, (NSP) 352 0.56 6.65 0.68 480 (o071 0.72 0.72
H;0 (TP) &, = 6.26 1.00 | Ry = 9.83 | 1.00 | P, = 6.80| 1.00 | Py = 1.00 | 1.00
H,0 (NBP) 10.05 1.51 13.65 1.39 9.30 1.37 137 137
Sn (NMP) 17.50 2,19 18.56 1.89 12.70 1.87 1.85 1.85

‘We see that a complication arises. The ratio of the thermometric properties,
at each temperature, is different for all four thermometers, so that for a given
value of 0,, the empirical temperature 8 is different for all four. The agreement is
closest, however, for the two hydrogen thermometers and it is found experimentally
that constant volume gas thermometers using different gases agree more and more
closely with each other, the lower the pressure P, at the triple point. This is illus-
trated in Fig. 1-4, which shows graphs of the ratio P,/P, for four different constant
volume gas thermometers plotted as function of the pressure Py. The pressure P,
1s that at the normal boiling point of water (the steam point). Experimental
measurements cannot, of course, be made all the way down to zero pressure, Py,
but the extrapolated curves all intersect the vertical axis at a common point at
which P,/P; = 1.3660. At any other temperature, the extrapolated graphs also
intersect at a (different) common point, so that all constant volume gas thermom-
eters agree when their readings are extrapolated to zero pressure Py, We therefore
define the empirical gas temperature 6, as

0, =0 x ‘1,15..(?3)7. (1-2)

* Georg S. Ohm, German physicist (1787-1854).
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the subscript ¥ indicating that the pressures are measured at constant volume.
Temperatures defined in this way are therefore independent of the properties of any
particular gas, although they do depend on the characteristic behavior of gases asa
whole and are thus not entirely independent of the properties of a particular
material.

There remains the question of assigning a numerical value to the triple-point
temperature 8. Before 1954, gas temperatures were defined in terms of two fixed
points: the normal boiling point of pure water (the steam point) and the equilibrium
temperature of pure ice and air-saturated water at a pressure of 1 atmosphere (the
ice point). (The triple-point and ice-point temperatures are not exactly the same
because the pressure at the triple point is not 1 atm, but is the vapor pressure of
water, 4.58 Torr, and the ice is in equilibrium with pure water, not air-saturated
water. This is discussed further in Section 7-6.)

1.36%0 .
[ "’
1.3680

1.3650 1 1

Py(Torr)

Fig. 14 Readmgs of a comtant-volume gas
ther for the perature of

steam, when different gases are used at various
values of Pj.

If the subscripts s and  designate values at the steam and ice points, the gas
temperatures 8, and 0, were defined by the equations

0, (P,

8, P)V' 6, — 6, = 100 degrees.

(The pressure ratio is understood to be the limiting value extrapolated to zcro
pressure.) When these equations are solved for 8,, we have

100P, 100
0, o e i s, x

‘P =P (RJP)-1 A

The best experimental value of the ratio P,/P; was found to be 1.3661. (This

differs slightly from the limiting value of the ratio P,/P; of 1.3660 in Fig. 1-4

because the temperature of the triple point is slightly larger than that of the ice
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point.) Hence from Eq. (1-3),
P 100
T
1.3661 — 1
and from the defining equations for 6, and 6,
0, = 373.15 degrees.
The triple point temperature 6, is found by experiment to be 0.01 degree above
the ice point, so the best experimental value of f is
By = 273.16 degrees.
In order that temperatures based on a single fixed point, the triple point of
water, shall agree with those based on two fixed points, the ice and steam points,
the triple point temperature is assigned the value

0, = 273.16 degrees (exactly).

= 273.15 degrees,

Hence
6, = 273.16 x lim (ﬁ) . ; (1-4)
P~o\Py/v

It will be shown in Section 5-2 that, following a suggestion made by Lord
Kelvin*, one can define the ratio of two temperatures on the basis of the second
law of thermodynamics in a way that is completely independent of the properties
of any particular material. Temperatures defined in this way are called absolute
or thermodynamic temperatures and are represented by the letter 7. We shall show
later that thermodynamic temperatures are equal to gas temperatures as defined
above. Since all thermodynamic equations are best expressed in terms of thermo-
dynamic temperature, we shall use, from now on, the symbol T for temperature,
understanding that it can be measured experimentally with a gas thermometer.

It has been customary for many years to speak of a thermodynamic tempera-
ture as so many “degrees kelvin," abbreviated deg K or °K. The word “degree”
and the degree symbol have now been dropped. The unit of temperature is called
1 kelvin (1 K), just as the unit of energy is called | joule (1 J)t, and we say, for
example, that the triple point temperature is 273.16 kelvins (273.16 K). The unit
of temperature is thus treated in the same way as the unit of any other physical
quantity. Thus we can write finally, accepting for the present that I'= 8,

T = 273.16K x lim (f) . (1-5)
Py=0\Pylv
Celsius temperature ¢ (formerly known as centigrade temperature) is defined
by the equation
t=T-T, (1-6)

* William Thomson, Lord Kelvin, Scottish physicist (1824-1907).
t James P. Joule, British physicist (1818-1889).
$ Anders Celsius, Swedish astronomer (1701-1744).
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where 7} is the thermodynamic temperature of the ice point, equal to 273.15 K.
The unit employed to express Celsius temperature is the degree Celsius (°C),
which is equal to the kelvin. Thus at the ice point, where T'= T, t = 0°C; at the
triple point of water, where T = 273.16 K, ¢ = 0.01°C; and at the steam point,
t = 100°C. A difference in temperature is expressed in kelvins; it may also be
expressed in degrees Celsius (deg C).

The Rankine* and Fahrenheit? scales, commonly used in engineering measure-
ments in the United States, are related in the same way as the Kelvin and Celsius
scales. Originally these scales were defined in terms of two fixed points, with the
difference between the steam point and ice point temperatures taken as 180 degrees
instead of 100 degrees. Now they are defined in terms of the Kelvin scale through
the relation

iR = g K (exactly), (=7

Thus the thermodynamic temperature of the ice point is

T, = 2s X 27315 K = 491.67R.
5K

Fahrenheit temperature ¢ is defined by the equation
t=T — 459.67R, (1-8)
where T is the thermodynamic temperature expressed in rankines. The unit of

Fahrenheit temperature is the degree Fahrenheit (°F), which is equal to the rankine.
Thus at the ice point, where T = T; = 491.67 R, ¢ = 32.00°F and at the steam

K C R F
Steam point 313 K4 —— -~ —-}100°C 672 RT-—_'—___Lzuﬂp
100 kelvins 180 rankines
100 deg C 180 deg F
ke point 213 K4 ——— 4__1oc 2R i 32F
NSP CO;, 195K+ +=78C 351 R -+ 109°F
NBP oxygen 90 K+ +—183°C 162 R+ ~+=2871F
Absolute zero 0 J- L_213°C o—J- L _460°F

Fig. 1-5 Comparison of Kelvin, Celsius, Rankine, and Fahrenheit temper-
atures. Temperatures have been rounded off to the nearest degree.

* William J. M. Rankine, Scottish engineer (1820-1872).
t Gabriel D. Fahrenheit, German physicist (1686-1736).




THE INTERNATIONAL PRACTICAL TEMPERATURE SCALE 16

point t = 212,00°F. A temperature difference is expressed in rankines; it may also
be expressed in degrees Fahrenheit (deg F). These scales are no longer used in
scientific measurements. Some Kelvin, Celsius, Rankine, and Fahrenheit tem-

peratures are compared in Fig. 1-5.

1-7 THE INTERNATIONAL PRACTICAL TEMPERATURE SCALE
To overcome the practical difficulties of direct determination of thermodynamic
temperature by gas thermometry and to unify existing national temperature
scales, an International Temperature Scale was adopted in 1927 by the Seventh
General Conference on Weights and Measures. Its purpose was to provide a
practical scale of temperature which was easily and accurately reproducible and
which gave as nearly as possible thermodynamic temperatures. The International
Temperature Scale was revised in 1948, in 1960, and most recently in 1968, Itis
now known as the International Practical Temperature Scale of 1968 (IPTS-68).
International Practical Kelvin Temperature is represented by the symbol T,
and International Practical Celsius Temperature by the symbol f,,. The relation

bet Ty and fgy is
ween Ty and fgy teg = T — 27315 K.

The units of T and 1, are the kelvin (K) and the degree Celsius (°C), as in the
case of the thermodynamic temperature T and the Celsius temperature £.

The IPTS-68 is based on assigned values to the temperatures of a number of
reproducible equilibrium states (fixed points) and on standard instruments cali-
brated at those temperatures. Within the limits of experimental accuracy, the
temperatures assigned to the fixed points are equal to the best experimental values
in 1968 of the thermodynamic temperatures of the fixed points. Interpolation
between the fixed-point temperatures is provided by formulas used to establish the
relation between indications of the standard instruments and values of International
Practical Temperature. Some of these equilibrium states, and values of the Inter-
national Practical Temperatures assigned to them, are given in Table 1-2.

Table 1-2 Assigned temperatures of some of the fixed points
used in defining the International Practical Temperature

Scale of 1968 (IPTS-68)

Fixed point Tas (K) g (°C)
Triple point of hydrogen 13.81 —259.34
Boiling point of neon 27.102 —246.048
Triple point of oxygen 54.361 —-218.789
Triple point of water 273.16 0.01
Boiling point of water 373.15 100
Freezing point of zinc 692.73 419.58
Freezing point of silver 1235.08 961.93
Freezing point of gold 1337.58 1064.43
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The standard instrument used from 13.81 K to 630.74°C is a platinum resis-
tance thermometer. Specified formulas are used for calculating International
Practical Temperature from measured values of the thermometer resistance over
temperature ranges in this interval, the constants in these formulas being deter-
mined by measuring the resistance at specified fixed points between the triple
point of hydrogen and the freezing point of zinc.

In the range from 630.74°C to 1064.43°C, the standard instrument is a thermo-
couple of platinum and an alloy of platinum and 10 rhodium. The thermo-
couple is calibrated by measuring its emf at a temperature of 630.74°C as deter-
mined by a platinum resistance thermometer, and at the normal freezing points
of silver and of gold.

At temperatures above the freezing point of gold, (1337.58 K or 1064.43°C)
International Practical Temperature is determined by measuring the spectral
concentration of the radiance of a black body and calculating temperature from
the Planck* law of radiation (see Section 13-2). The freezing point of gold,
1337.58 K is used as a reference temperature, together with the best experimental
value of the constant ¢; in the Planck law of radiation given by

¢, = 0.014388 m K.

For a complete description of the procedures to be followed in determining
IPTS-68 temperatures, see the article in Metrologia, Vol. 5, No. 2 (April 1969).
The IPTS-68 is not defined below a temperature of 13.8 K. A description of experi-
mental procedures in this range can be found in “Heat and Thermodynamics,”
5th ed., by Mark W. Zemansky (McGraw-Hill).

1-8 THERMODYNAMIC EQUILIBRIUM

When an arbitrary system is isolated and left to itself, its properties will in
general change with time. If initially there are temperature differences between
parts of the system, after a sufficiently long time the temperature will become the
same at all points and then the system is in thermal equilibrium.

If there are variations in pressure or elastic stress within the system, parts of the
system may move, or expand or contract. Eventually these motions, expansions, or
contractions will cease, and when this has happened we say that the system is in
mechanical equilibrium. This does not necessarily mean that the pressure is the
same at all points. Consider a vertical column of fluid in the earth’s gravitational
field. The pressure in the fluid decreases with increasing elevation, but each element
of the fluid is in mechanical equilibrium under the influence of its own weight and
an equal upward force arising from the pressure difference between its upper and
lower surfaces.

Finally, suppose that a system contains substances that can react chemically.
After a sufficiently long time has elapsed, all possible chemical reactions will have
taken place, and the system is then said to be in chemical equilibrivm.

* Max K. E. L. Planck, German physicist (1858-1947).
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A system which is in thermal, mechanical, and chemical equilibrium is said to
be in thermodynamic equilibrium. For the most part, we shall consider systems that
are in thermodynamic equilibrium, or those in which the departure from thermo-
dynamic equilibrium is negligibly small. Unless otherwise specified, the “state”
of a system implies an equilibrium state. In this discussion it is assumed that the
system is not divided into portions such that the pressure, for example, might be
different in different portions, even though the pressure in each portion would
approach a constant value.

1-9 PROCESSES |

When any of the properties of a system change, the state of the system changes and
the system is said to undergo a process. If a process is carried out in such a way
that at every instant the system departs only infinitesimally from an equilibrium
state, the process is called quasistatic (i.e., almost static). Thus a quasistatic
process closely approximates a succession of equilibrium states. If there are finite
departures from equilibrium, the process is nonguasistatic.

Consider a gas in a cylinder provided with a movable piston. Let the cylinder
walls and the piston be adiabatic boundaries and neglect any effect of the earth’s
gravitational field. With the piston at rest, the gas eventually comes to an equi-
librium state in which its temperature, pressure, and density are the same at all
points. If the piston is then suddenly pushed down, the pressure, temperature, and
density immediately below the piston will be increased by a finite amount above
their equilibrium values, and the process is not quasistatic. To compress the gas
quasistatically, the piston must be pushed down very slowly in order that the pro-
cesses of wave propagation, viscous damping, and thermal conduction may bring
about at all instants a state which is essentially one of both mechanical and thermal
equilibrium.

Suppose we wish to increase the temperature of a system from an initial value
T) to a final value T3 The temperature could be increased by enclosing the system
in a diathermal boundary and maintaining the surroundings of the system at the
temperature T,. The process would not be quasistatic, however, because the tem-
perature of the system near its boundary would increase more rapidly than that at
internal points, and the system would not pass through a succession of states of
thermal equilibrium. To increase the temperature quasistatically, we must start
with the surroundings at the initial temperature T, and then increase this tempera-
ture sufficiently slowly so that at all times it is only infinitesimally greater than that
of the system.

All actual processes are nonquasistatic because they take place with finite
differences of pressure, temperature, etc., between parts of a system. Nevertheless,
the concept of a quasistatic process is a useful and important one in thermo-

dynamics.
Many processes are characterized by the fact that some property of a system
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remains constant during the process. A process in which the volume of a system
is is called isovolumic or isochoric. If the pressure is constant, the process
is called isobaric or isopiestic. A process at constant temperature is called iso-
thermal.

A process carried out by a system enclosed by an adiabatic boundary is an
adiabatic process. As stated earlier, such a process can also be described as one in
which there is no flow of heat across the boundary. Many actual processes, such as
a single stroke of the piston of an internal combustion engine, are very nearly
adiabatic simply because the process takes place in such a short time that the flow
of heat into or out of the system is extremely small. A process can also be made
adiabatic by adjusting the temperature of the surroundings as the process proceeds
so that this temperature is always equal to that of the system.

A reversible process can be defined as one whose “direction” can be reversed
by an infinitesimal change in some property of the system. Thus if the temperature
of a system within a diathermal boundary is always slightly lower than that of its
surroundings, there will be a flow of heat from the surroundings into the system;
whereas if the temperature of the system is slightly greater than that of the sur-
roundings, there will be a flow of heat in the opposite direction. Such a process is
therefore reversible as well as quasistatic.

If there is a finite temperature difference between system and surroundings, the
direction of the heat flow cannot be reversed by an infinitesimal change in tempera-
ture of the system, and the process is irreversible as well as nonquasistatic. Suppose,
however, that the boundary of the system is nearly, but not completely adiabatic,
so that the heat flow is very small even with a finite difference in temperature.
The system is then very nearly in thermal equilibrium at all times and the process
is quasistatic although it is not reversible.

The slow compression or expansion of a gas in a cylinder provided with a piston
is quasistatic, but if there is a forceof sliding friction, f, between piston and cylinder
when the piston is in motion, the process is not reversible. The force exerted on the
piston by the gas when the gas is expanding differs by 2f from its value when the
gas is being compressed. Therefore the direction of motion of the piston can be
reversed only by a finite change in gas pressure. All reversible processes are neces-
sarily quasistatic, but a quasistatic process is not necessarily reversible. The terms
reversible and irreversible have a deeper significance also, which can only be brought
out after a discussion of the second law of thermodynamics.

PROBLEMS

1-1 State whether or not classical thermodynamic reasoning alone can be used to
determine! (a) the average velocity of the molecules of a gas; (b) the relation between the

dependence of the specific heat capacity of a solid and the temperature dependence
of its volume; (c) the magnitude of the magnetic moment of a gas; (d) the relation between

|
;
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the p and temperature of ¢l gnetic radiation in a cavity; (e) the magnitude
of the specific heat capacity of a solid. Briefly justify your answers.

1-2 Which of the following quantities are extensive and which are intensive? (a) The
magnetic moment of a gas. (b) The electric field £ in a solid. (c) The length of a wire,
(d) The surface tension of an oil film.

1-3 The density of water in cgs units is 1 g cm™3, Compute (a) the density in MKS units;
(b) the specific volume in m® kg™*; (c) the MKS molal specific volume. (d) Make the same
computations for air whose density is 0.00129 g cm™, The mean molecular weight of air
is 29; that is, the mass of 1 kilomole of air is 29 kg.

1-4 Estimate the pressure you exert on the florr when standing. Express the answer in
atmospheres and in Torr

1-5 One standard atmosphere is defined as the pressure produced by a column of mercury
exactly 76 cm high, at a temperature of 0°C, and at a point where g = 980.665 cm s~2%,
(a) Why do the temperature and the acceleration of gravity have to be specified in this
definition? (b) Compute the pressure in N m~* produced by a column of mercury of
density 13.6 g cm™3, 76 cm in height at a point where g = 980 cm 572,
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1-6 Two containers of gas are connected by a long, thin, thermally insulated tube.
Container A is surrounded by an adiabatic boundary, but the temperature of container
B can be varied by bringing it into contact with a body C at a different temperature, In
Fig. 1-6, these systems are shown with a variety of boundaries. Which figure represents
(a) an open system enclosed by an adiabatic boundary; (b) an open system enclosed by a
diathermal boundary; (c) a closed system enclosed by a diathermal boundary; (d) a
closed system enclosed by an adiabatic boundary.
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Figure 1-7

1-7 A water-in-glass thermoscope is to be used to determine if two separated systems are
in thermal equilibrium. The density of water, shown in Fig. 1-7, is the thermometric
parameter, Suppose that when the thermoscope is inserted into each system, the water
rises to the same height, corresponding to a density of 0.999945 g cm™. (a) Are the systems
necessarily in thermal equilibrium? (b) Could the height of the water in the thermoscope
change if the systems are brought into thermal contact ? (c) If there is a change in part (b),
would the height increase or decrease?
1-8 Using the data of Table 1-1, find the empirical temperature of the normal subli-
mation point of CO, as measured by the thermocouple, the platinum thermometer, the
hydrogen thermometer at high pressure, and the hydrogen thermometer at low pressure,
1-9 The length of the mercury column in a certain mercury-in-glass thermometer is
5.00 cm when the thermometer is in contact with water at its triple point. Consider the
Iength of the mercury column as the thermometric property X and let @ be the empirical
temperature determined by this thermometer. (a) Calculate the empirical temperature,
measured when the length of the mercury column is 6.00 cm. (b) Calculate the length of
the mercury column at the steam point. (c) If X can be measured with a precision of 0.01
cm, can this thermometer be used to distinguish between the ice point and the triple
point?
1-10 A temperature ¢* is defined by the equation

1* =af® + b,

where @ and b are constants, and @ is the empirical temperature determined by the mercury-
in-glass thermometer of the previous problem. (a) Find the numerical values of @ and b,
if * = 0 at the ice point and * = 100 at the steam point. (b) Find the value of 1* when
the length of the mercury column X = 7.00cm. (c) Find the length of the mercury
column when 1* = 50. (d) Sketch r* versus X,

1-11 Suppose a numerical value of 100 is assigned to the steam point temperature, and
that the ratio of two temperatures is defined as the limiting ratio, as Py — 0, of the
corresponding pressures of a gas kept at constant volume. Find (a) the best experimental
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value of the ice point temperature on this scale, and (b) the temperature interval between
the ice and steam points.

1-12 Suppose that a numerical value of exactly 492 is assigned to the ice point tempera-
ture, and that the ratio of two temperatures is defined as the limiting ratio, as P, -0, of
the corresponding pressures of a gas kept at constant volume. Find (a) the best experi-
mental value of the steam point temperature on this scale, and (b) the temperature interval
between the ice and steam points.

1-13 The pressure of an ideal gas kept at constant volume is given by the equation

P =AT

where T is the thermodynamic temperature and A is a constant. Let a temperature T*
be defined by
T*=BInCT

where B and C are constants. The pressure P is 0.1 atm at the triple point of water. The
temperature T* is 0 at the triple point and T'* is 100 at the steam point. (a) Find the values
of A, B, and C. (b) Find the value of T* when P = 0.15 atm. (c) Find the value of P
when T* is 50. (d) What is the value of T* at absolute zero? (e) Sketch a gnbh of T*
versus the Celsius temperature r for —200°C < < 200°C.
1-14 When one junction of a thermocouple is kept at the ice point, and the other junction
is at a Celsius temperature f, the emf & of the thermocouple is given by a quadratic
function of r:

& = at + i,
If ¢ is in millivolts, the numerical values of « and f for a certain thermocouple are found
to be

a=.50, p=-1x10"%

(a) Compute the emf when ¢ = ~100°C, 200°C, 400°C, and 500°C, and sketch a graph
of & versus 1. (b) Suppose the emf is taken as a thermometric property and that a tem-
perature scale r* is defined by the linear equation

t* =as +b.

Let r* = 0 at the ice point, and t* = 100 at the steam point. Find the numerical values
of aand b and sketch a graph of & versus #*. (c) Find the values of 1* when t = —100°C,
200°C, 400°C, and 500°C, and sketch a graph of £* versus 7 over this range. (d) Is the t*
scale a Celsius scale? Does it have any advantage or disadvantages compared with the
IPTS scale?

1-15 The thermodynamic temperature of the normal boiling point of nitrogen is 77.35 K.
Calculate the corresponding value of (a) the Celsius, (b) the Rankine, and (c) the Fahren-
heit temperature.

1-16 The thermodynamic temperature of the triple point of nitrogen is 63.15 K. Using
the data of the preceding problem, what is the temperature difference between the boiling
point and the triple point of nitrogen on (a) the Kelvin, (b) the Celsius, (c) the Rankine,
and (d) the Fahrenheit scales? Include the proper unit in each answer.

1-17 A mixture of hydrogen and oxygen is isolated and allowed to reach a state of
constant temperature and pressure. The mixture is exploded with a spark of negligible
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energy and again allowed to come to a state of constant temperature and pressure. (a) Is
the initial state an equilibrium state? Explain. (b) Is the final state an equilibrium state?
Explain.

1-18 (a) Describe how a system containing two gases can be in mechanical but not in
thermal or chemical equilibrium. (b) Describe how a system containing two gases can be
in thermal but not in mechanical or chemical equilibrium. (c) Describe how a system con-
taining two gases can be in thermal and mechanical equilibrium but not in chemical
equilibrium.

1-19 On a graph of volume versus temperature draw and label lines indicating the
following processes, each proceeding from the same initial state T, ¥,: (a) an isothermal
expansion; (b) an isothermal compression; (c) an isochoric increase in temperature,
1-20 Give an example of (2) a reversible isochoric process; (b) a quasistatic, adiabatic,
isobaric p ; (c) an irreversible isothermal process. Be careful to specify the system in
each case.

1-21 Using the nomenclature similar to that in the prevmus problem characterize the
following processes. (a) The temperature of a gas, enclosed in a cyli provided with a
frictionless piston, is slowly increased. The pressure remains constant. (b) A gas, enclosed
ina cylinder provided with a piston, is slowly expanded. The temperature remains constant,
There is a force of friction between the cylinder wall and the piston. (c) A gas enclosed in
a cylinder provided with a frictionless piston is quickly compressed. (d) A piece of hot
metal is thrown into cold water. (Assume that the system is the metal which neither
contracts nor expands.) (¢) A pendulum with a frictionless support swings back and forth.

() A bullet is stopped in a target.

.{[FF
| ,

| @ ®

Figure 1-8

1-22 A gas is enclosed in a cylinder provided with a piston of area 4, as in Fig. 1-8(a).
The relation between the pressure and volume of the gas, at a constant temperature T,
is shown in Fig. 1-8(b). On a similar figure sketch graphs of the ratio of the external force
Ftothearea A4, F/A, asa function of ¥, as the gas is (a) slowly compressed, and (b) slowly
expanded at the temperature T. There is a force of sliding friction f between the piston
and the cylinder,
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2-1 EQUATIONS OF STATE

It is found by experiment that only a certain minimum number of the properties of
a pure substance can be given arbitrary values. The values of the remaining prop-
erties are then determined by the nature of the substance. For example, suppose
that oxygen gas is allowed to flow into an evacuated tank, the tank and its contents
being kept at a thermodynamic temperature T. The volume ¥ of the gas admitted
is then fixed by the volume of the tank and the mass m of gas is fixed by the amount
which we allow to enter. Once T\, ¥, and m have been fixed, the pressure P is
determined by the nature of oxygen and cannot be given any arbitrary value. It
follows that there exists a certain relation between the properties P, ¥, T, and m
which can be expressed in general as

£V, T,m) = 0. @-1)

This relation is known as the equation of state of the substance. If any three of
the properties are fixed, the fourth is determined,

In some instances, properties in addition to those listed above are necessary
to completely describe the state of a system and these properties must be included
in the equation of state. Examples are the area and surface tension of a liquid-
vapor surface, the magnetization and flux density in a magnetic material, and the
state of charge of an electrolytic cell. For the present, however, we shall consider
only systems whose state can be completely described by the properties P, ¥, T,
and m.

The equation of state can be written in a form which depends only on the
nature of a substance, and not on how much of the substance is present, if all
extensive properties are replaced by their corresponding specific values, per unit
mass or per mole. Thus if the properties ¥ and m are combined in the single
intensive property v = ¥/m, the equation of state becomes

f(P.o,T)=0. (2-2)

The equation of state varies from one substance to another. In general, itis an
extremely complicated relation and is often expressed as a converging power series.
A general idea of the nature of the function is often better conveyed by presenting
the data in graphical form,

2-2 EQUATION OF STATE OF AN IDEAL GAS

Suppose one has measured the pressure, volume, temperature, and mass of a
certain gas, over wide ranges of these variables. Instead of the actual volume V,
we shall use the molal specific volume, » = ¥/n. Let us take all the data collected
at a given temperature T, calculate for each individual measurement the ratio
Py|T, and plot these ratios as ordinates against the pressure P as abscissa. It is
found experimentally that these ratios all lie on a smooth curve, whatever the
temperature, but that the ratios at different temperatures lie on different curves.

=]

o
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The data for carbon dioxide are plotted in Fig. 2-1, for three different tempera-
tures. The remarkable feature of these curves is (a) that they all converge to exactly
the same point on the vertical axis, whatever the temperature, and (b) that the
curves for all other gases converge to exactly the same point. This common limit
of the ratio Pv[T, as P approaches zero, is called the universal gas constant and is
denoted by R. The unit of Py/T is

1(N m~%)(m?® kilomole=*)(K-*) = 1(N m)(kilomole~? K-) = 1 J kilomole~* K1,

and the value of R in this system is

R = 8.3143 x 10*J kilomole* K-,

R=83143 x 100 e m e — = —
8

L>T>T,

Py/T(J kilomole™ 'K~ ")
[

1 i 1 1 1 1
0 2 4 6 8 x107
Pressure (Nm™?)

Fig. 2-1 The limiting value of Pv/T is independent of
T for all gases. For an ideal gas, Pv/T is constant,

It follows that at sufficiently low pressures we can write, for all gases,
Py/T=R, or Pv=RT

It is convenient to postulate an ideal gas for which, by definition, the ratio
Pv|T is exactly equal to R at all pressures and temperatures, The equation of state
of an ideal gas is therefore

Py = RT, (2-3)
or, since v = V/n,
PV = nRT. (249

For an ideal gas, the curves in Fig. 2-1 coalesce into a single horizontal straight
line at a height R above the pressure axis.
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2-3 P.v-T SURFACE FOR AN IDEAL GAS

The equation of state of a PeT system defines a surface in a rectangular co-
ordinate system in which P, v, and T are plotted along the three axes. A portion
of this surface for an ideal gas is shown in Fig. 2-2, Every possible equilibrium
state of an ideal gas is represented by a point on its P-p-T'surface, and every point on
the surface represents a possible equilibrium state. A quasistatic process, ie., a
succession of equilibrium states, is represented by a line on the surface. The full
linesin Fig. 2-2 represent processes at constant temperature, or isothermal processes,
The dotted lines represent isochoric processes, and the dashed lines, isobaric
processes.

Figures 2-3(a) and 2-3(b) are projections of the lines in Fig. 2-2 onto the P-»

and P-T planes,

s
:
;

Fig. 2-2 P-v-T surface for an ideal gas.
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In an isothermal process, for a fixed mass of an ideal gas,
Py = RT = constant. (2-5)

Robert Boyle®, in 1660, discovered experimentally that the product of the
pressure and volume is very nearly constant for a fixed mass of a real gas at con-
stant temperature. This fact is known as Boyle's law. It is, of course, exactly true
for an ideal gas, by definition. The curves in Fig. 2-3(a) are graphs of Eq. (2-5) for
different temperatures and hence for different values of the constant. They are
equilateral hyperbolas.

PRESSURE ~——a
PRESSURE ———a

/

TEMPERATURE ——=

(2) (®)

Fig. 2-3 Projections of the ideal gas P-v-T surface onto (a) the P-v plane, and (b) the P-T'
planc. ;

In a process at constant volume, for a fixed mass of an ideal gas,
P (%):r = constant X T. (2-6)

That is, the pressure is a linear function of the temperature 7. The dotted lines in
Fig. 2-3(b) are graphs of Eq. (2-6) for different volumes and hence different values
of the constant.

If the pressure of a fixed mass of an ideal gas is constant,
V= (";R-)T = constant x T, 2-7)

and the volume is a linear function of the temperature at constant pressure.

* Robert Boyle, British chemist (1627-1691).
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2-4 EQUATIONS OF STATE OF REAL GASES

Many equations have been proposed which describe the P-v-T relations of real
gases more accurately than does the equation of state of an ideal gas. Some of
these are purely empirical, while others are derived from assumptions regarding
molecular properties. Van der Waals*, in 1873, derived the following equation:

(P + :—-‘)(v — b) =RT. ‘ (2-8)

The quantities @ and b are constants for any one gas but differ for different
gases. Some values are listed in Table 2-1. We shall show in Chapter 10 that the
term afv® arises from the existence of intermolecular forces and that the term b is
proportional to the volume occupied by the molecules themselves, but for the
present we shall consider the equation as an empirical one.

\

Table 2-1 Constants @ and b in van der Waals equation,
PinNm,vinm®kilomole™, T in kelvins, R = 8.31 x 10

J kilomole™ K1,
i a b
Substance (J m® kilomole™®) (m?® kilomole™)
He 344 x 100 0.0234
H, 24.8 0266
0, 138 0318
Co, 366 0429
H,0 580 0319
Hg 292 .0055

At sufficiently large specific volumes, the term afv® becomes negligible in com-
parison with P, and b becomes negligible in comparison with v. The van der Waals
equation then reduces to the equation of state of an ideal gas, which any equation

of state must do at large specific volumes.
Figure 2-4 is a diagram of a portion of the £-»-T surface of a van der Waals

gas, and Fig. 2-5 is a projection of a number of isotherms onto the P-v plane,

* Johannes D. van der Waals, Dutch physicist (1837-1923).
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PRESSURE ——

Fig. 2-4 P-v-T surface for a van der Waals gas.

Critical
point

HH5

Fig. 2-5 Isotherms of a van der Waals gas.
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When expanded in powers of v, the van der Waals equation takes the form
Py* — (Pb + RT)® + av — ab = 0. (2-9)

It is therefore a cubic in v and for given values of P and T has three roots, of which
only one need be real. For low temperatures, such as that lettered T in Fig. 2-5,
three positive real roots exist over a certain range of values of P. As the temperature
increases, the three real roots approach one another, and at the temperature T,
they become equal. Above this temperature only one real root exists for all values
of P. The significance of the point Jettered c.p. and of the dotted line abe, will be
explained in Section 2-5.
Another useful form of the equation of state of a real gas is

pu=4+ﬁ—’+§+---, 2-10)

where A, B, C, etc.,, are functions of the temperature and are called the virial
coefficients. Theoretical derivations of the equation of state, based on an assumed
law of force between the molecules of a gas, usually lead to an equation in virial
form. Foran ideal gas, it is evident that A = RTand that all other virial coefficients
are zero,
The van der Waals equation can be put in virial form as follows. We first write
it as
~1
| Pa=RT(1—'—’) a2
v v
By the binomial theorem,

=1 2
(1-—'—’) SRS T
v v v

Hence
— 3
Pu=RT+lﬂ;—a+£;i+-", (2-11)

and for a van der Waals gas, 4 = RT, B = RTb — a, C = RTb*, etc.

2-5 P-v-T SURFACES FOR REAL SUBSTANCES

Real substances can exist in the gas phase only at sufficiently high temperatures and
low pressures. At low temperatures and high pressures transitions occur to the
liguid phase and the solid phase. The P-v-T surface for a pure substance includes
these phases as well as the gas phase.

Eigures 2-6 and 2-7 are schematic diagrams of portions of the P-v-T surface
for a real substance. The former is for a substance like carbon dioxide that con-
tracts on freezing, the latter for a substance like water that expands on freezing.
Study of the figures shows that there are certain regions (that is, certain ranges of
the variables) in which the substance can exist in a single phase only. These are the

o
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regions lettered solid, liquid, and gas or vapor. (The distinction between a gasanda
vapor will be discussed shortly.) In other regions, labeled solid-liquid, solid-vapor,
and liquid-vapor, two phases can exist simultaneously in equilibrium, and along a
line called the triple line, all three phases can coexist. As with the P-v-T surface
for an ideal gas, any line on the surface represents a possible quasistatic process,
or a succession of equilibrium states. The lines in Figs. 2-6 and 2-7 represent
isothermal processes.

PRESSURE —=

Fig. 2-6 P-v-T'surface for a substance that contracts on
freezing.

Those portions of a surface at which two phases can coexist are ruled surfaces.
That is, a straight edge parallel to the v-axis makes contact with the surface at all
points. Hence when the surfaces in Figs. 2-6 and 2-7 are projected onto the P-T'
plane, these surfaces project as lines. The projection of the surface in Fig. 2-6 onto
the P-T plane is shown in Fig. 2-8(a), and that of the surface in Fig. 2-7 is shown
in Fig. 2-9(a). The lines corresponding te values of pressure and temperature at
which the solid and vapor phases, and the liquid and vapor phases, can coexist,
always slope upward to the right. The line representing the equilibrium between
solid and liquid slopes upward to the right in Fig. 2-8, but upward to the left in
Fig. 2-9. We shall show in Section 7-6 that the former is characteristic of all
substances that contract on freezing, the latter of substances (like water) that expand

on freezing.
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Fig. 2-7 P-v-T surface for a substance that expands
on freezing.

PRESSURE —»
PRESSURE —

r:

Fig. 2-8 Projections of the surfacein Fig. 2-6 onto(a) the P-Tplane and (b) the P-v plane,
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Fig.2-9 Projections of the surface in Fig. 2-7 onto (a) the P-T plane and (b) the P-v
plane.

The triple lines in Figs. 2-6 and 2-7 project as a point, called the triple point, in
the P-T" diagram. Triple-point data for a few common substances are given in
Table 2-2. The triple-point temperature of water is the standard fixed point to
which is assigned the arbitrary temperature of 273.16 K.

The projections of the surfaces in Figs. 2-6 and 2-7 onto the P-v plane are
shown in Figs. 2-8(b) and 2-9(b). The surfaces can also be projected onto the v-T'
plane, but this projection is rarely used since all essential features of the surface
can be shown in the first two projections.

Table 2-2 Triple-point data

Temperature, Pressure,

Substance (K) (Torr)
Helium (4) (4 point) 2.186 383
Hydrogen (normal) 13.84 528
Deuterium (normal) 18.63 128
Neon 24.57 324
Nitrogen 63.18 94
Oxygen 54.36 1.14
Ammonia 195.40 45.57
Carbon dioxide 216.55 3880
Sulfur dioxide 197.68 1.256
Water 273.16 4.58
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Let us follow the changes in state of the substance for which Fig. 2-6 is the
P-v-T surface in a process that takes the system from point a to point falong the
isothermal line at the temperature T;. To carry out this process, we imagine the
substance to be enclosed in a cylinder with a movable piston. Starting at the state
represented by point a, at which the substance is in the gas (or vapor) phase, we
slowly increase the pressure on the piston. The volume decreases at first in a manner
approximating that of an ideal gas. When the state represented by point  is reached,
drops of liquid appear in the cylinder.* That is, the substance separates into two
phases of very different densities, although both are at the same temperature and
pressure. The specific volume of the vapor phase is that corresponding to point b,
and that of the liquid phase corresponds to peint ¢. ’

With further decrease in volume, along the line bc, the pressure does not
increase but remains constant, The fraction of the substance in the vapor phase
continuously decreases and the fraction in the liquid phase continuously increases.
In this part of the process, where liquid and vapor can exist in equilibrium, the
vapor is called a saturated vapor and the liquid a saturated liquid. (The adjective
“saturated" is an unfortunate one, for it brings to mind the concept of a “saturated
solution,” that is, one in which the concentration of a dissolved substance is a
maximum. There is nothing dissolved in a saturated vapor; the substance that
“precipitates” out with decreasing volume is not a solute but the same substance as
that of which the vapor is composed.)

The pressure exerted by a saturated vapor or liquid is called the vapor pressure.
The vapor pressure is evidently a function of temperature, increasing as the
temperature increases. The curve lettered L-V in Fig. 2-8(a), the projection of the
liquid-vapor surface onto the P-T plane, is the vapor pressure curve. The general
shape of this curve is the same for all substances, but the vapor pressure at a given
temperature varies widely from one substance to another. Thus at a temperature
of 20°C, the vapor pressure of mercury is 0.0012 Torr, that of water is 17.5 Torr,
and that of CO, is 42,960 Torr.

Let us now return to the isothermal compression process. At point ¢ in Fig.
2-6 the substance is entirely in the liquid phase. To decrease the volume from that
at point ¢ to that at point d, a very large increase in pressure is required, since
liquids are not very compressible. At point d, the substance again separates into
two phases. Crystals of the solid begin to develop, with a specific volume corre-
sponding to point e, and the pressure remains constant while both liquid and solid
phases are present. The substance is entirely in the solid phase at point e and the
volume decreases only slightly with further increase in pressure unless other forms
of the solid can exist. Ice is an example of the latter case, where at least seven
different forms have been observed at extremely high pressures, as illustrated in
Fig. 2-10.

If the volume of the system is now slowly increased, all of the changes described
above proceed in the opposite direction,

* However, see Section 7-5 for a further discussion of this phenomenon.
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Fig. 2-10 P-v-T surface showing various forms of ice,

It will be seen from a study of Fig. 2-6 that if a compression process like that
just described were carried out at a higher temperature, such as T, a higher
pressure and a smaller specific volume would be required before a phase change
from vapor to liquid commenced, and that when the substance was completely
liquefied, its specific volume would be somewhat larger than that at the lower
temperature. At the particular temperature lettered 7, called the critical tempera-
ture, the specific volumes of saturated liquid and vapor become equal. Above this
temperature, no separation into two phases of different densities occurs in an iso-
thermal compression from a large volume. (That is, the liquid phase does not
separate out. Separation into a gas and solid phase may occur at sufficiently high
pressures.) The common value of the specific volumes of saturated liquid and vapor
at the critical temperature is called the critical specific volume, v,, and the corre-
sponding pressure the critical pressure, P,. The point on the P-s-T surface whose
coordinates at P,, v,, and 7}, is the critical point. The critical constants for a number

of substances are given in Table 2-3.
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Table 2-3 Critical constants

Substance T.(K) P,(Nm?) v,(m® kilomole™)
Helium 4 525 1.16 x 10° 0.0578
Helium 3 334 115 0.0726
Hydrogen 333 12.8 0.0650
Nitrogen 126.2 336 0.0901
Oxygen 154.8 50.2 0.078
Ammonia 405.5 111.0 0.0725
Freon 12 384.7 39.7 0.218
Carbon dioxide 304.2 73.0 0.094
Sulfur dioxide 430.7 71.8 0.122
Water 6474 209.0 0.056
Carbon disulfide 552 8 0.170

Suppose that a system originally in the state represented by point a in Fig. 2-11
is compressed isothermally. If the compression is carried out in a cylinder with
transparent walls, we can observe the condensation to the liquid phase commence
at the point where the isotherm meets the liquid-vapor surface, and we can see the
liquid phase grow in amount while the vapor phase decreases. At the state rep-
resented by point b we would be sure that the substance in the cylinder was wholly
in the liquid phase. On the other hand, we could start with the substance in the same
state (point @) and carry out the process represented by the line from 4 to b that
curves around the critical point. (This process, of course, is not isothermal.) The
end state of the system is the same in both processes but at no time in the second
process did the substance separate into two phases. Nevertheless, it would certainly
be described as a liquid at the end of the second process as well as at the end of the
first. It has all the properties of a liquid; i.e., it is a fluid of high density (small
specific volume) and small compressibility (the pressure increases rapidly for small
decreases in volume), but its properties change continuously from those associated
with a vapor, at point a, to those associated with a liquid, at point 5. It is therefore
possible to convert a vapor to a liquid without going through the process of
“condensation,” but no sharp dividing line can be drawn separating the portion of
the P-v-T surface labeled “liquid” from that labeled *gas™ or “vapor.”

So far we have used the terms “gas™ and “vapor” without distinguishing
between them; and the distinction is, in fact, an artificial and unnecessary one, The
term “‘vapor” is usually applied to a gas in equilibrium with its liquid (i.e., a safu-
rated vapor) or to a gas at a temperature below its critical temperature, but the
properties of a *‘vapor” differ in no essential respect from those of a “gas.”

When the temperature of a gas at a given pressure is greater than the saturation
temperature at this pressure, the gas is said to be “superheated” and is called a
“superheated vapor.” Thus “superheated” is synonymous with “nonsaturated.”
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Note that the term does not necessarily imply a high temperature. The saturation
femperature of nitrogen at a pressure of 0.8 bar (its partial pressure in the earth's
atmosphere) is —197.9°C, so that the nitrogen in the earth’s atmosphere is always
superheated.

One may wonder whether or not the edges of the solid-liquid surface approach
one another as do those of the liquid-vapor surface, and if there is another critical
point for the solid-liquid transition. No such point has ever been observed; i.e.,
there is always a finite difference in specific volume or density between the liquid
and solid phases of a substance at the same temperature and p This does
notexclude the possibility of such critical points existing at extremely high pressures.

PRESSURE ——

Fig. 2-11 Two processes resulting in liquefying a gas. A
Ehase separation is observed in the isothermal process,
ut not in the other process.

Now consider the phase changes in an isobaric process. Suppose we have a
vessel of liquid open to the atmosphere at a pressure P,, in the state represented by
point @ in Fig. 2-12. If the temperature is increased at constant pressure, the
representative point moves along an isobaric line to point b. When point b is
reached, the system separates into two phases, one represented by point b and the
other by point ¢. The specific volume of the vapor phase is much greater than that
of the liquid, and the volume of the system increases greatly. This is the familiar
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phenomenon of boiling. If the vessel is open, the vapor diffuses into the atmos-
phere. Thus the temperature T, at which a liquid boils is merely that temperature
at which its vapor pressure is equal to the external pressure, and the vapor pressure
curve in Fig. 2-8(a) can also be considered as the boiling point curve. If the sub-
stance diagramed in Fig. 2-12 is water (actually the solid-liquid line for water slopes
in the opposite direction) and the pressure P, is | atmosphere, the corresponding
temperature T, is 373 K. The vapor pressure curve always slopes upward to the
right, so that an increase in external pressure always results in an elevation of the
boiling temperature, and vice versa.

P BPRESSURE —

Fig. 2-12 Phase changes in an isobaric process.

If, starting with the liquid at point a in Fig. 2-12, the temperature is lowered
while the pressure is kept constant, the representative point moves along the
isobaric lin¢ to point d. At this point, the system again separates into two phases,
one represented by point 4 and the other by point e. For a substance like that rep-
resented in Fig. 2-12, the specific volume of the solid is less that that of the liquid,
and the volume decreases. The process is that of freezing, and evidently the solid-
liquid equilibrium line in a P-T diagram like Fig. 2-8 is the freezing point curve,
and at the pressure P, the freezing temperature is 7. If the solid-liquid equilibrium
line slopes upward to the right as in Fig. 2-12, an increase in pressure raises the
freezing point, and vice versa.
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It is evident from a study of Fig. 2-12 that the liquid phase cannot exist at a
temperature lower than that of the triple point, or at a pressure less than that at
the triple point. If the pressure is less than that at the triple point, say the value
Py, the substance can exist in the solid and vapor phases only, or both can exist in
equilibrium. The transition from one to the other takes place at the remperature of
sublimation T,. Thus the solid-vapor equilibrium curve is also the sublimation point
curve.

For example, the triple-point temperature of CO; is —56.6°C and the corre-
sponding pressure is 5.2 bar. Liquid CO, therefore cannot exist at atmospheric
pressure. When heat is supplied to solid CO, (dry ice) at atmospheric pressure, it

I

PRESSURE —».

Fig. 2-13 P-p-T surface for helium with projection onto the P-T plane.
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sublimes and changes directly to the vapor phase. Liquid CO, can, of course,
exist at room temperature, provided the pressure is sufficiently high. This material
is commonly stored in steel tanks which when “full”” contain mostly liquid and a
small amount of vapor (both, of course, saturated). The temperature is room tem-
perature if the tank has been standing in the room, and the pressure is that of the
ordinate of the vapor pressure curve at room temperature.

Figure 2-13 is a schematic diagram of the P-p-T surface of ordinary helium (of
mass number 4). This substance exhibits a unique behavior at low temperatures
in the neighborhood of 2 K. The critical temperature and pressure are 525 K
and 2.29 bar respectively, When helium in the vapor phase is compressed isother-
mally at temperatures between 5.25 K and 2.18 K, it condenses to a liquid phase
called helium I. When the vapor is compressed at temperatures below 2.18K, a
liquid phase called helium 1I, which is superfluid, results. As is evident from the
diagram, He I and He II can coexist in equilibrium over a range of temperatures
and pressures, and He I can be converted to He II either by lowering the tempera-
ture, provided the pressure is not too great, or by reducing the pressure, provided
the temperature is below 2,18 K. He Il remains a liquid down to the lowest tem-
peratures that have thus far been attained, and presumably does so all the way
down to absolute zero.

Solid helium cannot exist at pressures lower than about 25 bar, nor can it
exist in equilibrium with its vapor at any temperature or pressure. Helium has two
triple points, at one of which (called the lambda-point or A-point) the two forms of
liquid are in equilibrium with the vapor; while at the other they are in equilibrium
with the solid. It is interesting to note that the solid phase can exist at temperatures
greater than the critical temperature.

2-6 EQUATIONS OF STATE OF OTHER THAN P-v-T SYSTEMS

The principles of thermodynamics are of general applicability and are not restricted
to gases, liquids, and solids under a uniform hydrostatic pressure. Depending on
the nature of a system, we may be interested in intensive-extensive pairs of prop-
erties other than, or in addition to, the pressure and volume of the system. What-
ever its nature, however, the remperature of a system is always a fundamental
thermodynamic property.

Consider, for example, a metal wire or rod under tension. The length L of the
wire depends both on the tension & and the temperature T, and the relation
expressing the length in terms of these quantities is the equation of state of the wire.
If the wire is not stretched beyond its proportional limit of elasticity, and if its
temperature is not too far from a reference temperature 7y, the equation of state
of the wire is

L= Lo[l + % + (T - r.,)], (2-12)

where L, is length under zero tension at the temperature Ty, Y is the isothermal
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stretch modulus (Young's* modulus), A is the cross-sectional area, and « is the
coefficient of linear expansion, or the linear expansivity. In this example, the
intensive variable is the tension % and the extensive variable is the length L.

The magnetic moment M of a paramagnetic material, within which there is a
uniform magnetic field of intensity 5, depends both on 5’ and the temperature 7.
Except at extremely low temperatures and in large fields, the magnetic moment can
be represented with sufficient accuracy by the equation

Wiy % , (213

where C, a constant characteristic of a given material, is called the Curiet constant.
This relation is known as Curie’s law. The magnetic moment M is an extensive
variable and the field intensity # is an intensive variable.

The total dipole moment P of a diclectric in an external electric field E is given
by a similar equation:

P= (a + %)E. 2-14)

The surface film of a liquid can be considered a thermodynamic system,
although it is not a closed system because as the surface area of a given mass of
liquid is changed, molecules move from the liquid into the film, or vice versa. The
intensive property of interest is the surface tension o, which may be defined as the
force per unit length exerted by the film on its boundary. The corresponding
extensive property is the area of the film, but unlike the systems considered thus far
(and unlike a stretched rubber membrane) the surface tension is independent of
the area of the film and depends only on its temperature. The surface tension of all
liquids decreases with increasing temperature and becomes zero at the critical
temperature 7', (see Section 8-4). To a first approximation, the surface tension can
be represented by the equation

g= o,(;‘: ___ :;). (2-15)

where a, is the surface tension at a reference temperature Tj.

Another thermodynamic system, and one that is of great importance in physical
chemistry, is the electrolytic cell. The electromotive force & of the cell is the
intensive property of interest, and the corresponding extensive property is the
charge Z, whose absolute value is of no importance but whose change in any process
equals the quantity of charge flowing past a point in a circuit to which the cell is
connected, and which is proportional to the number of moles reacting in the cell in
the process. An electrolytic cell resembles a surface film in that the emf of a given

* Thomas Young, British physicist (1773-1829).
t Pierre Curie, French physicist (1859-1906),
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cell depends only on the temperature and not on the charge Z. The emf can be
represented by a power series in the temperature and is usually written as

& = &4 + at — 20°) + (1 = 20°° + p(t — 20°)%, (2-16)
where ¢ is the Celsius temperature, &y, is the emf at 20°C, and «, f, and y are con-
stants depending on the materials composing the cell.

2-7 PARTIAL DERIVATIVES. EXPANSIVITY AND COMPRESSIBILITY

The equation of state of a P¥'T system is a relation between the values of pressure,
volume, and temperature for any equilibrium state of the system. The equation
defines a surface in a rectangular coordinate system, and Fig. 2-14 represents
schematically the P-V-T surface of a solid or liquid. (The vertical scale is greatly
exaggerated.) The volume increases with increasing temperature if the pressure is
constant, and decreases with increasing pressure if the temperature is constant.
The surface in Fig. 2-14 corresponds to the surfaces lettered “'solid" or “liquid"
in Figs. 2-6 and 2-7, except that in Fig. 2-14 the volume axis is vertical and the

pressure axis is horizontal.

Fig.2-14 A P-V-T surface for a solid or liquid. Notice that the
V axis is now vertical and has been greatly exaggerated.
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If the equation of state is solved for V, thus expressing ¥ as a function of the
two independent variables P and T, the value of ¥ corresponds to the vertical
height of the surface above the P-T plane, at any given pair of values of P and T.

Instead of specifying the height of the surface above the P-T plane, at any
point, the surface can be described by giving its slope at any point. More specifically,
we can specily the slope, at any point, of the lines of intersection of the surface with
planes of constant pressure and of constant temperature. )

v

 P=P

L]

W

Fig. 2-15 The intersection of the
surface of Fig. 2-14 with the ¢-T plane
at pressure Py.

The curve in Fig. 2-15 is a graph of the intersection of the surface in Fig. 2-14
with the plane at which the pressure has the constant value P,. That is, it is a graph
of the volume ¥ as a function of the temperature T, for the isobaric curve along
which the pressure equals P,. The slope of this curve at any point means the slope
of the tangent to the curve at that point, and this is given by the derivative of ¥
with respect to T at the point. In Fig. 2-15, the tangent has been constructed at
point I, at which the temperature is 7, and the pressure is P,. However, the volume
V is a function of P as well as of T, and since P is constant along the curve, the
derivative is called the partial derivative of V with respect to T at constant pressure
and is written:

oV
SI f ta t = (—) .
ope of tangen Tl

If the equation of state is known, expressing V as a function of T and P, the
partial derivative is calculated in the same way as an ordinary derivative of a function
of a single variable, except that P is considered constant. Thus if the system is an
ideal gas, for which ¥ = nRT/P, the quantity nR/P is considered constant and

(2~ =
aT/e P’
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In mathematics, the partial derivative would be written simply as (8V/aT).
In thermodynamics, the subscript P is included because, as we shall see later, a
PVT system has many other propertics in addition to pressure, volume, and
Jemperature, and the volume can be expressed in terms of any two of these. The
subscript not only indicates that P is held constant, but that ¥ is to be expressed in
terms of Pand T. .

Point 2, in Figs. 2-14 and 2-15, is a second point on the isobaric curve at which
the volume is ¥, and the temperature is T,. The slope of the chord from point 1 to
point 2 is

Via=V _AVe
Slope of chord T AT,
where again the subscript P indicates that the pressure is constant. The slope of the
chord is not equal to the slope of the tangent, but if point 2 is taken closer and
closer to point 1, so that AT}, approaches zero, the slopes of the chord and the
tangent become more and more nearly equal. Hence we can say

. AV Bq
lim —= = (—]. 2-17
A:‘I,TnATp (BT P ¢ )

Another point of view is the following. Suppose the volume of the system
were to increase with temperature, not along the actual curve but along the tangent
at point 1. The increase in volume when the temperature was increased by ATp

would then be represented by the length of the intercept of the tangent on the -

vertical line through point 2, or it would be given by

v
( 5-1:)PA T

the product of the slope of the tangent line, (8¥/8T)p, and the base ATp.
As can be seen from Fig. 2-15, the intercept is not equal to AV}, but the two
approach equality as AT, approaches zero. Then

i
i ATp—0

fim (%)PATP =AV,, (2-18)

which is the same as Eq. (2-17). Hence if we let dVp and dTp represent the
limiting values of AV, and ATy, as AT — 0, we can write

v
: Ehgre (ﬁ)?

Instead of giving the value of the slope itself at any point, it is convenient to
give the value of the slope, (8V/8T)p, divided by the volume V at the point. The

dTp. (2-19)
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quotient is called the coefficient of volume expansion of the material, or its expansivity
B, defined as

1/9V
=={—]. 2-.
¢ V(BT)P e-30)
Thus for an ideal gas,
inR _ 1
InR 1. 2-21
puo e (2-21)

and the expansivity depends only on the temperature and is equal to the reciprocal
of the temperature. The unit of expansivity is evidently 1 reciproeal kelvin (1 K-2).
Equation (2-20) can also be written in terms of specific volumes:

- 1),

It follows from Eq. (2-20) that for two closely adjacent states of a system at the
same pressure,
. 1 dVP dvplV
VdTs  dTs
The expansivity can therefore be described as the limiting value of the fractional
increase in volume, d¥p/V, per unit change in temperature at constant pressure.
The mean expansivity ,B over a finite temperature interval between T and T,
is defined as

(2-23)

p-G- W _ 12 @-24)

That is, the mean expansivity equals the slope of the chord shown in Fig. 2-15,
AV p[ATp, divided by the volume ¥;,

Since both the slope of an isobar and the volume V' will in general vary from
point to point, the expansivity is a function of both temperature and pressure.
Figure 2-16 shows how the expansivity f§ of copper varies with temperature at a
constant pressure of 1 atm, from absolute zero up to a temperature of 1200 K.
The ordinate of this graph, at any temperature, is equal to the slope of a graph of
Vversus T, as in Fig. 2-15, divided by the volume. A particularly interesting feature
of the graph in Fig. 2-16 is that the expansivity approaches zero as the temperature
approaches zero. Other metals show a similar variation.

Figure 2-17 shows how the expansivity of mercury varies with pressure at a
constant temperature of 0°C. Note that the origin of the scale of 8, in Fig. 2-17,
does not appear in the diagram; the expansivity changes only slightly with changes
in pressure, even for pressures as great as 7000 atm,

Liquid water has a maximum density and 2 minimum specific volume at a
temperature of 4°C, In the temperature interval between 0°C and 4°C its specific
volume decreases with increasing temperature and its expansivity is negative, while
at 4°C it is zero.
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10 x 10-'

8- —8 x 107*
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Fig. 2-16 Compressibility » and expansivity # of copper as functions of
temperature at a constant pressure of 1 atm.

Tables of properties of materials usually list values of the /inear expansivities

« of solids, related to f by the equation
B = 3o (2-25)
Tabulated values are ordinarily mean values, over a temperature interval near
room temperature and at atmospheric pressure, and provide only a very incomplete
description of the complicated dependence of volume on temperature and pressure.

40 x 1071 19 x 1072

K(m? N"!)

0 I 1 L L I |
1000 2000 3000 4000 5000 6000 7000
Pressure {atm)

Fig. 2-17 Compressibility « of and expansivity § ol mercury as functions of
pressure at a constant temperature of 0°C.
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Consider next the change in volume of a material when the pressure is changed
at constant temperature, for example, when the state of the system in Fig. 2-14 is
changed from point 2 to point 3, along the isothermal curve at temperature 7.
It should be evident without a detailed discussion that the slope of the tangent line
to an isothermal curve at any point is given by

)
Sl =(=].
ope of tangent ( 2P

Hence if dVy and dPy represent the limiting values of the volume and pressure
differences between two neighboring states at the same temperature,

AVp = ( ‘;—:)po,. (2-26)

For an ideal gas, considering T constant, we have
) _ st
(ap T P’

The isothermal compressibility k of a material is defined in the same way as its
expansivity, namely, as the slope of an isothermal curve at any point, divided by
the volume

1 ( BV) @-27)

v\orr'

The negative sign is included because the volume always decreases with increasing

pressure at constant temperature so that (9¥/@P)p is inherently negative. The

compressibility itself is therefore a positive quantity. The unit of compressibility

is the reciprocal of the unit of pressure, and in the MKS system it is 1 square meter
per newton (1 m* N-Y),

For an ideal gas,
1{ nRT 1
“ V( P ) P’ @39

The mean compressibility  is defined as

The compressibility of a material, like its expansivity, is in general a function
of both temp e and p A graph of « versus T for copper is given in
Fig. 2-16, and a graph of x versus P for mercury in Fig. 2-17.

In the preceding discussion, we have considered two states at the same pressure,
such as states 1 and 2 in Fig. 2-14, or two states at the same temperature, such as
states 2 and 3. Suppose, however, that two states of a system are neither at the
same pressure nor at the same temperature, such as states 1 and 3 in Fig, 2-14, The
volume difference between the states depends only on the states and is independent
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of any particular process by which the system is taken from one state to the other.
Let us therefore take the system from state 1 to state 3, first along path 1-2, at
constant pressure Py, followed by path 2-3 at constant temperature 7. The volume
difference AV between the states then equals the sum of the volume change AVp
in process 1-2 and the change AV in process 2-3. In the limit as APy and ATp
approach zero, by Eqs. (2-19) and (2-26) the volume difference d¥ is

av i)
= (%) ar + (%) ap. 2-2
a (37‘);' T+ (aPr G-29)
In térms of 8 and «,
dV = BV dT — kV dP, (2-30)
or
‘iV—V = BdT — x dP. (2-31)

Now instead of considering that the partial derivatives of ¥ (or the quantities

B and k) can be calculated if the equation of state is known, we reverse this point of
view, That is, if § and x have been measured experimentally and are known as
functions of temperature and pressure, we can find the equation of state by inte-
grating Bq. (2-30) or (2-31). Thus suppose we had found experimentally, for a
gas at low pressure, that § = 1/Tand x =.1/P. Then from Eq. (2-31),

.d_Z — EI + d_}’ =0,

v T P

InV —1nT + In P = In (constant),

and

EE o constant,
T

which is tlJe equation of state of an ideal gas if we identify the constant as nR.
If Eq. (2-30) is integrated from some reference state ¥y, Py, Ty, to some arbi-
trary state V, P, T, we obtain

14 r P
de= g V,=I ﬂVdT—f ¥ dP.
VI Tﬂ 'FO

The volume change of a solid or liquid is relatively small when the pressure and
temperature are changed and to a first approximation we can consider ¥ to be
constant and equal to ¥ in the integrals on the right, If § and « can also be con-
sidered constant, then

V=¥Vl + B(T = T)) — (P — Py} (2-32)

Therefore measurements of the expansivity and compressibility, plus a knowl-
edge of the values of ¥y, Py, and T, in the reference state, are sufficient to determine
the equation of state of a solid or liquid, subject to the approximations above.
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2-8 CRITICAL CONSTANTS OF A VAN DER WAALS GAS

As another example of the use of partial derivatives in thermodynamics, we show
how they are used to determine the critical constants of a van der Waals gas. In
spite of the relative simplicity of the van der Waals equation, a van der Waals gas
exhibits a critical point and its P-o-T surface has features that correspond to the
liquid-vapor region of a real gas. The point of coincidence of the three real values
of v for a van der Waals gas is its critical point (see Figs. 2-4 and 2-5). At tempera-
tures below the critical temperature, the van der Waals isotherms do not exhibit
the horizontal portion along which the liquid and vapor phases of a real gas can
coexist. One can, however, justify the construction of the horizontal line abe in
Fig. 2-5 by drawing it as a pressure such that the shaded areas are equal. Points
a and ¢ then correspond respectively to the specific volumes of saturated liquid and
vapor.
Since an isotherm represents those equilibrium states at which the temperature
is constant, the slope of an isothermal curve projected on the P-v plane is given
by (@P[dv),. An examination of Fig. 2-5 will show that at the critical point not
only is the slope zero, but since the isotherm is concave upward at the left of this
point and concave downward at the right, the critical point is also a point of
inflection. Hence at this point,
dP d*P'
(Bv)r e (av' )r- o e

One of the useful properties of the van der Waals equation is that it may be
solved for P, and hence partial derivatives of P are easily calculated. We find

RT a
Pl ol
v—>b o

Hence

(R i
dv/r (v —b)} ¢
(Q’._E) _ _2RT _6a
atlr (v—bP o
When T = T, the critical temperature, and v = v,, the critical volume, each
of the expressions above is zero. Solving the two equations simultaneously for v,
and T, and inserting these values in the original equation, we get

8
b=3b T,= 21.:5' (2-34)

a

T

These equations are commonly used to determine the values of @ and b for a
particular gas, in terms of measured values of the critical constants. However,
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there are three equations for the two unknowns a and b, hence these are over-
determined. That is, we find from the second of the equations above that

v,
b=,
3
while from simultaneous solution of the first and third equations,

RT,
w, (2-35)
When experimental values of P, v, and T, are inserted in the two preceding
equations, we do not obtain the same value for b. In other words, it is not possible
to fit a van der Waals P-v-T surface to that of a real substance at the critical point.
Any two of the variables may be made to coincide, but not all three. Since the
critical volume is more difficult to measure accurately than the critical pressure and
temperature, the latter two are used to determine the values of g and & in Table 2-1.
Another way of comparing the van der Waals equation with the equation of
state of a real substance is to compare the values of the quantity Py/RT at the
critical point. For a van der Waals gas,

Po, 3
= == = 0375 2~
RT, 8 ” @-36)

and according to the van der Waals equation this ratio should have the value 3/8
for all substances at the critical point. (For an ideal gas, of course, the ratio
equals unity.) Experimental values are given in Table 2-4. The two are not equal,

although the discrepancies are not large.

Table 2-4 Experimental
values of P /RT,

Substance P /RT,
He 0.327
H, 0.306
0, 0.292
Co, 0.277
H,0 0.233
Hg 0.909

The van der Waals equation can be put in a form that is applicable to any
substance by introducing the reduced pressure, volume, and temperature, that is,
the ratios of the pressure, volume, and temperature to the critical pressure, volume,
and temperature: .

(2-37)

SN

P
PP=IT.I 9f=;:l T;=
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Combining these equations with Egs. (2-34) and (2-8), the van der Waals equation,
we get

(p, ¥ 5,:)(39, -8t (2-38)

The quantities 2 and b have disappeared and the same equation applies to any van
der Waals gas. The critical point has the coordinates 1, 1, 1, in a P,-p,-T, diagram.
Equation (2-38) is called the law of corresponding states. It is a “law,” of course,
only to the extent that real gases obey the van der Waals equation. Two different
substances are said to be in “corresponding states™ if their pressures, volumes, and
temperatures are the same fraction (or multiple) of the critical pressure, volume,
and temperature of the two substances.

2-9 RELATIONS BETWEEN PARTIAL DERIVATIVES
We have shown in Section 2-7 that the volume difference ¥ between two neighbor-
ing equilibrium states of a system can be written
a v
dv = (._. aT (_) dP.
oT/p ki oP/r
It is assumed in this equation that the volume V is expressed as a function of
T'and P. But we can also consider that the pressure P is expressed as a function of
V and T, and by the same reasoning as above we can write
apP dP
ap = (&) ar + (%) av.
T/ ovlr
Let us now eliminate 4P between the preceding equations and collect coefficients
of d¥ and dT. The result is

[~ GG = [GLG+ G em

This equation must hold for any two neighboring equilibrium states. In
particular, for two states at the same temperature but having different volumes,
dT = 0, dV # 0, and to satisfy the equation above we must have

- (GG

.. 1 s
(5)2' (@Pjav)y L

Similarly, since we can have dV = 0, dT # 0, it must be true that

(%E)r(g—;)v"- (g_;:)f-'- 0. (2-40)

or
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By combining Eqs. (2-39) and (2-40) the preceding equation can be put in the
more symmetrical form,

(LG - e

Note that in this equation the denominator in any partial derivative becomes the
numerator of the next, and that the symbols ¥, P, T occur cyclically in each of the
partial derivatives.

To illustrate the use of the preceding equations, suppose we wish to calculate
the increase in pressure when the temperature of a system is increased but the system
is not allowed to expand. Thatis, we wish to have the value of the partial derivative
(0P[dT)y. Having measured the expansivity and compressibility of a material, it is
not necessary to perform a third series of experiments to find the dependence of
pressure on temperature at constant volume. It follows from Eq. (2-41) that

(3_ = (awanp = — B = i (2-42)
aT/v (BVfa.P),. -V
and the desired partial derivative is the ratio of the expansivity to the compres-
sibility. The larger the expansivity and the smaller the compressibility, the greater
the increase in pressure for a given increase in temperature.
The pressure change in a finite change in temperature at constant volume is

Py T:'B
fdP=P,-P1=f £ar
P, T, K

and if §# and « can be considered constant,

Pl“'Pxﬁg(Tn—Tx)a

a relation that can also be obtained from Eq. (2-32) by setting V' = V.
Throughout the foregoing, we have considered only a PV'T system so as to

give the analysis a physical rather than simply a mathematical basis. Let us now

rewrite the important equations in a more general form. Suppose we have any three

variables satisfying the equation
S p,2)=0.
Then Egs. (2-39) and (2-41) become

(g_;) ~Ei b

GGG a4

The letters x, y, and z can be associated with any of the three variables whose
values specify the state of any system,
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2-10

2-10 EXACT DIFFERENTIALS

Since the volume difference between two equilibrium states of a system is inde-
pendent of the nature of any process between the states, we can also evaluate the
volume difference between states 1 and 3 in Fig. 2-14 along the path 1-4-3. In our
earlier derivation, in which we used path 1-2-3, the pressure along portion 1-2 had
the constant value P, and the temperature along portion 2-3 had the constant value
T;. We therefore write Eq. (2-29) explicitly as

av

R

| ——) dT (
133 7/ +
Along path 1-4-3,

V
Vyay = (%- P + (gr) dT.

Since these volume changes are the same, it follows that

(5.~ Gl _[G).- o]

In the limit, as dP and dT approach zero, we can consider that the partial
derivative (¥/0T)p, is evaluated at point 4, and the parti-] derivative (¥/3T)p,
is evaluated at point 1, which is at the same temperature as point 4. The numerator
on the left side of Eq. (2-45) is therefore the change in the value of this partial
derivative when the pressure is changed by dP, from P, to Py, at constant tempera-
ture. When divided by dP, the quotient is the rate of change with pressure, at
constant temperature, of the partial derivative (8V]aT)p, or, it is the so-called
mixed second partial derivative of ¥ with respect to P and T and is written

[B (BV) :l - v
AP\aT. apar’

In the same way, the right side of Eq. (2-45) is
[a (aV) ] o 2V
aT\aP. aT 3P’

We therefore have the important result that

. (2-45)

'V v
aPaT TP’ G4

That is, the value of the mixed second partial derivative is independent of the order
of differentiation.
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Note that the preceding result is true only if the volume difference dV between
states 1 and 3 is the same for all processes between the states. A differential for
which this is true is called an exact differential. The differentials of all properties
of a system—such as volume, pressure, temperature, magnetization, etc.—are
exact. In fact, this criterion can be considered the definition of a thermodynamic
property. A quantity whose differential is not exact is not a thermodynamic
property. Later on, when we consider energy interchanges between a system and
its surroundings, we shall encounter quantities whose differentials are not exact and
which are therefore not properties of a system.

Still another point of view is the following. The volume difference between any
two arbitrary states of a system can be found by summing or integrating the

infinitesimal volume changes ¥ along any arbitrary path between the states, Thus
if ¥, and V; are the volumes in the two states,
'l
dV=V-W, (2-47)
Fi

and the value of the integral is independent of the path.
It follows that if the path is cyclic, so that points 1 and 2 coincide, ¥, = ¥,

Va— ¥, =0,and
§dv =0 (2-48)

where the symbol § means that the integral is evaluated around a closed path.
Conversely, if the integral of a differential between two arbitrary states is
independent of the path, the integral around any closed path is zero and the

differential is exact.
A test as to whether or not a differential is exact can be determined as follows.

The exact differential d¥ can be written
av d
av = (-—) dT (— dP.
aT/e + P/

The partial derivatives are the coefficients of the differentials d7 and dP; and as we
have shown, the partial derivative with respect to P of the coefficient of 4T is equal
to the partial derivative with respect to 7 of the coefficient of dP. In general, if for
any three variables x, y, z, we have a relation of the form

dz = M(x,y)dx + N(x, y) dy,
the differential dz is exact if

M _ N
% (2-49)
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PROBLEMS

2-1 The table below lists corresponding values of the pressure and specific volume of
steam at the three temperatures of 700°F, 1150°F and 1600°F. Without converting to
MKS units, compute the ratio Pv,f T at each temperature and pressure; and for each tem-
perature plot these ratios as a function of p .~ Estimate the extrapolated value of
Po|T as P approaches zero, and find the value of R in J kilomole=: K-1, ?

4 t = 700°F t = 1150°F | t = 1600°F

Ib in™? v v v

fid b1 fi® |b-1 ftd b1

500 1.304 1.888 2.442

1000 0.608 0.918 1.215
2000 1249 449 0.601
3000 0984 .289 397
4000 .0287 .209 .294
5000 0268 161 233

a

2-2 (a) Estimate as accurately as you can from Fig. 2-1 the molal specific volume of CO,
at a pressure of 3 x 10" N m~2 and a temperature T;. Assume T; = 340 K, (b) At this
pressure and temperature, how many kilomoles of CO, are contained in a tank of volume
0.5m?? (c) How many kilomoles would the tank contain if CO; were an ideal gas?

2-3 A cylinder provided with a movable piston contains an ideal gas at a pressure P;,
specific volume v;, and temperature T;. The pressure and volume are simultaneously
increased so that at every instant P and v are related by the equation

P = Ap,

where A is a constant. (a) Express the constant A in terms of the pressure Py, the tempera-
ture T, and the gas constant R. (b) Construct the graph representing the process above
in the P-v plane. (c) Find the temperature when the specific volume has doubled, if T; =
200 K.

2-4 The U-tube in Fig. 2-18, of uniform cross section 1 cm?, contains mercury to the
depth shown. The barometric pressure is 750 Torr. The left side of the tube is now closed
at the top, and the right side is connected to a good vacuum pump. (a) How far does the
mercury level fall in the left side and (b) what is the final pressure of the trapped air? The
temperature remains constant,

2-5 The left side of the U-tube in Fig. 2-18 is closed at the top. (a) If the initial tempera-
ture is 300 K, find the temperature T at which the air column at the left is 60 cm long. The
barometric pressure remains constant at 750 Torr. (b) Sketch the isotherms at 300 K and
at the temperature T, in the P-v plane, and show the curve representing the process through
which the gas in the left side of the U-tube is carried as its temperature increases.
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Figure 2-18

2-6 The J-shaped tube, of uniform cross section, in Fig. 2-19 contains air at atmospheric
pressure, The barometric height is k. Mercury is poured into the open end, trapping the
air in the closed end. What is the height & of the mercury column in the closed end when
the open end is filled with mercury? Assume that the temperature is constant and that
air is an ideal gas? Neglect any effect of the curvature at the bottom. As a numerical

example, let by = 0.75m, hy = 0.25m, hy = 2.25m,

T

h

Figure 2-19

2-7 If n moles of an ideal gas can be pumped through a tube of diameter d at 4 K, what
must be the diameter of the tube to pump the same number of moles at 300 K ?

p

ok a b
Pt ¢
T
vy [ e

Figure 2-20
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2-8 Figure 2-20 shows five processes, @ = b, b — ¢, ¢ — d,d — aand a — ¢, plotted in
the P-v plane for an ideal gas in a closed system. Show the same processes (a) in the
P-T plane, (b) in the T-v plane. (c) Locate the four points of intersection of the lines
on the P-v-T surface in Fig. 2-2 that correspond to g, b, ¢, and d in Fig. 2-20.
2-9 In Fig. 2-20, let P, = 10 x 105N m2, P, =4 x [0° Nm?, », = 2.5 m*kilo-
mole~!, Find (a) the temperature T, (b) the specific volume vy, (c) the temperatures at
points b and d, (d) the actual volume ¥ at point a if the system consists of 4 kilomoles
of hydrogen, (e) the mass of the hydrogen.
2-10 A tank of volume 0.5 m® contains oxygen at an absolute pressure of 1.5 x 10°N
m~* and a temperature of 20°C. Assume that oxygen behaves like an ideal gas. (a) How
many kilomoles of oxygen are there in the tank? (b) How many kilograms? (c) Find the
pressure if the temperature is increased to 500°C. (d) At a temperature of 20°C, how many
kilomoles can be withdrawn from the tank before the pressure falls to 10 percent of the
original pressure?
2-11 A quantity of air is contained in a cylinder provided with a movable piston.
Initially the pressure of the airis 2 x 107 N m™2, the volume is 0.5 m® and the temperature
is 300 K. Assume air is an ideal gas. (2) What is the final volume of the air if it is allowed
to expand isothermally until the pressureis 1 x 107 N m™2, the piston moving outward to
provide for the increased volume of the air? (b) What is the final temperature of the air if
the piston is held fixed at its initial position and the system is cooled until the pressure
is 1 x 107 Nm™? (c) What are the final temperature and volume of the air if it is
allowed to expand isothermally from the initial conditions until the pressure is 1.5 x
107 N m~® and then it is cooled at constant volume until the pressure is 1 x 10" Nm*?
(d) What are the final temperature and volume of the air if an isochoric cooling to 1.5 X
107 Nm* is followed by an isothermal expansion to 1 x 10’ Nm™? (e) Plot each of
these processes on a 7-V diagram.
2-12 A volume ¥ at temperature T contains n, moles of ideal gas A and ny moles of
ideal gas B. The gases do not react chemically. (a) Show that the total pressure P of the
system is given by

P=ps+pp (2-50)

where p ; and p,, are the pressures that each gas would exert if it were in the volume alone.
The quantity p,, is called the partial pressure of gas A and Eq. (2-50) is known as Dalton's*
law of partial pressures. (b) Show that p; = x4 P where x,, is the fraction of moles of A
in the system.

2-13 In all so-called diatomic gases, some of the molecules are dissociated into separated
atoms, the [raction dissociated increasing with increasing temperature. The gas as a
whole thus consists of a diatomic and a monatomic portion. Even though each component
may act as an ideal gas, the mixture does not, because the number of moles varies with
the temperature. The degree of dissociation 4 of a diatomic gas is defined as the ratio of
the mass m, of the monatomic portion to the total mass m of the system

& = my/m.

* John Dalton, British chemist (1766-1844),



68 EQUATIONS OF STATE

(a) Show that the equation of state of the gas is

PV = (8 + 1)(m/M)RT,
where M, is the molecular “‘weight'" of the diatomic component. Assume that the gas
obeys Dalton's law (see Problem 2-12). (b) The table below lists measured values of the
ratio P¥/m, for iodine vapor, at three different temperatures. Compute and show in a
graph the degree of dissociation as a function of temperature.

1(°C) 800 1000 1200

%":.Jkg" 372 x 10 | 5.08 x 10° | 7.30 x 10

2-14 A vessel contains CO, at a temperature of 137°C. The specific volume is 0.0700
m? kilomole™, Compute the pressure in N m~ (a) from the ideal gas equation, (b) from
the van der Waals equation. (c) Calculate the ratio Py/T, in J kilomole™ K™, for the two
pressures found above, and compare with the experimental value as read from Fig. 2-1
assuming T, = 137°C.

2-15 A cylinder provided with a piston contains water vapor at a temperature of —10°C.
From a study of Fig. 2-10, describe the changes that take place as the volume of the
system is decreased isothermally. Make a graph of the process in the P-v plane, approxi-
mately to scale.

2-16 The critical constants of CO, are given in Table 2-3. At 299 K the vapor pressure
is 66 x 10° N m~? and the specific volumes of the liquid and the vapor are, respectively,
0.063 and 0.2 m? kilomole™.- At the triple point, T = 216K, P = 5.1 x 10 Nm™®,
and the specific volumes of the solid and liquid are respectively 0.029 and 0.037 m®
kilomole™. (a) Construct as much as you can of the P-v diagram for CO, corresponding
to Fig. 2-5. (b) One mole of solid CO, is introduced into a vessel whose volume varieswith
pressure according to the relation P = 7 x 107 ¥, where V is in m® and P in Nm=,
Describe the change in the contents of the vessel as the temperature is slowly increased to
310K,

2-17 Show that f = 3a for an isotropic solid.

2-18 (a) Show that the coefficient of volume expansion can be. expressed as

po-= % (:_;)P,

where p is the density. (b) Show that the isothermal compressibility can be expressed as

-4

2-19 The temperature of a block of copper is increased from 400K to 410 K. What
change in pressure is necessary to keep the volume constant? Obtain the necessary
numerical data from Fig, 2-16.
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2-20 Design a mercury-in-glass thermometer for use near room temperature. The length
of the mercury column should change one centimeter per deg C. Assume that the volume
expansivity of mercury is equal to 2 x 10~* K~ and is independent of temperature near
room temperature and that the expansivity of glass is essentially zero.

2-21 (a) Show that the coefficient of volume expansion of a van der Waals gas is

Re*(p — b)
P = RT@ —2ap — o

(b) What is the expression for £ if 4 = b = 0 (ideal gas)?
2-22 (a) Show that the compressibility of a van der Waals gas is
vi(p — b)?
“ = RIS = 2a(0 - 6"

(b) What is the expression for xif @ = b = 07

2-23 An approximate equation of state is P(0 — b) = RT. (a) Compute the expansivity
and the compressibility for a substance obeying this equation of state. (b) Show that the
corresponding equations for a van der Waals gas (see Problems 2-21 and 2-22) reduce to
the expressions derived in (a) when a = 0.

2-24 A hypothetical substance has an isothermal compressibility « = a/v and an
expansivity § = 2bT]v, where a and b are constants. (a) Show that the equation of state
is given by v — bT*? + aP = constant. (b) If at a pressure P, and temperature Ty, the
specific volume is oy, evaluate the constant.

2-25 A substance has an isothermal compressibility x = aT%/P? and an expansivity
B = bT?*P where a and b are constants. Find the equation of state of the substance and
the ratio, afb.

2-26 From the equation of state given in Eq. (2-12) compute (a) the rate at which the
length of a rod changes with temperature when the tension is kept constant; (b) the rate
at which the length changes with tension when the temperature is constant; (c) the change
dT in temperature that is necessary to keep the length constant when there is a small
change 4% in the tension. Assume Young’s modulus is independent of temperature,
2-27 A railroad track is laid without expansion joints in a desert where day and night
temperatures differ by AT = 50 K. The cross-sectional area of a rail is 4 = 3.6 x 102
m?, the stretch modulus ¥ is 20 x 10" N-m%, and the coefficient of linear expansion
a =8 x 1078 (K)~%, (a) If the length of the track is kept constant, what is the difference
in the tension in the rails between day and night? (b) If the tension is zero when the
temperature is a minimum, what is it when the temperature is a maximum? (c) If the
track is 15,000 m long, and is free to expand, what is the change in its length between day
and night? (d) What partial derivatives must be evaluated to answer the preceding
questions?

2-28 Find the critical constants P, v,, and T, in terms of a, b, and R for a van der
Waals gas.

2-29 Using the critical constants listed in Table 2-3, compute the value of & irl the van
der Waals equation for COy, (a) from v, and (b) from T, and P,.
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2-30 Show that the critical constants of a substance obeying the Dieterici* equation of
state, P(v — b) exp (afuRT) = RT, are

P, = alde®h®, v,=2b, T,=al4Rb.
(b) Compare the ratio Pou,/RT, for a Dieterici gas with the experimental values in Table
24,

2-31 Derive Eq. (2-38).

2-32 (a) Making use of the cyclic relation Eq. (2-41), find the expansivity f of a substance
obeying the Dieterici equation of state given in Problem 2-30. (b) Athightemperaturesand
large specific volumes all gases approximate ideal gases. Verify that for large values of T
and v, the Dieterici equation and the expression for § derived in (a) both go over to the
corresponding equations for an ideal gas.

2-33 Find (2P/3T), for gases obeying (a) the van der Waals equation of state, (b) the
approximate equation of state of Problem 2-23, and (¢) the Dieterici equation of state
(Problem 2-30).

2-34 From the equation of state of a paramagnetic material, show that the cyclic partial
derivatives (3M]3)g, (35/9T)y, and (3T/3M) , satisly Eq. (2-44).

2-35 (a) Use the fact that dv is an exact differential and the definitions of f and « to prove

that

ap I

#) =~ \aTh
(®) From Fig. 2-16, obtain a linear equation that gives approxil ly the relation between
«and T for copper, at a constant pressure of 1 atm, andat T = 1000 K. (c) Compute the
change of the expansivity of copper with pressure, at constant temperature. (d) Find the
expansivity of copper at 1000 K and 1 atm, and compute the fractional change in volume
of the copper when the pressure is isothermally increased to 1000 atm. Assume that
(28] 2P)y is independent of pressure.
2-36 Use the relation of the previous problem to show that the data given in Problems
2-24 and 2-25 are consistent.
2-37 Show that the magnetic moment, M, of a paramagnetic material is a state function
by showing that M is an exact differential.

* Conrad H. Dieterici, German physicist (1858-1929).
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3-1 INTRODUCTION

The work-energy principle, in mechanics, is a consequence of Newton’s laws of
motion. It states that the work of the resultant force on a particle is equal to the
change in kinetic energy of the particle. If a force is conservative, the work of this
force can be set equal to the change in potential energy of the particle, and the
work of all forces exclusive of this force is equal to the sum of the changes in kinetic
and potential energy of the particle. The same statements apply to a rigid body.
(For simplicity, assume that the lines of action of all forces pass through the center
of mass so that rotational motion need not be considered.)

Work can also be done in processes in which there is no change in either the
kinetic or potential energy of a system. Thus work is done when a gas is compressed
or expanded, or when an electrolytic cell is charged or discharged, or when a
paramagnetic rod is magnetized or demagnetized, even though the gas, or the cell,
or the rod remains at rest at the same elevation. The science of thermodynamics is
largely (but not exclusively) concerned with processes of this sort.

In mechanics, the work d'W of a force F when its point of application is dis-
placed a distance ds is defined as Fcos 0 ds, where 6 is the angle between the
vectors F and ds. If F and ds are in the same direction, 0 = 0°, cos 6 = 1, and
work equals Fds. In thermodynamics, and for reasons that will be explained
shortly, it is customary to reverse this sign convention and define the work as
d'W = —Fcos 0 ds. Then when F and ds are in opposite directions, 6 = 180°,
cos B = —1, and the work is +Fds. The reason for using 4'W rather than di¥
will be explained in Section 3-4.

When a thermodynamic system undergoes a process, the work in the process

can always be traced back ultimately to the work of some force. However, it is
convenient to express the work in terms of the thermodynamic properties of the
system and we begin by considering the work in a volume change.

3-2 WORK IN A VOLUME CHANGE

The full line in Fig. 3-1 represents the boundary of a system of volume ¥ and
arbitrary shape, acted on by a uniform external hydrostatic pressure P,. Suppose
the system expands against this pressure to the shape shown by the dotted outline.
The external force acting on an element of the boundary surface of area d4 is
dF, = P,dA. When the element moves outward through a distance d, the force
and displacement are in opposite directions and the work of the force is dF, ds =
P,dA ds. When all surface elements are included, the work d’ W in the process is
found by integrating the product P, d4 ds over the entire surface:

| d'W = P,|dA ds.

The integral equals the volume between the two boundaries, or the increase d¥
in the volume of the system. Therefore
d'W=P,dv (3-1

S e o~
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Thus when a system expands against an external pressure, 4V is positive, the
work is positive, and we say that work is done by the system. When a system is
compressed, dV is negative, the work is negative, and we say that work is donc on
the system. When the science of thermodynamics was first being developed, a
quantity of primary interest was the work done by a system in a process in which
steam in a cylinder expanded against a piston. It was convenient-to consider the
work in such a process as positive, which is the reason for reversing the usual sign
convention as described above. Some texts in thermodynamics retain the sign
convention of mechanics and hence express the work in a volume change as
d'W = —P,dV. Then positive work corresponds to work done on a system, and
negative work to work done by a system. In this book, however, we shall retain
the sign convention customarily used in thermodynamics, in which the work done
by a system is positive.

dF, = P, dA

Fig. 3-1 The work done by a
systemexpanding against an external
force is given by P,dA ds.

The MKS unit of pressure is | newton per square meter (I N m~2) and the
unit of volume is 1 cubic meter (1 m*). The unit of work is therefore 1 newton-
meter (1 N m) or 1 joule (1J).

The work of the external forces exerted on the boundary of a system is often
spoken of as external work. The external work in a volume change is given by Eq.
(3-1) whatever the nature of a process. If a process is reversible, the system is
essentially in mechanical equilibrium at all times and the external pressure P,
equals the pressure P exerted against the boundary by the system. Hence in a
reversible process we can replace P, with P and write

d'W=PdV. (3-2)
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In a finite reversible process in which the volume changes from ¥, to ¥, the
total work W is
Vs
l w=| pav. (3-3)

When the nature of a process is specified, P can be expressed as a function of ¥
through the equation of state of the system and the integral can be evaluated.

The relation between the pressure and volume of a system, in any reversible
process, can be represented by a curve in the P-V plane. The work in a small
volume change dV is represented graphically by the area P d¥ of a narrow vertical
strip such as that shown shaded in Fig. 3-2. The total work W in a finite process
is proportional to the area between the curve representing the process and the
horizontal axis, bounded by vertical lines as ¥, and V. The work is positive if the
process proceeds in the direction shown, from state a to state b. If the process
proceeds in the opposite direction, the work is negative.

P
v

i
il

4

V. - %

Fig. 3-2 The shaded area represents the
work in a small volume change.

We next evaluate [ P dV for a few reversible processes,
The work in any isockoric process is evidently zero since in such a process

¥V = constant.
In an isobaric process the pressure is constant and

Vs
W= PJ; dv = P(V, — V). (3-4)

The work is represented by the area of the shaded rectangle in Fig. 3-3(a) of base
¥y — ¥, and of height P.
If P is not constant, it must be expressed as a function of ¥ through the equa-
tion of state. If the system is an ideal gas,
P = nRI|V.
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o
(a)

Fig. 3-3 The shaded area represents the work in an (a) isobaric process,
(b) isothermal process.

For the special case of an isothermal process, T is constant and

Yo g v |
W= nRTJ;. - - nRT In v (3-5)
The work is represented by the shaded area in Fig. 3-3(b). If ¥, > ¥, the process
is an expansion, In (¥,/V,) is positive, and the work is positive. If ¥, < V,, the
process is a compression, In (V,/V,) is negative, and the work is negative.
It is left as a problem to calculate the work in an isothermal change in volume
of a Van der Waals gas.

3-3 OTHER FORMS OF WORK

Figure 34 represents a wire under tension. The left end of the wire is fixed and an
external stretching force &, is exerted on the right end. When the wire is stretched
a small additional amount ds = dL, %, and dL are in the same direction and the
work of the force #, is d'W = —%, dL. If the process is reversible, the external
force &, equals the tension & in the wire and

W= —F dL. (3-6)

If dL is positive, dW¥ is negative and work is done on the wire. If the wire is allowed
to shorten, dL is negative, d’ W is positive, and work is done by the wire. The MKS
unit of tension is 1 newton (I N) and the unit of length is 1 metez (1 m).

One of the most important applications of thermodynamics is to the study of
the behavior of paramagnetic substances at extremely low temperatures. This
question will be considered more fully in Section 8-8, and for the present we con-
sider only the expression for the work in a process in which the magnetic state of
the substance is changed. The system is to consist of a long slender rod in an



6 THE FIRST LAW OF THERMODYNAMICS

2z
g .

I
dL

? ez

Fig. 3-4 The work done on a wire in increasing
its length dL is #,dL.

external magnetic field parallel to its length, so that demagnetizing effects can be
neglected. Let L represent the length of the rod and A its cross-sectional area, and
suppose it to be wound uniformly with a magnetizing winding of negligible resis-
tance, having N turns and carrying a current J. Let B represent the flux density
inthe rod and @ = BA the total flux, When the current in the windings is increased
by dlin a time 4, the flux changes by d® and the induced emf in the winding is

€= N9 _Na2B,
di dt

The power input 2 to the system is given by & = &1, and the work d'W¥ in
time dl is
d'W=Pdt = &Idr.
The magnetic intensity 5 produced by the current [ in the winding is
=i,

and eliminating I, we get
d'W = Vo dB, 3-7

where V' = AL is the volume of the rod.
If. A iSJ)lhe magnetization in the rod, or the magnetic moment per unit volume,

the flux density B is
B = po(F + A).
‘When this expression for B is inserted in Eq. (3-7), we have
d'W = —u Vot do# — u N d#. (3-8)

The first term on the right is the work that would be required to increase the field
in a vacuum, if the rod were not present, since in such a case .# and d.# would
be zero. The second term is therefore the work associated with the change in

magnetization of the rod.

“n 4 e om
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The magnetic moment M of a specimen of volume ¥ is M = V.4, but to
avoid the appearance of the magnetic constant p, = 4w X 10~ henry m™!
(H m~Y)* in our equations, let us define the magnetic moment as

M = p Vk. (39
Then the work of magnetization, exclusive of the vacuum work, is simply
d'W = —#dM. (3-10)

The MKS unit of 5 is | ampere per meter (I A m~){. The unit of magnetiza-
tion . is also 1 A m™, Therefore the unit of magnetic moment defined in Eq.
(3-9) is 4m % 10~7 henry ampere meter (47 X 10-? H A m).

Similar reasoning leads to the result that when the electric intensity E in a
dielectric slab is changed, the work is

d'W = —EdP, (3-11)

where P is the dipole moment of the slab, equal to the product of its polarization
(dipole moment per unit volume) and its volume V.

The MKS unit of E is 1 volt per meter (1 V m~)} and the unit of polarization
is 1 coulomb per meter squared (1 Cm®).§ The unit of dipole moment P is 1
coulomb meter (1 C m) and again the unit of work is 1 volt coulomb = 1 J.

£
™
=)

_—+| —
']
Fig. 3-5 A circuit to do

work reversibly on an
electrolytic cell of emf &,

Consider next an electrolytic cell of emf & and of negligible internal resistance
Let the terminals of the cell be connected respectively to one end a of a resistor,
and to a sliding contact b on the resistor, as in Fig. 3-5. The resistor is connected

across a second cell of emf &”, greater than &.

* Joseph Henry, American physicist (1797-1878).

t André M. Ampere, French physicist (1775-1836).

{ Count Alessandro Volta, Italian physicist (1745-1827).
§ Charles A. de Coulomb, French engineer (1736-1806).
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If the position of the sliding contact is adjusted so that the potential difference
¥,», due to the current in the resistor, is exactly equal to &, the current in the cell
will be zero. If ¥, is infinitesimally greater than &, there will be a current in the cell
from right to left, and if V,, is infinitesimally less than &, there will be a current
in the cell in the opposite direction. Since the direction of the current in the cell
can be reversed by an infinitesimal change in ¥;,, the process taking place in the
cell is reversible in the thermodynamic sense. If, in addition, the reacting substances
in the cell are properly chosen, the direction of the chemical reaction within the
cell will be reversed when the current reverses, and we speak of such a cell as a
reversible cell.

The power & supplied to or by the cell is given by & = &1, where I is the
current in the cell. The work in a short time interval dr is

d'W = Pdt = &ldt.

In Chapter 2, we defined a quantity Z whose change dZ is the quantity of
charge I dt flowing past a point in the cell in time dr. To agree with the thermody-
namic sign convention, we must write

d'W=—&dzZ. (3-12)
If Z increases, as it does when the cell is being “charged,” dZ is positive, dW is

negative, and work is done on the cell.
The MKS unit of & is 1 volt (1. V) and the unit of Z is 1 coulomb (1 C). The

unit of Wis therefore 1 joule (1J).

Fig. 3-6 Surface tension forces exerted
at the boundary of a thin film.

As a final example, we calculate the work when the area of a surface film is
changed. Figure 3-6 represents a common method for demonstrating the phenom-
enon of surface tension. A soap film is formed on a U-shaped frame having a
sliding crossbar, Both surfaces of the film exert inward forces on the boundary
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of the film, and the crossbar is kept in equilibrium by an external force &#,. The
surface tension o of the film is defined as the inward force exerted by one of the
film surfaces, per unit length of boundary. Hence if L is the length of the crossbar,
the total upward force on it is 2¢L (the film has two surfaces) and hence &, =
2¢L. When the crossbar is moved down a distance dx, the work of the force
F,is
d'W = -F, dx = —20L dx,

where the negative sign enters because &, and dx are in the same direction. The
total surface area of the film is A = 2Lx, so

dA = 2L dx

and hence
d'W = —odA. (3-13)

The unit of o is 1 newton per meter (1 N m~") and the unit of A is I square meter
(1 m?) so that the unit of workis INm = 1 J.

3-4 WORK DEPENDS ON THE PATH

Suppose that a P¥'T system is taken from an initial equilibrium state a to a final
equilibrium state b by two different reversible processes, represented by the two
paths I and II in Fig. 3-7. The expression for the work W in cither process is

s v,
wafd'w-L Pav. |

Although the work along either path is given by the integral of P dV, the
pressure P is a different function of ¥ along the two paths and hence the work is
different also. The work in process I corresponds to the total shaded area under
path I; the work in process II corresponds to the lightly shaded area under path II.
Hence in contrast to the volume change ¥, — ¥, between states @ and b, which is
the same for all paths between the states, the work J depends on the path and not
simply on its endpoints. Therefore, as explained in Section 2-10, the quantity
d’'W is an inexact differential and the work W is not a property of the system.
Work is a path function, not a point function like ¥, and the work in a process
cannot be set equal to the difference between the values of some property of a
system in the end states of a process. Thus we use the symbol d"W to emphasize
that the work of an infinitesimal process is an inexact differential.

If the system in Fig. 3-7 is taken from state a to state b along path I and then
returned from state b to state a along path 11, the system performs a cyclic process.
The positive work along path I is greater than the negative work along path II.
The net work in the cycle is then positive, or work is done by the system, and the
net work is represented by the area bounded by the closed path. If the cycle is
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traversed in the opposite sense, that is, first from a to b along path Il and back
from b to a along path I, the net work is negative and work is done on the system.
In either case, the magnitude of the net work Wis

W= §d‘W = 9§PdV. (3-14)

This is in contrast to the integral of an exact differential around a closed path,
which always equals zero, as was shown in Section 2-10.

v

Fig. 3-7 Work depends upon the path.

3-5 CONFIGURATION WORK AND DISSIPATIVE WORK

In all of the examples in the preceding sections, the work in a reversible process is
given by the product of some intensive variable (P, 2, &, ¢) and the change in
some extensive variable (¥, M, Z, 4). Let ¥ represent any such intensive variable
and X the forresponding extensive variable. In the most general case, where more
than one pair of variables may be involved,

dW = Y,dX, + Y,dX, + -+ =3 YdX, (3-15)

with the understanding that each product is to be taken with the proper algebraic
sign: P dV, —3# dM, etc. The extensive variables X, X;, etc., are said to deter-
mine the configuration of the system and the work ¥ Y dX is called configuration
work.
It is possible that the configuration of a system can change without the per-
formance of work. In Fig. 3-8, a vessel is divided into two parts by a diaphragm.
The space above the diaphragm is evacuated and that below the diaphragm con-
tains a gas. If the diaphragm is punctured, the gas expands into the evacuated
region and fills the entire vessel. The end state would be the same if the diaphragm
were a very light piston, originally fastened in place and then released. The pro-

cess is known as a free expansion.
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Fig.3-8 Ina free expan-
sion of a gas, the configu-
ration work is zero since
P, is zero.

Since the space above the diaphragm is evacuated, the external pressure P, on
the diaphragm is zero. The work in a free expansion is therefore

W=fP,a’V=O,

and the work is zero even though the volume of the gas increases.

Suppose that a stirrer is immersed in a fluid, the stirrer and fluid together being
considered a system. The stirrer is attached to a shaft projecting through the wall of
the container and an external torque is exerted on the outer end of the shaft.
Regardless of the direction of rotation of the shaft, the external torque is always
in the same direction as the angular displacement of the shaft and the work of the
external torque is always negative, that is, work is always done on the composite
system of fluid and stirrer. We speak of the work ds stirring work or, more generally,
as dissipative work.

Another common example of dissipative work is the work needed to maintain
an electric current [ in a resistor of resistance R, Electrical work of magnitude
J I*R dt must be done on the resistor, regardless of the direction of the current.

Unlike configuration work, the dissipative work in a process cannot be ex-
pressed in terms of a change in some property of a system on which the work is
done. There is a close connection between dissipative work and a flow of heat, as
we shall see later.

Any process in which dissipative work is done is necessarily irreversible. Work
is done on a system when a stirrer in a fluid is rotated, but a small change in the
external torque rotating the stirrer will not result in work being done by the system.
Similarly, a small change in the terminal voltage of a source sending a current
through a resistor will not result in work being done by the resistor.

In the general case, both configuration work and dissipative work may be
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done in a process. The total work in the process is defined as the algebraic sum of
the configuration work and the dissipative work. If a process is to be reversible,
the dissipative work must be zero. Since a reversible process is necessarily quasi-
static, then to specify that a process is reversible implies (a) that the process is
quasistatic and (b) that the dissipative work is zero. In a reversible process, then,
the total work equals the configuration work,

3-6 THE FIRST LAW OF THERMODYNAMICS

There are many different processes by which a system can be taken from one
equilibrium state to another, and in general the work done by the system is different
in different processes. Out of all possible processes between two given states, let
us select those that are adiabatic. That is, the system is enclosed by an adiabatic
boundary and its temperature is independent of that of the surroundings. The
boundary need not be rigid, so that configuration work can be done on or by the
system. We assume also that dissipative work may be done on the system, and that
there is no change in the kinetic and potential energies of the system.

Even though we consider only adiabatic processes, many such processes are
possible between a given pair of states. A few of these are shown in Fig. 3-9. The
system, initially in state a, first performs an adiabatic free expansion (represented
by the cross-hatched line) from a to ¢. No configuration work is done in this process,
and we assume there is no dissipative work. The system next performs a rever-
sible adiabatic expansion to state b. In this process, the configuration work is
represented by the shaded area under the curve cb, and since the dissipative work
is zero in any reversible process, this shaded area represents the foral work in the

process a-c-b.

v

Fig. 3-9 The same amount of work
is done in all adiabatic processes
between the same pair of equilibrium
states.




37 . INTERNAL ENERGY 73

In a second process, starting again at state a, the system first performs a re-
versible adiabatic expansion to state d, this state being so chosen that a subse-
quent free expansion (again in the absence of any dissipative work) will terminate
at state b. The total work in process a-d-b is then represented by the shaded area
under the curve ad.

Although the two processes are very different, it is an experimental fact that
the work, represented by the two shaded areas, is the same in both.

In a third possible process, the reversible adiabatic expansion starting at a is
continued beyond point 4 to point e, at which the configuration (in this case, the
volume) is the same as in state b. Then adiabatic dissipative work at constant
configuration is done on the system (for example, a stirrer is rotated within the
system) until it again reaches state b. (The dissipative work is not represented by
an area in the diagram.)

The total work done by the system in the process a-e-b equals the configuration
work done by the system in process a-e, represented by the area under the curve
ae, minus the dissipative work done on the system in process e-b. It is found that
this total work is the same as that in the first two processes, and it follows that the
work by the system in the reversible expansion from d to e is equal to the work
on the system in the dissipative process e-b.

It should not be inferred that experiments such as those illustrated in Fig, 3-9
have been carried out with high precision for all possible adiabatic processes
between all possible pairs of equilibrium states. Nevertheless, the entire structure
of thermodynamics is consistent with the conclusion that whatever the nature of the
process,

the total work is the same in all adiabatic processes between any two equilibrium
states having the same kinetic and potential energy.

The preceding statement is called the first law of thermodynamics, Processes in
which the kinetic and potential energies in the end states are nof the same are dis-
cussed in Section 3-13.

3-7 INTERNAL ENERGY
The total work W,, in any adiabatic process is the sum of the works d' W, in each
stage of the process: |

b
Wia =f dW,a
a

Although in general the differential &' is inexact, and the work ¥ has different
values for different paths, the differential d' W, is exact in the sense that the work
is the same along all adiabatic paths between a given pair of states having the same
kinetic and potential energies. It is therefore possible to define a property of a
system, represented by U, such that the difference between its values in states a
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and b is equal to the total work done by the system along any adiabatic path from
atob. We call this property the internal energy of the system.

The value of the internal energy (apart from an arbitrary constant which does
not affect the values of differences in internal energy) depends only on the state of
the system, and hence dU is an exact differential. It is conventional to define dU
as the negative of the adiabatic work d’'W,, done by a system, or as equal to the
adiabatic work done on the system. Thus,

dU = —d'W,.

For two states that differ by a finite amount,

U, ]
dU-U,,-—U,=—fd’W_d=—W_d,
U, a
or
U,—U,=W, (3-16)

That is, the total work W, done by a system in any adiabatic process between
two states @ and b having the same kinetic and potential energies is equal to the
decrease (U, — U,) in the internal energy of the system. Thus a gas expanding
against a piston, in an adiabatic process, can do work even though there is no
change in its kinetic or potential energy; the work is done at the expense of the
internal energy of the gas.

It is evident that the unit of internal energy is equal to the unit of work, and
that in the MKS system the unit is 1 joule (1 J).

Note that no assumptions or statements need be made regarding the nature
of internal energy, from a molecular point of view. We shall see later how the
methods of kinetic theory and statistical thermodynamics make it possible to
interpret the internal energy of a system in terms of the energies of the particles
of which the system is composed. From the standpoint of thermodynamics it
suffices to know that the property of internal energy exists, and to know how it is
defined.

We shall show in Chapter 5 that not all states of a system can be reached from
a given state by adiabatic processes. However, if state b cannot be reached from
state a by an adiabatic process, it is always true that state a can be reached from
state b by an infinite number of adiabatic processes, in all of which the work Wy,
is the same. The adiabatic work then defines the internal energy differences U, — U,

3-8 HEAT FLOW

The first law of thermodynamics makes it possible to define the internal energy
U of a system as a property of the system whose change between two equilibrium
states equals the negative of the total work in any adiabatic process between the
states. We now consider processes between a given pair of equilibrium states that
are not adiabatic. That is, the system is not thermally insulated from its surrounding
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but makes contact via a nonadiabatic boundary with one or more other systems
whose temperature differs from that of the system under consideration. Under
these circumstances we say that there is a flow of hear Q (for brevity, a heat flow Q)
between the system and its surroundings.

The heat flow Q is defined quantitatively in terms of the work in a process as
follows. The total work W in a nonadiabatic process between a given pair of
equilibrium states differs from one such process to another, and differs also from
the work W,, in any adiabatic process between the same pair of states. We define
the heat flow Q into the system in any process as the difference between the work
W and the adiabatic work Wy,

Q= W= Wy @3-17)

The heat flow into a system, like the change in its internal energy, is thus
defined wholly in terms of mechanical work, and the unit of Q is evidently I joule.
The procedure we have followed seems very different from that of defining a unit
of heat as the heat flow into | gram of water when its temperature is increased by
1 degree Celsius (the gram-calorie) or the heat flow into | pound mass of water
when its temperature is increased by 1 degree Fahrenheit (the British thermal
unit or Btu). The advantage of the method we have used is that the unit of heat is
defined inabsolute termsand does not involve the properties of a particular m.Tteria.l.
We shall return to this point in Section 3-10.

Depending on the nature of a process, the work W may be greater or less than
the adiabatic work W,, and hence the algebraic sign of Q may be positive or
negative. If Q is positive, there is a heat flow into the system; if Q is negative there
is a heat flow out of the system. The heat flow may be positive during some parts
of a process and negative in others. Then Q equals the net heat flow into the system.

Since numerical values of temperature are assigned in such a way that heat
flows by conduction from a higher fo a lower temperature, it follows that if the
temperature of the surroundings is greater than that of a system, there will be a heat
flow into the system and Q is positive. If the temperature of the surroundings is
lower than that of the system, there will be a heat flow out of the system and Q is
negative.

A reversible change in temperature of a system, as discussed in Section 1-9,
can now be described in terms of a flow of heat. If the temperature of a system
differs only infinitesimally from that of the surroundings, the direction of the heat
flow can be reversed by an infinitesimal change in temperature of the system, and
the heat flow is reversible.

If a process is adiabatic, the work W becomes simply the adiabatic work Wy,
and from Eq. (3-17) the heat flow Q is zero. This justifies a statement made in
Section 1-5, namely, that an adiabatic boundary can be described as one across
which there is no flow of heat even if there is a difference in temperature between
the surfaces of the boundary. An adiabatic boundary is an ideal heat insulator.

Since by definition the adiabatic work done by a system in a process from an
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initial equilibrium state @ to a final equilibrium state b is equal to the decrease in
internal energy of the system, U, ~ U,, Eq. (3-17) can be written

Uy—U,=Q—-W (3-18)

The difference U, — U, is the increase in internal energy, and Eq. (3-18) states that
the increase in internal energy of a system, in any process in which there is no change
in the kinetic and potential energies of the system, equals the net heat flow Q into the
system minus the total work W done by the system.

Had we used the sign convention of mechanics, in which the work of a force is
defined as F cos 6 ds instead of —F cos 0 s, the sign of W would be reversed and we
would have, instead of Eq. (3-18),

Uy-U, =0+ W.

That is, Q is positive when there is a heat flow into the system and W is positive when
work is done on the system. The increase in internal energy is then equal 10 the sum
of the heat flow info the system and the work done on the system. This is a more
logical sign convention and it is used by some authors.

1f the heat flow and the work are both very small, the change in internal energy
is very small also and Eq. (3-18) becomes

dU=d'Q — d'W. (3-19)

Equation (3-18), or its differential form, Eq. (3-19), is commonly referred to
as the analytical formulation of the first law of thermodynamics (and we shall
continue to refer to it as such); but, in fact, these equations are nothing more than
the definitions of Q ord'Q and do not constitute a physical law, The true significance
of the first law lies in the statement that the work is the same in all adiabatic pro-
cesses between any two equilibrium states having the same kinetic and potential
energy.

There is no restriction on the nature of the process to which Egs. (3-18) and
(3-19) refer; the process may be reversible or irreversible. If it is reversible, the
only work is configuration work, and (for a PF'T system) we can replace d’ W with
P dV. Hence in a reversible process,

dU = d'Q — PdV. (3-20)
More generally, for a system of any nature in a reversible process,

dU=dQ -3 Ydx. (3-21)

!
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3-9 HEAT FLOW DEPENDS ON THE PATH
Equations (3-18) and (3-19) can be written

2=, -U)+ W,
d'Q = dU + d'W.

For a given pair of initial and final states, the values of (U, — U,), or of dU,
are the same for all processes between the states. However, as we have seen, the
quantities W or d'W are different for different processes and as a consequence the
heat flows Q or d'Q are different also. Thus d'Q, like d'W, is an inexact differential
and Q is not a property of a system. Heat, like work, is a path function, not a
point function, and it has a meaning only in connection with a process. The net
heat flow Q into a system in any process between states @ and b is the sum of the
d'Q's in each stage of the process, and we can write

0= J: .d'Q.

However, as with the work W in a process, we cannot set the integral equal to
the difference between the values of some property of the system in the initial and
final states. Thus suppose we were to arbitrarily pick some reference state of a
system and assign a value Q, to the “heat in the system” in this reference state.
The *“heat” in some second state would then equal the “heat™ Q,, plus the heat
flow @ into the system in a process from the reference state to the second state.
But the heat flow is different for different processes between the states and it is
impossible to assign any definite value to the “‘heat” in the second state.

If a process is cyclic, its end states coincide; there is no change in the internal
energy; and from Eq. (3-18), 0 = W. Insuch a process, the net heat flow Q into
the system equals the net work W done by the system. But since the net work W
is not necessarily zero, the net heat flow Q is not necessarily zero, and all we can
say is that

§d‘Q=Q.

This is analogous to the corresponding expression for the work Win a cyclic process
and is in contrast to the integral of an exact differential around a closed path, which
is always zero.

3-10 THE MECHANICAL EQUIVALENT OF HEAT

Suppose that dissipative work Wy is done on a system, in an adiabatic process at
constant configuration. This will be the case, for example, if work is done on a
friction device immersed in a fluid kept at constant volume and thermally insulated.
The heat flow Q in the process is zero, the configuration work is zero, and the dissi-
pative work is the total work. Thenif U, and U, are respectively the initial and final
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values of the internal energy of the system, and since work done on a system is

inherently negative, we can write
U, — U, = | Wy (3-22)

That is, the increase in internal energy of the system equals the magnitude of the
dissipative work done on the system.

On the other hand, in a process in which the configuration work and dissipative
work are both zero, but in which there is a heat flow @ into the system, the change
in internal energy is
Uy— U, =0 (3-23)

If Eqs. (3-22) and (3-23) refer to the same pair of end states, the heat flow @
in the second process equals the dissipative work in the first. From the standpoint
of the system, it is a matter of indifference whether the internal energy is increased
by the performance of dissipative work, or by an inflow of heat from the sur-
roundings.

These two processes illustrate what is meant by the common but imprecise
statement that in a dissipative process, “work is converted to heat.” All one can
really say is that the change in internal energy of a system, in a dissipative process,
is the same as if there had been a heat flow Q into the system, equal in magnitude
to the dissipative work.

As another special case, suppose that dissipative work 1, is done on a system
at constant configuration, and at the same time there is a heat flow Q our of the
system, equal in magnitude to Wy. The internal energy of the system then remains
constant. This will be the case if a resistor carrying a current is kept at constant
temperature by a stream of cooling water. A heat flow out of the resistor into the
cooling water is equal in magnitude to the dissipative work done on the resistor,
and it is customary to say in this case also that “work is converted to heat.”

For many years, the quantity of heat flowing into a system was expressed in
terms of calories, or British thermal units, 1 calorie being defined as the heat flow
into 1 gram of water in a process in which its temperature was increased by 1
Celsius degree, and 1 Btu as the heat flow into | pound-mass of water when its
temperature was i d by 1 Fahrenheit degree. Careful measurements showed
that these quantities of heat varied slightly with the particular location of the one-
degree interval, for example, whether it was from 0°C to 1°C, or from 50°C to
51°C. To avoid confusion, the I5-degree calorie was defined as the heat flow into
1 gram of water when its temperature was increased from 14.5°C to 15.5°C.

If the same rise in temperature is produced by the performance of dissipative
work, the best experimental measurements find that 4.1858 joules are required, a
value that is referred to as the mechanical equivalent of heat. We can then say,

1 15-degree calorie = 4.1858 joules. (3-29)

This relation between the joule and the 15-degree calorie is necessarily subject
to some experimental uncertainty, For this reason, and also so as not to base the




3-10 THE MECHANICAL EQUIVALENT OF HEAT 79

definition of the calorie on the properties of some particular material (i.e., water),
an international commission has agreed to define the New International Steam
Table calorie (the IT calorie) by the equation

11T calorie = 335 watt hour = 3882 joules (exactly).
Then to five significant figures,
11T calorie = 4.1860 joules. (3-25)

The apparently arbitrary figure of 860 was chosen so that the IT calorie would
agree closely with the experimental value of the 15-degree calorie.

Since the relations between the joule and the foot-pound, between the gram
and the pound-mass, and between the Celsius and Fahrenheit degrees are also
matters of definition and not subject to experimental uncertainty, the British
thermal unit is also defined exactly in terms of the joule. To five significant figures,

1 Btu = 778.28 foot-pounds. (3-26)

This definition of the calorie and the Btu as exact multiples of the joule has
the effect of making these units obsolete; and in current experimental physics,
quantities of heat are customarily expressed in joules. However, the calorie and
the Btu are so deeply embedded in the scientific and engineering literature that in
all probability it will be many years before their use disappears entirely.

For many years it was thought that heat was a substance contained in material.
The first conclusive evidence that it was not was given by Count Rumford* who
observed the temperature rise of the chips produced while boring cannons. He
concluded that heat flow into the chips was caused by the work of boring. The
earliest precision measurements of the mechanical equivalent of heat were made by
Joule, who measured the mechanical dissipative work done on a system of paddle
wheels immersed in a tank of water and calculated, from the known mass of water
and its measured rise in temperature, the quantity of heat that would have to flow
into the water to produce the same change in internal energy. The experiments
were performed in a period from 1840 to 1878, and although Joule expressed his
results in English units, they are equivalent to the remarkably precise value of

1 calorie = 4.19 joules.

(The energy unit, 1 joule, was not introduced or named until after Joule's death,
and the standardized 15-degree calorie had not been agreed on at the time of
Joule’s work.)

However, the true significance of Joule's work went far beyond a mere deter-
mination of the mechanical equivalent of heat. By means of experiments like those
above, and others of a similar nature, Joule demonstrated conclusively that there
was in fact a direct proportion between *“work™ and “heat,” and he succeeded in

* Benjamin Thompson, Count Rumford, American physicist (1753-1814),
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dispelling the belief, current at that time, that “heat™ was an invisible, weightless
fluid known as “caloric.” It may be said that Joule not only determined the value
of the mechanical equivalent of heat but provided the experimental proof that such
a quantity actually existed.

3-11 HEAT CAPACITY

Provided no changes of phase take place in a process, and except in certain special
cases, the temperature of a system changes when there is a heat flow into the system.
The mean heat capacity C of a system, in a given process, is defined as the ratio
of the heat flow Q into the system, to the corresponding change in temperature, AT

2
c T (3-27)
The term ““capacity” is not well chosen because it implies that a system has a
definite “capacity” for holding so much heat and no more, like the “capacity” of
a bucket for water, A better term, following the usage in electricity, would be “heat
capacitancé” or “thermal capacitance.”
The true heat capacity at any temperature is defined as the limit approached
by € as AT approaches zero:

. dagQ
C=lm —=—, 3-28
| a'}TnAT dT -2

The MKS unit of Cis 1 joule per kelvin (1 J K-1).

Note carefully that the ratio d’Q[dT cannot be interpreted as the derivative
of @ with respect to T, since Q is not a property of the system and is not a function
of 7. The notation d'Q simply means “a small flow of heat,” and dT is the corre-
sponding change in temperature.

A process is not completely defined by the temperature difference between its
end states; and for a given temperature change 4T the heat flow d’Q may be posi-
tive, negative, or zero, depending on the nature of the process. The heat capacity
of a system therefore depends both on the nature of the system and on the particular
process the system may undergo, and for a given system it may have any value
between — oo and + o,

The heat capacity in a process in which a system is subjected to a constant
external hydrostatic pressure is called the heat capacity at constant pressure and is
represented by Cp. The value of Cp, for a given system, depends both on the
pressure and on the temperature. If a system is kept at constant volume while heat
is supplied to it, the corresponding heat capacity is called the heat capacity at

[ume and is rep ted by Cy. Because of the large stresses set up when




31 HEAT CAPAC*TY a

a solid or liquid is heated and not allowed to expand, direct experimental deter-
minations of Cy for a solid or liquid are difficult and Cp is the quantity generally
measured. However, as we shall show later, if Cp is known, the heat capacity
for any other process can be calculated if, in addition, we know the equation of
state of the system.

To measure the heat capacity of a system experimentally, we must measure
the heat d'Q flowing into the system in a process, and measure the corresponding
change in temperature d7. The most precise method of measuring the heat flowing
into a system is to insert a resistor into the system, or surround it with a coil of
resistance wire, and measure the electrical dissipative work d’'W = [ I*R dt done
on the resistor. As we have shown, if the state of the resistor does not change,
the heat flow d'Q out of the resistor and into the system is equal in magnitude to
the electrical work d'W. In such an experiment, the temperature of the resistor
increases along with that of the system so that its internal energy does not remain
constant and the heat flowing out of it into the system is not exactly equal to the
electrical work. The difference, however, can be made negligibly small or a correc-
tion can be made for it. A correction must also be made for the heat flow between
the system and the surroundings.

The concept of heat capacity applies to a given system. The specific heat
capacity, or the heat capacity per unit mass or per mole, is characteristic of the
material of which the system is composed and is represented by ¢p or ¢, The MKS
unit of specific heat capacity is | joule per kelvin, per kilogram (1 J kg* K~?) or
1 joule per kelvin, per kilomole (1 J kilomole=* K-1).

Figure 3-10 shows the variation with temperature of the molal specific heat
capacities ¢p and ¢, for copper, at a constant pressure of | atm. At low tempera-
tures the two are nearly equal, and near absolute zero both drop rapidly to zero,
(Compare with the graph of expansivity in Fig. 2-16.) This behavior is charac-
teristic of most solids, although the temperature at which the sharp drop occurs
varies widely from one substance to another. At high temperatures, ¢p continues
to increase while ¢, becomes nearly constant and equal to about 25 x 10%J
kilomole=* K-, It is found that this same value of ¢, is approached by many
solids at high temperatures and it is called the Dulong* and Petitt value, after the
men who first discovered this fact.

Although there seems to be little connection between the heat capacity of
solids and the properties of gases at low pressure, it will be recalled that the gas
constant R equals 8.31 x 10°J kilomole™* K%, and 25 x 10%J kilomole™* K- is
almost exactly three times this; that is, the specific heat capacity at constant volume
is nearly equal to 3R at high temperatures. We shall show in Section 9-8 that on
theoretical grounds a value of 3R is to be expected for ¢, for solids at high tempera-

tures.

* Pierre L. Dulong, French chemist (1785-1838).
t Alexis T. Petit, French physicist (1791-1820).
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Fig. 3-10 Graphs of ¢, and ¢p for copper as functions of tem-
perature at a constant pressure of 1 atm.

Figure 3-11 shows the change with pressure of ¢z and ¢, for mercury, at con-
stant temperature. The pressure variation is relatively much smaller than the
variation with temperature.

Some values of cp and ¢, for gases, also expressed in terms of R, are given in
Table 9-1 for temperatures near room temperature. It will be noted that for
monatomic gases ¢p/R & 5/2 = 2.50, ¢, /R ~ 3/2 = 1.50, and for diatomic
gases, cp{R ~ 7[2 = 3.50, ¢,/R ~ 5/2 = 2.50.
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Fig. 3-11 Graphs of ¢, and ¢p for mercury as functions of pressure
at a constant temperature of 0°C.

Ao e



3-12 HEATS OF TRANSFORMATION. ENTHALPY 83

The total quantity of heat flowing into a system, in any process, is given by
T, 7,
Q-J‘d‘g=f car-nf ¢ dT, (3-29)
Tl rl

where C is the heat capacity appropriate to the process and ¢ is the corresponding
molal value. Over a temperature interval in which C can be considered constant,

Q= C(Ty — T)) = ne(Ty — T)). (3-30)

The larger the heat capacity of a system, the smaller its change in temperature
for a given flow of heat, and by making the heat capacity very large indeed, the
temperature change can be made as small as we please. A system of very large
heat capacity is referred to as a heat reservoir, with the implication that the heat
flow into or out of it can be as large as we please, without any change in the tem-
perature of the reservoir. Thus any reversible process carried out by a system in
contact with a heat reservoir is isothermal.

Heat capacities corresponding to Cp and Cj can be defined for systems other
than PVT systems. Thus in a process in which the magnetic field intensity 5 is
constant, a magnetic system has a heat capacity C,.. If the magnetic moment M
is constant, the corresponding heat capacity is Cy,. For a polymer or stretched
wire, the heat capacities are those at constant tension, C,, and at constant length,

Cy.

3-12 HEATS OF TRANSFORMATION. ENTHALPY

In Section 2-5, the changes of phase of a pure substance were described but no
reference was made to the work or heat accompanying these changes. We now
consider this question.

Consider a portion of an isothermal process in either the solid-liquid, liquid-
vapor, or solid-vapor region, and let the process proceed in such a direction that
a mass m is converted from solid to liquid, liquid to vapor, or solid to vapor. The
system then absorbs heat, and the hear of transformation | is defined as the|ratio of
the heat absorbed to the mass m undergoing the change of phase. (One can also
define the molal heat of transformation as the ratio of the heat absorbed to the
number of moles n undergoing a change.) The unit of heat of transformation is 1 J
kg™ or 1 J kilomole™™.

Changes of phase are always associated with changes in volume, so that work
is always done on or by a system in a phase change (except at the critical point,
where the specific volumes of liquid and vapor are equal). If the change takes
place at constant temperature, the pressure is constant also and the specific work
done by the system is therefore

w = P, — vy,
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where v, and v, are the final and initial specific volumes. Then from the first law,
the change in specific internal energy is
Uy — ty = 1 — P(vy — ).
This equation can be written
1= (ug + Pr;) — (4 + Pvy).

The sum (u + Pv) occurs frequently in thermodynamics. Since «, P, and v are
all properties of a system, the sum is a property also and is called the specific
enthalpy (accent on the second syllable) and is denoted by /-

h=u+ Po, (3-31)

and the unit of 4 is also 1 joule per kilogram or 1 joule per kilomole.

Therefore,
{=hy — hy. (3-32)
The heat of transformation in any change of phase is equal to the difference
between the enthalpies of the system in the two phases. We shall show later that
this is a sgecial case of the general property of enthalpy that the heat flow in any
reversible isobaric process is equal to the change in enthalpy.

We shall use the notation /g, lys, /15 to represent heats of transformation from
solid to liquid, liquid to vapor, and solid to vapor. These are called respectively
the heats of fusion, vaporization, and sublimation. Particular properties of the solid,
liquid, and vapor phases will be distinguished by one, two, or three primes respec-
tively. The order of the numbers of primes follows the order of the phases of a
substance as the temperature is increased,

As an example, consider the change in phase from liquid water to water vapor

at a temperature of 100°C. The heat of vaporization at this temperature is

Iy = K" = B" =226 x 10° kg™

The vapor pressure P at this temperature is | atm or 1.01 x 10° N m™?, and the

specific volumes of vapor and liquid are »* = 1.8 m® kg™ and »" = 10" m? kg™

The work in the phase change is then

w=PE" =) = L7 x 100 ) kg™,

The change in specific internal energy is
W =" =y = w =209 x 10°) kg

Thus about 927 of the heat of transformation is accounted for by the increase in

internal energy, and about 8% by the work that must be done to push back the

atmosphere to make room for the vapor,

Figure 3-12 is a graph of the heat of vaporization of water as a function of
temperature. It decreases with increasing temperature and becomes zero at the
critical temperature where the properties of liquid and vapor become identical,
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Fig. 3-12 Latent heat of vaporization of water as a function
of temperature. The latent heat becomes zero at the critical
temperature £, = 374°C.

Since enthalpy 4 is a state function, its value depends only on the state of the
system. If a system performs a cyclic process, the initial and final enthalpies are
equal and the net enthalpy change in the process is zero. This makes it possible to
derive a simple relation between the three heats of transformation at the triple
point.

Consider a cyclic process performed around the triple point and close enough
to it so that the only changes in enthalpy occur during phase transitions. Let the
substance, initially in the solid phase, be first transformed to the vapor phase,
then to the liquid phase, and finally returned to its initial state in the solid phase.
(See Fig. 2-10.) There is a heat flow into the system in the first process and the
increase in specific enthalpy is Af, = /,5. In the second and third processes there
is a heat flow out of the system, and the corresponding changes in enthalpy are
Ah, = —lyy and Ahy = —I,;. Then since

Ahy + Ahy + Ahy =0,
it follows that
hy = by =l =0,
or
o=l + I (3-33)

That is, the heat of sublimation, at the triple point, equals the sum of the heat of
vaporization and the heat of fusion.
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3-13 GENERAL FORM OF THE FIRST LAW
Up to now we have considered only processes in which the potential and kinetic
energies of a system remained constant. Wenow relax thisconstraint. In mechanics,
the work-energy theorem states that the increase in kinetic energy AE, of a system
equals the work W done on the system. In the sign convention of thermodynamics,
where work done by a system is positive, we have

AE, = —W.

More generally, the internal energy of a system, as well as its kinetic energy,
can change in a process, and can change as a result of a flow of heat into the system
as well as by the performance of work. Then in general,

AUH AE, =0 — W.

If conservative forces act on a system, the system has a potential energy and
the work of the conservative forces (in the sign convention of thermodynamics)
equals the change in potential energy AE,. Let us define a quantity W* as the total
work W, minus the work W, of any conservative forces:

We=W-—W, or W=W*+ W,

Then

AU+ AE, = Q — W* — W,,

Now replace the “work™ term W, with the change in potential energy AE,

and transfer this term to the “energy" side of the equation. This gives

AU+ AE, + AE, = Q — W*.
We now define the roral energy E of the system as the sum of its internal energy, its
kinetic energy, and its potential energy:

E=U+E +E,
Therefore
AE = AU + AE, + AE,;

and finally, if £, and E, represent the final and initial values of the total energy in a
process,

AE=FE, —E,=0Q— W* (3-34)
If the heat flow and the work are both small,
dE = d'Q — d'W*. (3-39)

If the kinetic and potential energies are constant, AE = AU and W* = W,
so Egs. (3-34) and (3-35) reduce to
UW-U=0-W,
dU=d'Q — d'W.
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Equations (3-34) and (3-35) are often referred to as the general form of the
first law of thermodynamics, but they are better described as generalizations of the
work-energy theorem of mechanics. That is, the principles of thermodynamics
generalize this theorem by including the internal energy U of a system as well as
its kinetic and potential energies, and by including the heat Q flowing into the
system as well as the work W*. Thus the change in the total energy AE of a system
equals the new flow of heat Q into the system, minus the work W* done by the
system, exclusive of the work of any conservative forces.

If a system is completely isolated, that is, if it is enclosed in a rigid adiabatic
boundary and is acted on only by conservative forces, the heat Q and the work
W* are both zero. Then AE = 0 and the total energy of the system remains con-
stant. This is the generalized form of the principle of conservation of energy: the
total energy of an isolated system is constant. In the special case in which the
kinetic and potential energies are constant, as for a system at rest in the laboratory,
the internal energy U is constant.

Since Egs. (3-34) and (3-35) do not apply to an isolated system, they should
not be referred to as expressing the principle of conservation of energy.

3-14 ENERGY EQUATION OF STEADY FLOW

As a first illustration of the application of the general form of the first law, con-
sider the apparatus shown schematically in Fig. 3-13, The large rectangle repre-
sents a device through which there is a flow of fluid. No restrictions are placed on
the nature of the device, and we assume only that a steady state exists, that is, the
state of the fluid at any point does not change with time. The fluid enters at an
elevation z,, with a velocity #”; and at a pressure P;, and it leaves at an ¢levation
z, with a velocity ¥, and at a pressure Py, During the time in which a mass m
passes through the device, there is a heat flow Q into the fluid, and mechanical
work W,, (the so-called shaft work) is done by the fluid.

Let us imagine that at a certain instant pistons are inserted in the pipes through
which the fluid enters and leaves, and that these are moved along the pipes with the
velocities ¥7) and ¥7,. The distances moved by the pistons during a time interval
in which the mass m enters and leaves are respectively x, and x,. The arrows &,
and %, represent the forces exerted on the pistons by the adjacent fluid.

The work done by the forces &, and &, is

Foxy — Finy = Pydyxy — Pidyxy = Py — PV,

where V; and ¥, are respectively the volumes occupied by the mass m on entering

and leaving.
The gravitational force on the mass m is mg, where g is the local acceleration
of gravity, and the work of this force when a mass m is lifted from elevation z,
to elevation z, is
We = mg(z; — z,).
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Fig. 3-13 Steady flow process.

The total work W, including the shaft work, is
W= Wy + PV — PVy + mg(z — 2)-
The work W*, or the total work minus the work W, of the conservative gravi-
tational force, is
W* = W, + BV, — PV,
The increase in internal energy of the mass m is
AU = m(u; — ),
where u, and u, are the respective specific internal energies.
The increase in kinetic energy is
AE, = im(¥73 = ¥7),
and the increase in potential energy is
AE, = mg(zg — 2,) = W,
We then have from Eq. (3-34)
muy — ) + dm(¥3 = ¥ + mglza — 2)) = Q@ — Wn — Po¥y + PV,
(3-36)

Let v, and v, be the specific volumes of the fluid on entering and leaving, and let
g and w,, represent the heat flow and shaft work, per unit mass. Then

Va=mu, Vi=my, Q=mq, W, =mwy.
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After inserting these expressions in Eq. (3-36) canceling m, and rearranging
terms, we have
(ua + Pog + Y3 + g2) — (uy + Poy + 775 + 82) = ¢ — wa
Substituting the specific enthalpy & for « + Pv, Eq. (3-36) can be written
(he + ¥773 + g2) — (hy + VT + g2) = 4 — W (3-31)
This is the energy equation for steady flow. We now apply it to some special cases.
The turbine The temperature in a steam turbine is higher than that of jits sur-
roundings but the flow of fluid through it is so rapid that only a relativc‘y small
quantity of heat is lost per unit mass of steam and we can set g = 0. The shaft
work is of course not zero, but differences in elevation between inlet and outlet
can usually be neglected. With these approximations, Eq. (3-37) becomes
—wan = (hy — ) + H¥F = ¥ (3-38)
The shaft work obtained from the turbine, per unit mass of steam, depends on the
enthalpy difference between inlet and outlet, and on the difference between the
squares of the inlet and exhaust velocities.

—_—, 1; —=

Fig. 3-14 Flow through a nozzle.

Flow through a nozzle The steam entering a turbine comes from a boiler where its
velocity is small, and before entering the turbine it is given a high velocity by flowing
through a nozzle. Figure 3-14 shows a nozzle in which steam enters at a velocity
¥, and leaves at a velocity ¥7;. The shaft work is zero, the heat flow is small and
can be neglected, and differences in elevation are small. Hence for a nozzle

YE=YT+20h — hy). (3-39)

Bernoulli’s* equation Consider the flow of an incompressible fluid along a pipe
of varying cross section and elevation. No shaft work is done, and we assume the
flow to be adiabatic and frictionless. Then

hy + 777 + g2z, = hy + ¥} + g2, = constant,
or, writing out the expression for the enthalpy,
u + Po + ¥ 4 gz = constant.

* Daniel Bernoulli, Swiss mathematician (1700-1782).

e S U
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The change in internal energy of a system in any process equals the heat flow
into the system minus the sum of the configuration work and the dissipative work.
For a rigid body or an incompressible fluid, the configuration work is necessarily
zero since the volume is constant, If the dissipative work and the heat flow are both
zero, as in this case, the internal energy is constant. Therefore

Py + }¥"* 4 gz = constant,
and replacing v by 1/p, where p is the density, we have
P + }p¥"® + pgz = constant. (3-40)

This is Bernoulli’s equation for the steady flow of an incompressible frictionless
fluid.

PROBLEMS

3-1 Compute the work done against atmospheric pressure when 10 kg of water is con-
verted to steam occupying 16.7 m®,

3-2 Steam at a constant pressure of 30 atm is admitted to the cylinder of a steam engine.
The length of the stroke is 0.5 m and the diameter of the cylinder is 0.4 m. How much
work in joules is done by the steam per stroke?

3-3 An ideal gas originally at a temperature T, and pressure Py is compressed reversibly
against a piston to a volume equal to one-half of its original volume. The temperature of
the gas is varied during the compression so that at each instant the relation P = AV is
satisfied, where A is a constant. (a) Draw a diagram of the process in the P-¥ plane. (b)
Find the work done on the gas, in terms of #, R, and T},

3-4 Compute the work done by the expanding air in the left side of the U-tube in
Problem 2-4. Assume the process to be reversible and isothermal.

3-5 Compute the work of the expanding gas in the left side of the U-tube in Problem 2-5,
The process is reversible and isothermal. Explain why the work is not merely that required
to raise the center of gravity of the mercury.

36 An ideal gas, and a block of copper, have equal volumes of 0.5 m? at 300 K and
atmospheric pressure. The pressure on both is increased reversibly and isothermally to
5atm, (a) Explain with the aid of a P-V diagram why the work is not the same in the two
processes. (b) In which process is the work done greater? (c) Find the work done on each
if the compressibility of the copper is 0.7 x 10~%atm™. (d) Calculate the change in
volume in each case.

3-7 (a) Derive the general expression for the work per kilomole of a van der Waals gas
in expanding reversibly and at a constant temperature T from a specific volume v, to a
specific volume v,. (b) Using the constants in Table 2-1, find the work done when 2
kilomoles of {team expand from a volume of 30 m? 1o a volume of 60 m® at a temperature
of 100°C. (c) Find the work of an ideal gas in the same expansion.

[ I P,
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3-8 (a) Show that the work done in an arbitrary process on a gas can be expressed as
d'W = PVBdT = PVkdP.

(b) Find the work of an ideal gas in the arbitrary process.
3-9 (a) Derive an equation similar to that in Problem 3-8 for the work d'W when the
temperature of a stretched wire changes by dT and the tension changes by 4#. (b) Find
the expression for the work when the temperature is changed and the tension is held
constant. What is the algebraic sign of W if the temperature increases? (c) Find the
expression for the work when the tension is changed isothermally. What is the algebraic
sign of W if the tension decreases?

3-10 (a) Derive an equation similar to that in Problem 3-8 for the work d"# when the
temperature of a paramagnetic salt changes by dT and the applied magnetic intensity
changes by da. (b) Find the expression for the work when the temperature is changed
and the magnetic intensity is held constant. What is the algebraic sign of W when the
temperature rises? What is doing work in this process? (c) Find the expression for the
work when the magnetic intensity is increased isothermally. What is the algebraic sign of
W when the intensity is decreased?

3-11 Calculate the work y to reversibly and isothermally double the magneti-
zation in a slender cylindrical paramagnetic rod which fills the volume ¥ of a coaxial
cylindrical solenoid of N turns having no resistance. Assume that the magnetic intensity
is uniform inside the solenoid and neglect end effects. How does the problem change if the
resistance of the coil must be considered?

3-12 Show thatd'W = —EdP by calculating the work necessary to charge a parallel
plate capacitor containing a dielectric.

3-13 Calculate the work necessary to slowly increase the volume of a spherical rubber
balloon by 20 percent. The initial radius of the balloon is 20 cm and the surface tension of
a thin rubber sheet can be considered tobe 3 x 104 N m™.

3-14 A volume of 10 m® contains 8 kg of oxygen at a temperature of 300 K. Find the
work necessary to decrease the volume to 5 m?, (a) at a constant pressure and (b) at
constant temperature, (c) What is the temperature at the end of the process in (a)? (d)
What is the pressure at the end of the process in (b)? (e) Show both processes in the P-V
plane.

3-15 On a P-V diagram starting from an initial state P,V; plot an adiabatic expansion to
2V,, an isothermal expansion to 2V, and an isobaric expansion to 2¥. (a) Use this graph
to determine in which process the least work is done by the system. (b) If, instead, the
substance was compressed to ¥,/2, in which process would the least work be done? (c)
Plot the processes of parts (a) and (b) on a P-T diagram starting from P,T,. Indicate
expansions and compressions and be careful to show relative positions at the endpoints
of each process.

3-16 The temperature of an ideal gas at an initial pressure P, and volume ¥ is increased
at constant volume until the pressure is doubled. The gas is then expanded isothermally
until the pressure drops to its original value, where it is compressed at constant pressure
until the volume returns to its initial value. (a) Sketch theseprocessesinthe P-V¥ plane and
in the P-T plane. (b) Compute the work in each process and the net work done in the
cycle if n = 2 kilomoles, P, = 2atm and ¥, = 4 m’,
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3-17 (a) Calculate the work done by one kilomole of an ideal gas in reversibly traversing
the cycle shown in Fig. 3-15 ten times. (b) Indicate the direction of traversal around the

cycle if the net work is positive.
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Figure 3-15

3-18 (a) Calculate the work done on 1 cm?® of a magnetic material in reversibly traversing
the cycle shown in Fig. 3-16. (b) Indicate the direction in which the cycle must be traversed

if the net work is positive.

Figure 3-16

3-19 Calculate the work necessary to isothermally and reversibly remove a paramagnetic
slender rod from a close fitting coaxial solenoid of zero resistance while the magnetic
intensity # remains constant. Assume that the rod obeys Curie's law.

3-20 Consider only adiabatic processes which transform a system from state a to state d
as shown in Fig. 3-17. The two curves a-c-e and b-d-f are reversible adiabatic processes.
The processes indicated with cross-hatches are not reversible. (a) Prove that the total
work done along paths a-b-d, a-c-d, a-c-e-f~d is the same. (b) Show that the configuration
work along a-b = ¢-d = ef = 0. (c) Show that the dissipative work along path ¢-d is
greater than that along path a-b and less than that along path e-f.
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Figure 3-17

3-21 Make a sketch of the changes of internal energy as the volume of the system of the
previous problem changes during the processes shown in Fig, 3-17.

3-22 Calculate the change in internal energy of a fluid in an adiabatic container when a
current of 10 A4 is passed for 70 s through a 4-) resistor in contact with the fluid.

3-23 A gas explosion takes place inside a well-insulated balloon. As a result, the balloon
expands 10 percent in volume. Does the internal energy of the balloon increase, decrease,
or stay the same; or is there enough information given to determine the change in internal
energy ? Explain your answer.

3-24 A mixture of hydrogen and oxygen is enclosed in a rigid insulating container and
exploded by a spark. The temperature and pressure both increase. Neglect the small
amount of energy provided by the spark itself. (a) Has there been a flow of heat into the
system? (b) Has any work been done by the system? (c) Has there been any change in
internal energy U of the system?

3-25 The water in a rigid, insulated cylindrical tank is set in rotation and left to itself.
It is eventually brought to rest by viscous forces. The tank and water constitute the
system. (a) Is any work done during the process in which the water is brought to rest?
(b) Is there a flow of heat? (c) Is there any change in the internal energy U?

3-26 When a system is taken from state a to state b, in Fig. 3-18 along the path a-c-b,
80 J of heat flow into the system, and the system does 30 J of work. (a) How much heat
flows into the system along path a-d-b, if the work done is 10 J? (b) The system is returned
from state b to state a along the curved path. The work done on the system is 20 J. Does
the system absorb or liberate heat and how much? (¢) If U, = Oand U, = 40J, find the
heat absorbed in the processes a-d and d-b.

3-27 Compressing the system represented in Fig. 3-19 along the adiabatic path a-¢ re-
quires1000 J. Compressing the system along b-c requires 1500 J but 600 J of heat flow out
of the system. (a) Calculate the work done, the heat absorbed, and the internal energy
change of the system in each process and in the total cycle a-b-c-a. (b) Sketch this cycle
on a P-¥ diagram. (c) What are the limitations on the values that could be specified for
process b-c given that 1000 J are required to compress the system along a-c.
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Figure 3-18

Figure 3-19

3-28 The molal specific heat capacity cp of most substances (except at very low tem=
peratures) can be satisfactorily expressed by the empirical formula
cp =a + 2bT — T2,

where a, b, and c are constants and T is the Kelvin temperature. (a) In terms of a, b, and
¢, find the heat required to raise the temperature of n moles of the substance at constant
pressure from T, to T;. (b) Find the mean specific heat capacity between Ty and Tp. (c)
For magnesium, the numerical values of the constants are a = 25.7 x 105, b = 3.13,
¢ = 3.27 x 10%, when cp is in J kilomole™ K-, Find the true specific heat capacity of
magnesium 4t 300 K, and the mean specific heat capacity between 300 K and 500 K.
3-29 The specific heat capacity ¢, of solids at low temperature is given by the equation

)

a relation known as the Debye T?law. The quantity A is a constant equal to 19.4 x 10°J
kilomole™* K~ and 0 s the “Debye* temperature,” equal to 320 K for NaCl. What is the

* Peter J. W, Debye, Dutch chemist (1884-1966)
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molal specific heat capacity at constant volume of NaCl (a) at 10K, (b) at 50 K? (c) How
much heat is required to raise the temperature of 2 kilomoles of NaCl from 10 K to 50 K,
at constant volume? (d) What is the mean specific heat capacity at 1 over
this temperature range?

3-30 Use Fig. 3-10 to estimate the energy necessary to heat one gram of copper from
300 to 600 K (a) at constant volume, (b) at constant pressure, (c) Determine the change
in internal energy of the copper in each case. (d) Why is ¢p larger than ¢,?

3-31 Electrical energy is supplied to a thermally insulated resistor at the constant rate of
# watts®, and the temperature T of the resistor is measured as a function of time 7. (a)
Derive an expression for the heat capacity of the resistor in terms of the slope of the
temperature-time graph. (b) By means of a heating coil, heat is supplied at a constant
rate of 31.2 watts to a block of cadmium of mass 0.5 kg. The temperature is recorded at
certain intervals as follows:

t(s) | O 15 45 105 165 225 285 345 405 465 525

T(K) 34 45 57 80 100 118 137 155 172 191 208

Construct a graph of T versus #, and measure the slopes at a sufficient number of points
to plot a graph of the molal spcciﬁc heat capacity of cadmium, at constant pressure, as a
function of temperature. The atomic weight of cadmium is 112.

3-32 A fictional metal of atomic weight 27 has a density of 3000 kg m=® The heat of
fusion is 4 x 108 ) kg~! at the melting point (900 K), and at the boiling point (1300 K)
the heat of vaporization is 1.20 x 107 J kg™. For the solid, cp can be given by 750 +
0.5 T in J kg~ K~ and in the liquid ¢p is 1200 J kg~* K~! independent of temperature.
(a) Draw a curve of temperature versus time as 10 g of this metal are heated at a constant
rate of 1 W from 300 to 1200 K. (b) Determine the amount of heat necessary to cause this
temperature change.

3-33 (a) Calculate the heat of sublimation of the metal sample of the previous problem
assuming that the heats of vaporization and fusion are independent of temperature and
pressure. (b) Calculate the change of internal energy of the metal sample upon melting,
(c) Calculate the change of internal energy of the metal sample upon vaporizing. Justify
the approximations which must be made.

3-34 Use physical arguments to show that for a system consisting of two phases in
equilibrium the specific heat capacity at constant pressure and the coefficient of thermal
expansion are infinite.

3-35 Consider a system consisting of a cylinder containing 0.2 kilomoles of an ideal gas
and fitted with a massless piston of area 0.5 m®. The force of friction between the piston
and the cylinder walls is 10 N. The gas is initially at a pressure of 1 atm and the system is
to be maintained at 300 K. The volume of the system is slowly decreased 10 percent by an
external force. (a) Compute the work done on thesystem by theexternal force. (b) Compute

* James Watt, Scottish engineer (1736-1819).
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the configyrational work done on the system. (c) Compute the dissipative work done on
the system. (d) How do the above answers change if the piston has a mass of | kg and the
piston is displaced vertically?

3-36 A steam turbine receives a steam flow of 5000 kg hr™! and its power output is 500
kilowatts. Neglect any heat loss from the turbine. Find the change in specific enthalpy of
the steam flowing through the turbine, () if entrance and exist are at the same elevation,
and entrance and exit velocities are negligible, (b) if the entrance velocity is 60 ms™, the
exit velocity is 360 m s=2, and the inlet pipe is 3 m above the exhaust.
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8-1 CHEMICAL POTENTIAL

In this chapter the thermodynamic principles developed in the preceding chapters
are applied to some simple systems. We begin by relaxing the constraint that the
system be closed, and we investigate how the relationships developed are changed if
mass enters or leaves the system or if mass is interchanged between parts of a

system.
Suppose that a container of volume V' is divided into two parts by a partition.

On one side of the partition there are n; moles of an ideal gas and on the other side
there are n, moles of a different ideal gas, both gases being at the same temperature

T and pressure P.
The partition is now removed, each gas diffuses into the other, and a new equi-

librium state is eventually attained in which both gases occupy the same total
volume V. If the gases are ideal, there is no change in the temperature T or in the
total pressure P. The final partial pressures of the gases are p, and p,, and

Pt pe=P.
The initial Gibbs function of the system is

Gy = mgy + Magay

where g, and g, are the initial values of the specific Gibbs function of the respective
gases. From Eq. (7-14),
gu=RT(nP +¢), gu=RT(nP + ¢),

where ¢; and ¢, are functions of temperature only.
The final value of the Gibbs function is

| Gy = mgy + mgay;

and since the final pressure of each gas is its partial pressure p,
&= RTUnpu+ &) gy = RT(npy + o).
The quantities ¢, and ¢, have the same value in the initial and final states, since they

are functions of temperature only.
The mole fractions x, and x, of each constituent, in the final state, are defined

as
n m ny ny

X = ==, X= =—, (8-1)
o+ n ny 40y n

where the total number of moles n = n; + n,. Since both constituents are ideal
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4-1 THE ENERGY EQUATION

The specific internal energy u of a pure substance, in a state of thermodynamic
equilibrium, is a function only of the state of the substance and is a property of the
substance. We shall restrict the discussion for the present to systems whose state
can be described by the properties P, v, and T.

The equation which expresses the internal energy of a substance as a function
of the variables defining the state of the substance is called its energy equation.
Like the equation of state, the energy equation is different for different substances.
The equation of state and the energy equation together completely determine all
properties of a substance. The energy equation cannot be derived from the equa-
tion of state but must be determined independently.

Since the variables P, v, and T are related through the equation of state, the
values of any two of them suffice to determine the state. Hence the internal energy
can be expressed as a function of any pair of these variables. Each of these equa-
tions defines a surface called the energy surface, in a rectangular coordinate system
in which u is plotted on one axis while the other two axes may be P and v, P and
T, or Tand v.

As was explained in Chapter 2, in connection with the P-v-T surface of a sub-
stance, an energy surface can also be described in terms of the partial derivatives
of u, at any point, or the slopes of lines in the surface in two mutually perpendicular
directions. If the equation of the energy surface is known, the slopes can be found
by partial differentiation. Conversely, if the slopes or partial derivatives are known
or have been measured experimentally, in principle the equation of the surface
can be found, to within a constant, by integration.

4-2 T AND v INDEPENDENT

We begin by considering u as a function of Tand v. Then as explained in Chapter
2, the difference in internal energy du between two equilibrium states in which the
temperature and volume differ by dT and dv is

i (g—"—r)'dT + (—:-—E)ra‘v. (@1

The partial derivatives are the slopes of isothermal and isochoric lines on a surface
in which u is plotted as a function of T and ».

‘We shall show in a later chapter that, making use of the second law of thermo-
dynamics, the partial derivative (du/@v)y can be calculated from the equation of
state. This is not true of the derivative (9u/@T),, which must be measured experi-
mentally and whose physical significance we now derive. To do this, we make use
of the first law for a reversible process,

d'q = du + P do. 42)
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When the expression for du from Eq. (4-1) is inserted in this equation, we obtain
@ [@ede
4q = (ar ot + au)r+ ks “3)

In the special case of a process at constant volume, dv = 0 and d'g = ¢, dT.
Then in such a process,

au)
dT, = | —)dT,,
& 4T (a'r. *

and hence

(&)~ v

Thus the geometrical significance of ¢, is the slope of an isochoric line on a
u-T-p surface, and experimental measurements of ¢, determine this slope at any
point. This is analogous to the fact that the slope of an isobaric line on a P-p-T
surface, (9v/@T),, is equal to the expansivity § multiplied by the volume ». Then
just as this partial derivative can be replaced in any equation by fv, so can the
derivative (9u/0T), be replaced with ¢,. Equation (4-3) can therefore be written
for any reversible process as

d'q=c¢,dT + [(%)r-i- P} dv. (4-5)

In a process at constant pressure, d’g = ¢p dT and

cr i1y = ety + [(2)

o/T

+ P] dvp.

Dividing through by dTp and replacing dvp/dTp with (80/8T)p, we get |

er =5 =[G+ 7)) o

It should be noted that this equation does not refer to a process between two
equilibrium states. Itis simply a general relation that must hold between quantities
that are all properties of a system in any one equilibrium state. Since all of the
quantities on the right can be calculated from the equation of state, we can find
¢, if ¢p has been measured experimentally.

For a process at constant temperature, dT = 0, and Eq. (4-5) becomes

R = (2
dgp [( av)‘r+ P]dv,, ( aﬂ)rdnf + Pdvg. 4-7)

This equation merely states that the heat supplied to a system in a reversible iso-
thermal process equals the sum of the work done by the system and the increase
in its internal energy. Note that it serves no purpose to define a specific heat
capacity at constant femperature, cp by the equation d'gp = ¢y dT, because d'gp
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is not zero while dT" = 0. Hence ¢y = =+ 0, since d’gy can be positive or negative,
In other words, a system behaves in an isothermal process as if it had an infinite
heat capacity, since any amount of heat can flow into or out of it without producing
a change in temperature.

Finally, we consider a reversible adiabatic process, in which d'g = 0. The
changes in the properties of the system in such a process will be designated by the
subscript s, the reason being that the specific entropy s (see Section 5-3) remains
constant in such a process. Equation (4-5) becomes

(2 ()

4-3 T AND P INDEPENDENT

The enthalpy 4 of a pure substance, like its internal energy w, is a property of the
substance that depends on the state only and can be expressed as a function of any
two of the variables P, v, and T. Each of these relations defines an enthalpy surface
in a rectangular coordinate system in which / is plotted along one axis while the
other two axes are P and v, Pand T, or Tand v. Equations in which the tempera-
ture T and pressure P are considered independent can be derived most directly
by considering the 4-T-P surface.

The enthalpy difference between two neighboring states is

oh ah

= (= L
ah = ( aT)PdT +( ) ap. @-9)

We shall show later that the derivative (6//P)y can be calculated from the
equation of state. To evaluate (9/1/dT)p, we start with the definition of enthalpy
for a PvT system:

h=u+ Po
For any two states that differ by dv and dP,
dh = du + Pdv + vdP,
and when this is combined with the first law,

d'g = du + Pdbv,

we obtain .
d'q = dh — vdP. (4-10)

When the expression for di from Eq. (4-9) is inserted in this equation, we have

f- (@ (@ e e

which is the analogue of Eq. (4-3).
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l

where any dn{’’ represents the small difference in the number of moles of con-
stituent i in phase /. Writing out a few terms in the double sum, we have

A dn® 4 pl® dnt® 4 - gl dnf
0 dnl 4 dn® e gl A
. (8-27)

& ‘u“,”dn;" + ‘u},” d'n,(c” 4ot ,u:”dn{," o )

If each of the differentials @n{" in this formidable equation were independent,
so that each could be given some arbitrary value, the equation could be satisfied
only if the coefficient u{” of each were zero. Thus although we might find a set of
pi™s such that the sum would be zero for some arbitrary choice of the dn{™"s, it
would not be zero for a different arbitrary choice. However, the total amount of
each constituent in all phases together must be constant, since none of the con-
stituents is being created, destroyed, or transformed. A reduction of the amount
of a constituent in one phase must result in an increase of the amount of that con-
stituent in other phases. Thus the differentials dn{’ are not independent; but

dn{” 4 dnf® + -+ 4 dni” =0,

dni" 4+ dn® + -+ 4 dnl =0,
A (8-28)

dn + dni? + -+ + dn? = 0.

The solution of Eq. (8-27) is constrained by the k conditions expressed by these

condition equations.
To find this solution, the value of dn!" obtained from each of Egs. (8-28) is

substituted into the corresponding line of Eq. (8-27). The first line of Eq. (8-27)
becomes

—,u{”(dn‘," +dn® 4 oo+ dnl?) + pilll dni" e F{a: dnt®,
which can be rewritten as

W — @) dn'® + u® — V) dn® 4 <o+ @ — @) dal®.
Similar expressions can be written for each line of Eq. (8-27); but now each of these

remaining dn”’ (in which j # 1) is independent and can be varied arbitrarily. In
order that Eq. (8-27) have a solution for all arbitrary variations of these dn{”,

their coefficients must each be equal to zero. For the first line of Eq. (8-27), we
obtain
=t =l =

that is, the chemical potential of this constituent must have the same value in all
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phases. Continuing the procedure for each constituent gives the result that the
chemical potential of each constituent must have the same value in all phases, that is,

0 =l = e

=l ==,
) (8-29)
Ju'l‘n _ ‘u;z) —ees =‘u£ﬂ_

If this is the case, we can omit the superscripts in the preceding equations and
simply write gy, pg, etc., for the chemical potentials. The first line in Eq. (8-27)

then becomes
pldnt? + dnf® + << - dni”)

which from the first of the condition equations equals zero. The same is true for
every other constituent and Eq. (8-27) is satisfied. It is not obvious that Egs.
(8-29) are necessary as well as sufficient. A proof of this will be found in Appendix
B. Equations (8-29) are generalizations of the result derived earlier that when two
or more phases of a single constituent are in equilibrium, the chemical potential
has the same value in all phases.

Suppose the phases of a system are not in equilibrium. Then the molal Gibbs
function of each constituent will not have the same value in each phase. For each
constituent for which a difference in the molal Gibbs function exists, there will be
a tendency, called the escaping tendency, to escape spontaneously from the phase
in which its molal Gibbs function is higher to that phase in which the molal Gibbs
function is lower, until equilibrium exists between the phases, i.e., until the molal
Gibbs function has the same value in all phases. Conversely, the escaping tendency
of any constituent is the same in all phases when the system is in equilibrium.

The phase rule, which was first derived by Gibbs, follows logically from the
conclusions reached above. First we shall consider a heterogeneous system in
which the constituents are present in all phases. Equations (8-29), which specify
the conditions of phase equilibrium and hence will be called the equations of phase
equilibrium, are k(m — 1) in number, Now the composition of each phase con-
taining k constituents is fixed if & — 1 constituents are known, since the sum of the
mole fractions of each constituent in the phase must equal unity. Therefore, for =
phases, there are a total of #(k — 1) variables, in addition to temperature and
pressure, which must be specified. There are, then, w(k — 1) 4 2 variables
altogether,

If the number of variables is equal to the number of equations, then whether
or not we can actually solve the equations, the temperature, pressure, and com-
position of each phase are determined. The system is then called nonvariant and is

said to have zero variance.
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In a process at constant pressure, JP = 0 and d'g = ¢p dT. Therefore

)~
arle T
and the slope of an isobaric line on the A-T-P surface equals the specific heat
capacity at constant pressure. Comparison with Eq. (4-4) shows that the enthalpy
h plays the same role in processes at constant pressure as does the internal energy
u in processes at constant volume. The derivative (84/9T), can therefore be re-
placed with ¢p, in any equation in which it occurs and Eq. (4-11) can be written for
any reversible process,

oh
d'q = cpdT — ) -
q =cpdT + [(BP)T v] dpP, (4-13)

(4-12)

which is the analogue of Eq. (4-5).
In a process at constant volume, d'g = ¢, dT and

e 11 -

which is the analogue of Eq. (4-6).
If the temperature is constant,

d'gp = [(g—:)r- u] dPy. (4-15)

In an adiabatic process, d'g = 0 and

A2 (12

4-4 P AND v INDEPENDENT
Equations corresponding to those derived in Sections 4-2 and 4-3, but in terms of
P and v as independent variables, can be derived as follows. The energy difference
between two neighboring equilibrium states in which the pressure and volume
differ by dP and db is
Bu) du
du = —dP+(—)d. 4-17,
(BP v dolp | 41D
However, the partial derivatives (du/dP), and (u/dv); do not involve any
properties other than those already introduced. To show this, we return to the
expression for du in terms of dT and 4, namely,

e (3
e (aT udT * v, Tdv.

= (Gl + (5
ar (6‘?ndp+ vau'

Then since
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we can eliminate dT between these equations and obtain

a =[G o + (GG G«

Comparison with Eq. (4-17) shows that

(5= GRLGR: @1

(3= GG+ (B -

The partial derivatives on the right sides of these equations have already been intro-
duced in the preceding sections.

It is left as a problem to obtain expressions corresponding to Eqs. (4-18) and
(4-19) for the partial derivatives of /i with respect to Pand .

Later on, we shall encounter other properties in addition to u and / that can
be expressed as functions of P, v, and T. For any such property w, and any three
variables x, y, and z, the general forms of Egs. (4-18) and (4-19) are

L @) (E)
(a v (az AF =0
aw Bw) (az) (8w)
( Ox/y (Bz * dx @21
The first of these equations is simply the chain rule for partial derivatives, in which

one of the variables is constant.
It is left as a problem to show that

(5el= (58 @

(ap)p (aT) S

' aT oT
d'gp = ¢ P( aDpd”’ + c,( aP)ydP,-, (4-24)
and a 5
P’ P
‘"(an). ‘ (Bu) i)

4-5 THE GAY-LUSSAC-JOULE EXPERIMENT AND THE JOULE-THOMSON
EXPERIMENT

It was mentioned in the preceding sections that on the basis of the second law of
thermodynamics, the partial derivatives (Ju/dv)y and (84/@P)7, which describe
the way in which the internal energy of a substance varies with volume and in which
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the enthalpy varies with pressure, at constant temperature, can be calculated from
the equation of state of the substance. We now describe how they can also be
determined experimentally, for a gaseous system. Since there are no instruments
that measure internal energy and enthalpy directly, we first express these; deriva-
tives in terms of measurable properties. Making use of Eq. (2-44), we can write

(G- -

and the desired partial derivative can be found from a measurement of the rate of
change of temperature with volume, in a process at constant internal energy.
In the same way, we find that

(@) ()

and the partial derivative can be found from a measurement of the rate of change
of temperature with pressure, for states at the same enthalpy.

Therefore

Fig. 4-1 Principle of the Gay-Lussac—
Joule experiment.

The earliest attempts to determine the dependence of the internal energy of a
gas on its volume were made by Gay-Lussac* and later by Joule, at about the
middle of the last century. The apparatus used is shown in principle in Fig. 4-1.
Vessel 4, containing a sample of the gas to be investigated, is connected to an
evacuated vessel B by a tube in which there is a stopcock, initially closed. The
vessels are immersed in a tank of water of known mass, whose temperature can
be measured by a thermometer, Heat losses from the tank to its surroundings will
be assumed negligible, or will be allowed for.

* Joseph L. Gay-Lussac, French chemist (1778-1850).
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The entire system is first allowed to come to thermal equilibrium and the
thermometer reading is noted. The stopcock is then opened and the gas performs
a free expansion into the evacuated vessel. The work W in this expansion is zero.
Eventually, the system comes to a new equilibrium state in which the pressure is
the same in both vessels. If the temperature of the gas changes in the free expansion,
there will be a flow of heat between the gas and the water bath and the reading of
the thermometer in the water will change.

Both Gay-Lussac and Joule found that the temperature change of the water
bath, if any, was too small to be detected. The difficulty is that the heat capacity
of the bath is so large that a small heat flow into or out of it produces only a very
small change in temperature, Similar experiments have been performed more
recently with modified apparatus, but the experimental techniques are difficult and
the results are not of great precision. All experiments show, however, that the
temperature change of the gas itself, even if there were no heat flow to the sur-
roundings, is not large; and hence we postulate as an additional property of an
ideal gas that its temperature change in a free expansion is zero. There is then no
heat flow from the gas to the surroundings and both Q and W are zero. Therefore
the internal energy is constant, and for an ideal gas,

(aa—:)“= 0 (ideal gas). (4-28)

The partial derivative above is called the Joule coefficient and is represented
by #: ‘

n= (%)- (4-29)

Although it is equal to zero for an ideal gas, the Joule coeflicient of a real gas is

not zero.
1t follows from Eq. (4-26), since c, is finite, that for an idval gas

(a—") =0. (4-30)
duir

That is, the specific internal energy of an ideal gas is independent of the volume and
is a function of temperature only. For an ideal gus, the partial derivative (84/3T),
is a roral derivative and

du = c,dT. (4-31)

€= ]

oL
daT

The energy equation of an ideal gas can now be found by integration. We have

" 7
J-du =u —un=f ¢, dT,
up Ty
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where u, is the internal energy at some reference temperature T,. If ¢, can be con-
sidered constant,
u =y + ¢(T — Ty). (4-32)

The energy surface of an ideal gas (of constant ¢,) is shown in Fig. 4-2,
plotted as a function of 7 and ». At constant temperature, the internal energy is
constant, independent of the volume. At constant volume, the internal energy
increases linearly with temperature.

INTERNAL ENERGY

Fig. 4-2 The u-v-T surface for an ideal gas.

Because of the difficulty of measuring precisely the extremely small tempera-
ture changes in a free expansion, Joule and Thomson (who later became Lord
Kelvin) devised another experiment in which the temperature change of an ex-
panding gas would not be masked by the relatively large heat capacity of its sur-
roundings. Many gases have been carefully investigated in this way. Not only do
the results provide information about intermolecular forces but they can be used
to reduce gas thermometer temperatures to thermodynamic temperatures without
the necessity of extrapolation to zero pressure. The temperature drop produced
in the process is utilized in some of the methods for liqueflying gases.

The apparatus used by Joule and Thomson is shown schematically in Fig. 4-3.
A continuous stream of gas at a pressure P, and a temperature T is forced through
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a porous plug in a tube, from which it emerges at a lower pressure P, and a tem-
perature T,. The device is thermally insulated, and after it has operated for a time
long enough for the steady state to become established, the only heat flow from the
gas stream is the small flow through the insulation. That is, in the steady state, no
heat fiows from the gas to change the temperature of the walls, and the large heat
capacity of the walls does not mask the temperature change of the gas, which is
practically what it would be were the system truly an isolated one.

The process is then one of steady flow, in which the heat flow @ and the shaft
W,), are both zero, and in which there is no change in elevation. The initial and
final velocities are both small and their squares can be neglected. Then from the
energy eqtlmtion of steady flow, Eq. (3-38), we have

hy = I,
and the initial and final enthalpies are equal.

T T

¥yt P, P, —1y

i

Fig. 4-3 Principle of the Joule-Thomson
experiment.

Suppose that a series of measurements are made on the same gas, keeping
the initial pressure P, and the temperature T, the same but varying the pumping
rate so that the pressure P, on the downstream side of the plug is made to take on
a series of values Py, Py, etc. Let the temperatures T, T, etc. be measured in each
experiment. (Note that once the pressure on the downstream side is fixed, nothing
can be done about the temperature. The properties of the gas determine what the
temperature will be.) The corresponding pairs of values of P; and T, Py and T,
etc., will determine a number of points in a pressure-temperature diagram as in
Fig. 4-4(a). Since h, = h, = Iy, etc., the enthalpy is the same at all of these points
and a smooth curve drawn through the points is a curve of constant enthalpy. Note
carefully that this curve does nof represent the process executed by the gas in passing
through the plug, since the process is not quasistatic and the gas does not pass
through a series of equilibrium states. The final pressure and temperature must be
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measured at a sufficient distance from the plug for local nonuniformities in the
stream to die out, and the gas passes by a nonquasistatic process from one point
on the curve to another.

By performing other series of experiments, again keeping the initial pressure
and temperature the same in each series but varying them from oneseries toanother,
a family of curves corresponding to different values of 4 can be obtained. Sucha
family is shown in Fig. 4-4(b), which is typical of all real gases. If the initial tem-
perature is not too great, the curves pass through a maximum called the inversion
point. The locus of the inversion points is the inversion curve.

T T I

. \
Cooling b a  Heating
Py ¢ I
Py T /

-~
-
P T prad
-

-
[~ Inversion curve

(2) (b)
Fig. 4-4 (a) Points of equal enthalpy. (b) Isenthalpic curves and the inversion curve.

When the Joule-Thomson expansion is to be used in the liquefaction of gases,
it is evident that the initial temperature and pressure, and the final pressure, must
be so chosen that the temperature decreases during the process. This is possible
only if the pressure and temperature lie on a curve having a maximum. Thus a
drop in temperature would be produced by an expansion from point a or b to
point ¢, but a temperature rise would result in an expansion from d to e.

The slope of an isenthalpic curve at any point is the partial derivative,
(8T/9P),. 1t is called the Jowle-Thomson (or the Joule-Kelvin) coefficient and is
represented by u.

At low pressures and high temperatures, where the properties of real gases
approach those of an ideal gas, the isenthalpic curves become nearly horizontal
and their slope approaches zero. We therefore postulate that an ideal gas shows
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no temperature change when forced through a porous plug. Hence for such a
gas 4 = 0, and from Eq. (4-27),
Eh) ;
— ) = 0 (ideal gas). 4-34
(), = 0 ieat g2 @39
We shall return in Section 6-10 to a further discussion of the Joule-Thomson
experiment, after it has been shown how u can be calculated from the equation of

state.
Since for an ideal gas,
ENER
do/r \oPlr
Eqgs. (4-6) and (4-14) become
omem (2,2
¢ ar/e  \oTh’

and from the equation of state, Pv = RT,
Ev) (GP)
Pl—=] =l =)= R.
(ar » T/
ep—¢, = R. (4-35)
Table 9-1 gives experimental values of (¢, — ¢,)/R for a number of real
gases at temperatures near room temperature. This ratio, exactly unity for an

ideal gas at all temperatures, is seen to differ from unity by less than | percent for
nearly all of the gases listed.

If hy is the specific enthalpy of an ideal gas in a reference state in which the
internal energy is u, and the temperature is 75, it follows that if ¢, can be considered
constant, the enthalpy equation of an ideal gas is

h = hu + le(T == n)o (4—35)

which is the analogue of Eq. (4-30).

Thus for an ideal gas,

4-6 REVERSIBLE ADIABATIC PROCESSES
We have from Eq. (4-25), for any substance in a reversible adiabatic process,

G- <Gk

(ﬂ)=_f
/e v’

Let us represent the ratio ¢,)c, by y:

For an ideal gas,

o
=

(4-37)

"
l

o

Y
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Replacing (9P/dv), by dP [dv,, and omitting the subscript s for simplicity, we have
for an ideal gas,

dP dv

-— —=0.

) +¥

In an interval in which y can be considered constant, this integrates to

InP+ylnv=InK,
Py =K, (4-38)

where K is an integration constant. That is, when an ideal gas for which y is
constant performs a reversible adiabatic process, the quantity Po" has the same
value at all points of the process.

Since the gas necessarily obeys its equation of state in any reversible process,
the relations between T and P, or between T and v, can be found from the equation
above by eliminating » or P between it and the equation of state. They can also
be found by integrating Eq. (4-8) and Eq. (4-16). The results are

TPY-¥ = constant, (4-39)
T = constant. (4-40)
It was stated in Section 3-11 that the value of ¢, for monatomic gases is very
nearly equal to 5R/2 and that for diatomic gases is nearly equal to 7R/2. Since the
difference ¢ — ¢, is equal to R for an ideal gas and is very nearly equal to R for
all gases, we can write for a monatomic gas
o S B T .
¢, ¢p—R (5R[2)—R 3

or

for a diatomic gas,
TR/[2
y =———— = 140,
(7R[2) — R
Table 9-1 includes the experimental values of  for a number of common gases.
The curves representing adiabatic processes are shown on the ideal gas
P-u-T surface in Fig. 4-5(a), and their projections on the P-v plane in Fig. 4-5(b).
The adiabatic curves projected onto the P-v plane have at every point a some-
what steeper slope than the isotherms. The temperature of an ideal gas increases
in a reversible adiabatic compression, as will be seen from an examination of Fig.
4-5(a) or from Eqs. (4-39) or (4-40). This increase in temperature may be very
large and it is utilized in the Diesel type of internal combustion engine, where, on
the compression stroke, air is compressed in the cylinders to about I{15 of its
volume at atmospheric pressure. The air temperature at the completion of the
compression stroke is so high that fuel oil injected into the air burns without the
necessity of a spark to initiate the combustion process.
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Fig. 4-5 (a) Adiabatic processes (full lines) on the ideal gas P-v-T surface. (b) Projection
of the adiabatic processes in () onto the P-v plane. The shaded area is a Carnot cycle
(see Section 4-7).

The specific work in a reversible adiabatic expansion of an ideal gas is
vy vy
w -=I Pdv = Kf v dv
" ot |

=1 [k, (441)
1=y 5

where K is the integration constant in Eq. (4-36). But to state that Pv" = const =
K means that
Pyl = P} = K.

Hence when inserting the upper limit in Eq. (4-39) we let K = Py}, while at the
lower limit we let X = Pyv}. Then
1
=

The work can also be found by realizing that since there is no heat flow into or
out of a system in an adiabatic process, the work is done wholly at the expense of
the internal energy of the system. Hence

W= (Pyoy — Pyvy). (4-42)

W= U — Uy,
and for an ideal gas for which ¢, is constant,
w= (T — To). (4-43)
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4-7 THE CARNOT CYCLE

In 1824, Carnot* first introduced into the theory of thermodynamics a simple
cyclic process now known as a Carnot cycle. Carnot was primarily interested in
improving the efficiencies of steam engines, but instead of concerning himself with
mechanical details he concentrated on an understanding of the basic physical
principles on which the efficiency depended. It may be said that the work of Carnot
laid the foundation of the science of thermodynamics. Although actual engines
have been constructed which carry a system through essentially the same sequence
of processes as in a Carnot cycle, the chief utility of the cycle is as an aid in thermo-
dynamic reasoning. In this section we shall describe the Carnot cycle and in the
next section will consider its relation to the efficiency of an engine,

Fig. 4-6 The Carnot cycle.

A Carnot cycle can be carried out with a system of any nature, It may be a
solid, liquid, or gas, or a surface film, or a paramagnetic substance. The system
may even undergo a change of phase during the cycle. A Carnot cycle for an ideal
gas is represented by the shaded area on the P-p-T surface of Fig. 4-5(a), and its
projection onto the P-v plane is shown in Fig. 4-5(b) and again in Fig. 4-6.

Starting at state a, the system at a temperature Ty is brought in contact with a
heat reservoir at this temperature and performs a reversible isothermal process
that takes it to state b. For an ideal gas, this process is an expansion. For a para-
magnetic material, it would be an increase in the magnetic moment M, etc. In
this process there is a heat flow Q, into the system and work W, is done by the
system.

At state b, the system is thermally insulated and performs a reversible adia-
batic process to state ¢. In this process the temperature decreases to a lower value

* N. L. Sadi Carnot, French engineer (1796-1832).
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T,. The heat flow into the system is zero and additional work W’ is done by the
system.

The system is next brought in contact with a heat reservoir at temperature T,
and performs a reversible isothermal process to state d. There is a heat flow Q,
out of the system and work W, is done on the system.

State 4 must be chosen so that a final reversible adiabatic process will return
the system to its initial state a. The heat flow is zero in this process and work
W" is done on the system.

The significant features of any Carnot cycle are therefore (a) the entire heat
flow info the system takes place at single higher temperature T3; (b) the entire heat
flow out of the system takes place at a single lower temperature 7,; (c) the system,
often referred to as the working substance, is carried through a cyclic process; and
(d) all processes are reversible. We can say in general that any cyclic process
bounded by two reversible isothermals and two reversible adiabatics constitutes a
Carnot cycle.

Although the magnitudes of the heat flows and quantities of work are arbitrary
(they depend on the actual changes in volume, magnetic moment, etc.), it is found
that the ratio Q,/Q, depends only on the temperatures T, and 7;. To calculate
this ratio, it is necessary to know the equation of state of the system, and its energy
equation, (It is necessary to know these at this stage of our development of the
principles of thermodynamics. We shall show in Section 5-2 that for two given
temperatures T, and T the ratio T,/T, has the same value for all working substances.)
Let us therefore assume that the system is an ideal gas.

Since the internal energy of an ideal gas is a function of its temperature only,
the internal energy is constant in the isothermal process a-b and the heat flow Q,
into the system in this process is equal to the work W;. Hence from Eq. (3-5),

v,
Q0= W,=nRT,InF’. (4-44)

where V), and ¥, are the volumes in states b and a, respectively. Similarly, the
magnitude of the heatflow Q, equals the work W, and

: V,
I Q= Wy = nRTiIn % (4-45)
d

But states b and ¢ lie on the same adiabatic, and hence from Eq. (4-40),
W=7V
Similarly, since states a and b lie on the same adiabatic,

Wt =T
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When the first of these equations is divided by the second, we find that

h_Y
Ib ik, 4-46,
o7 (4-46)

It follows from Egs. (4-44), (4-45), and (4-46) that

.g!= %‘ (4-47)
1 1

Thus for an ideal gas, the ratio Q,/Q, depends only on the temperatures T and 7).

4-8 THE HEAT ENGINE AND THE REFRIGERATOR

A system carried through a Carnot cycle is the prototype of all cyclic heat engines.
The feature that is common to all such devices is that they receive an input of heat
at one or more higher temperatures, do mechanical werk on their surroundings,
and reject heat at some lower temperature.

When any working substance is carried through a cyclic process, there is no
change in its internal energy in any complete cycle and from the first law the net
flow of heat Q into the substance, in any complete cycle, is equal to the work W
done by the engine, per cycle. Thus if Qs and Q, are the absolute magnitudes of
the heatflows into and out of the working substance, per cycle, the net heat flow @
per cycle is

2=0,—-0.
The net work W per cycle is therefore
W=0=0—-0. (4-48)

The thermal efficiency u of a heat engine is defined as the ratio of the work
output W to the heat input Qy:
L i (4-49)
Qs O

The work output is “what you get,” the heat input is “what you pay for.” OFf
course, the rejected heat Q, is in a sense a part of the “output™ of the engine, but
ordinarily this is wasted (as in the hot exhaust gases of an automobile engine, orasa
contribution to the “thermal pollution” of the surroundings) and has'no economic
value, If the rejected heat were included as a part of its output, the thermal effi-
ciency of every heat engine would be 100%,. The definition of thermal efficiency as
work output divided by heat input applies to every type of heat engine and is not
restricted to a Carnot engine.

n=
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[

If the working substance is an ideal gas, then for a Carnot cycle we have shown
that

a_n
. T
The thermal efficiency is then : !
Q- O T
p==G o L 2 (4-50)
Q. Q. T
or
L—-T
=t 4-51
L T (4-51)

The thermal efficiency therefore depends only on the temperatures 7, and 7;. We
shall show in Section 5-2 that the thermal efficiency of any Carnot cycle is given by
the expression above, whatever the nature of the working substance.

Fig. 4-7 Schematic flow
diagram of a heat engine.

It is helpful to represent the operation of any heat engine by a schematic flow
diagram like that in Fig. 4-7. The width of the “pipeline” from the high tempera-
ture reservoir is proportional to the heat O, the width of the line to the low tem-
perature reservoir is proportional to Q,, and the width of the line leading out from
the side of the engine is proportional to the work output W. The circle is merely
a schematic way of indicating the engine. The goal of an engine designer is to make
the work output pipeline as large as possible, and the rejected heat pipeline as
small as possible, for a given incoming pipeline from the high temperature reservoir.

We may mention that Carnot would not have constructed his flow diagram
in the same way as that in Fig. 4-7. In Carnot's time, it was believed that “‘heat”
was some sort of indestructible fluid, in which case the pipelines Q, and Q, would
have the same width. How then could there be any pipeline W? It was thought
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that work W could be abstracted from a “‘downhill” flow of heat in the same way
that work can be obtained from a flow of water through a turbine, from a higher
to a lower elevation, The quantities of water flowing into and out of the turbine
are equal, and the mechanical work is done at the expense of the decrease in poten-
tial energy of the water. But in spite of his erroncous ideas as to the nature of heat,
Carnot did obtain the correct expression for the efficiency of a Carnot engine.

If the Carnot cycle in Fig. 4-6 is traversed in a counterclockwise rather than a
clockwise direction, the directions of all arrows in Figs. 4-6 and 4-7 are reversed,
and since all processes in the cycle are reversible (in the thermodynamic sense),
there is no change in the magnitudes of Q,, ©,, and W. Heat Q, is now removed
from the low-temperature reservoir, work W is done on the system, and heat
0; equal to W + (, is delivered to the high-temperature reservoir. We now have
a Carnot refrigerator or a heat pump, rather than a Carnot engine. That is, heat is
pumped out of a system at low temperature (the interior of a household refrigerator,
for example, or out of the atmosphere or the ground in the case of a heat pump
used for house heating), mechanical work is done (by the motor driving the re-
frigerator), and heat equal to the sum of the mechanical work and the heat removed
from the low-temperature reservoir is liberated at a higher temperature.

The useful result of operating a refrigerator is the heat O, removed from the
low-temperature reservoir; this is “what you get.” What you have to pay for is
the work input, W. The greater the ratio of what you get to what you pay for, the
better the refrigerator. A refrigerator is therefore rated by its coefficient of per-
Jformance, ¢, defined as the ratio of Q, to W. Again making use of Eq. (4-48), we
can write

_a [ (4-52)

The coefficient of performance of a refrigerator, unlike the thermal efficiency of a

heat engine, can be much larger than 1007%.
The definition above of coefficient of performance applies to any refrigerator,

whether or not it operates in a Carnot cycle. For a Carnot refrigerator, Q,/0, =
T,/T, and
T
et (4-53)
L-T
PROBLEMS

4-1 The specific internal energy of a van der Waals gas is given by

a
u=c,T - = + constant,
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(a) Sketch a w-T-v surface assuming ¢, is a constant. (b) Show that for a van der Waals

Eas,
1

cp—c,=.R——-—2m.
T RIS

4-2 The equation of state of a certain gas is (P + b)v = RT and its specific internal
energy is given by u = aT + bv + u, (a) Find ¢,. (b) Show that ¢pp — ¢, = R. (c)
Using Eq. (4-8) show that Tv™* = constant.

4-3 The specific internal energy of a substance can be given by

u =y =3T*+ 20,

in an appropriate set of units. (a) Sketch a u-T-v diagram for this substance. (b) Compute
the change in temperature of the substance if 5 units of heat are added while the volume
of the substance is held constant. Show this process on the u-T-v diagram. (c) Can the
change in temperature of the substance during an adiabatic decrease in volume of 20%;
be determined from the information given? If so, compute it. If not, state what additional
information must be supplied.

4-4 At temperatures above 500 K, the value of ¢, for copper can be approximated by a
linear relation of the form ¢, = a + bT. (a) Find as accurately as you can from Fig. 3-10
the values of a and b. (b) Compute the change in the specific enthalpy of copper at a
pressure of 1 atm when the temperature is increased from 500 to 1200 K.

oh aT
4-5 Show that (35)1‘ = _c"('aF).‘

u
4-6 Show that (5?)? = ¢p — Phv.

4-7 Comp&r’e the magnitudes of the terms ¢, and Pfv in the previous problem (a) for
copper at 600 K and | atm, and (b) for an ideal gas for which ¢,y = 5R/2. (c) When heat
is supplied to an ideal gas in an isobaric process, what fraction goes into an increase in
internal energy ? (d) When heat is supplied to copper in un isobaric process, what lraction
goes into an increase in internal energy ?

4-8 (a) Show that the specific enthalpy of the gas of Problem 4-2 can be written as
h = (a + R)T + constant. (b) Find c,.. (c) Using Eq. (4-16) show that T(P + b)‘m’!' =
constant. (d) Show that (94/av), = ¢ T/o.

4-9 Derive expressions analogous to Eq. (4-18) and Eq. (4-19) for /i as a lunction of P
and v,

4-10 Complete the derivations of Eqs. (4-22) to (4-25).

4-11 An ideal gas for which ¢, = SR/2 is taken from point a to point & in Fig. 4-8 along
the three paths a-c-b, a-d-b, and a-b. Let Py = 2P, and v, = 20,. (a) Compute the heat
supplied to the gas, per mole, in each of the three processes. Express the answer in terms
of R and T;. (b) Compute the molal specific heat capacity of the gas, in terms of R, for
the process a-b.
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Figure 4-8

4-12 For a van der Waals gas obeying the energy equation of Problem 4-1 show that

a7 y (8T
s ve \dP)s
4-13 For a paramagnetic substance obeying Curie’s law the internal energy is a function

of Tonly. Show that (a) d'Q = C,; dT ~ H# dM; (b)d'Q = Cpp dT — Md#"; and (c)
Co — Cyp = MA[T.

au a,
4-14 For a one-dimensional system show that (a) Cy, = (ﬁ)f.: (b) Ceg = (a—’;)’_;

aF a
and (c) CL(?E)S =Cg (ﬂ

2 2
4-15 For an ideal gas show that (a) (ﬁ")r = 0, and (b) (5) =0,

4-16 Suppose one of the vessels in the Joule apparatus of Fig. 4-1 contains n, moles of a
van der Waals gas and the other contains n; moles, both at an initial temperature T,
The volume of each vessel is ¥. Find the expression for the change in temperature when
the stopcock is opened and the system is allowed to come to a new equilibrium state.
Neglect any flow of heat to the vessels. Verify your solution for the cases when n; = 0,
using Eq. (4-26), and when n,; = mp. Assume the energy equation of Problem 4-1,
4-17 (a) Show that for an ideal gas h — hy = cp(T — Ty) and (b) sketch an h-P-T
surface for an ideal gas.

4-18 Assume the energy equation given in Problem 4-1. (a) Find the expression for the
Joule coefficient # for a van der Waals gas. (b) Find the expression for the enthalpy of a
van der Waals gas, as a function of v and T. (c) Find the expression for the Joule-
Thomson coefficient s for a van der Waals gas, (d) Show that the expressions in (a) and
(c) reduce to those for an ideal gas if a = b = 0. [Hint: See Problem 2-22.]
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a 1 ah e
4-19 Show that (a) (:T’F"):r = —pucp, (b) (%)r = c,.[l - -ﬂ:’-], (©) (5)2‘ = "T‘:’- X

ar M
d) =) = —5—.
“( ) {ox — by
4-20 Foran ideal gas, show that in a reversible adiabatic process (a) TP'*1/7 = constant,
and (b) 7v'"") = constant.

Figure 4-9
4-21 Figure 4-9 represents a cylinder with thermally insulated walls containing a movable
frictionless thermally insulated piston. On each side of the piston are # moles of an ideal
gas. The initial pressure Py, volume V,, and temperature T, are the same on both sides of
the piston. The value of y for the gas is 1.50, and ¢, is independent of temperature. By
means of a heating coil in the gas on the left side of the piston, heat is supplied slowly to the
gas on this side. It expands and compresses the gas on the right side until its pressure has
increased to 27 Py/8. In terms of n, ¢,, and Ty, (a) how much work is done on the gas on the
right side? (b) what is the final temperature of the gas on the right? (c) what is the final
temperature of the gas on the left? (d) how much heat flows into the gas on the left?
4-22 In the compression stroke of a Diesel engine, air is compressed from atmospheric
pressure and room temperature to about 1/15 of its original volume. Find the final
temperature, assuming a reversible adiabatic compression. (Take y,;, = 1.4))
4-23 (a) Show that the work done on an ideal gas to compress it isothermally is greater
than that necessary to compress the gas adiabatically if the pressure change is the same in
the two processes, and (b) that the isothermal work is less than the adiabatic work if the
volume change is the same in the two processes. As a numerical example, take the initial
pressure and volume to be 10° N m™ and 0.5 m® kilomole™?, and take y to be 5/3. Com-
pute the work necessary to change the value of the appropriate variable by a factor of 2.
(c) Plot these processes on a P- diagram and explain physically why the isothermal work
should be greater than the adiabatic work in part (a) and why it should be less in part (b).
4-24 An ideal gas for which ¢, = 3R/2 occupies a volume of 4 m® at a pressure of 8 atm
and a temperature of 400 K. The gas expands to a final pressure of 1 atm. Compute the
final volume and temperature, the work done, the heat absurbed and the change in
internal energy, for each of the following processes: (a)a , isothermal expansion;
(b) a reversible adiabatic expansion; and (c) an expansion into a vacuum.
4-25 One mole of an ideal gas is taken from P = latm and T =273K to P = 0.5
atm and T = 546 K by a reversible isothermal process followed by a reversible isobaric
process. It is returned to its initial state by a reversible isochoric process followed by a
reversible adiabatic process. Assume that ¢, = (3/2)R. (a) Draw this cycle on a P-V
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diagram. (b) For each process and for the whole cycle, find the change in T, V, P, W,
Q, U,and H. A tabular arrangement of the results will be useful. (c) Draw this cycle ona
V-T diagram and on a U-V diagram.

4-26 (a) Use Eq. (4-8) to derive for a van der Waals gas the equations corresponding
to Egs. (4-38) and (4-40). (b) Compute the work in a reversible adiabatic expansion by
direct evaluation of | P dv and by use of the energy equation of Problem 4-1.

4-27 The equation of state for radiant energy in equilibrium with the temperature of the
walls of a cavity of volume Vis P = aT%/3. The energy equation is U = aT*V. (a) Show
that the heat supplied in an isothermal doubling of the volume of the cavity is 4aT* /3.
(b) Use Eq. (4-3) to show that in an adiabatic process ¥'T?is a constant.

4-28 Sketch a Carnot cycle for an ideal gas on a (a) u-v diagram, (b) »-T diagram, (c)
u-h diagram, (d) P-T diagram,

4-29 Sketch qualitatively a Carnot cycle (a) in the V-T plane for an ideal gas; (b) in the
P-V plane for a liquid in equilibrium with its vapor; (c) in the 4-Z plane for a reversible
electrolytic cell whose emf is a function of T alone and assuming that reversible adiabatics
have a constant positive slope.

4-30 A Carnot engine is operated between two heat reservoirs at temperatures of 400 K
and 300 K. (a) If the engine receives 1200 Cal from the reservoir at 400 K in each cycle,
how many Calories does it reject to the reservoir at 300 K? (b) If the engine is operated as
a refrigerator (i.e., in reverse) und receives 1200 Cal from the reservoir at 300 K, how many
Calories does it deliver to the reservoir at 400 K ? (c) How much work is done by the engine
in each case?

4-31 (a) Show that for Carnot engines operating between the same high temperature
reservoirs and different low temperature reservoirs, the engine operating over the largest
temperature difference has the greatest efficiency. (b) Is the more effective way to increase
the efficiency of a Carnot engine to increase the temperature of the hotter reservoir,
keeping the temperature of the colder reservoir constant, or vice versa? (c) Repeat parts
(a) and (b) to find the optimum coefficient of performance for a Carnot refrigerator.
4-32 Derive a relationship between the efficiency of a Carnot engine and the coefficient
of performance of the same engine when operated as a refrigerator. Is a Carnbt engine
whose efficiency is very high particularly suited as a refrigerator? Give reasons for your
answer.

4-33 An ideal gas for which ¢, = 3R/2 is the working substance of a Carnot engine,
During the isothermal expansion the volume doubles. The ratio of the final volume to the
initial volume in the adiabatic expansion is 5.7. The work output of the engine is 9 x
10°J in each cycle. Compute the temperature of the reservoirs between which the engine
operates.

4-34 Calculate the efficiency and the coefficient of performance of the cycles shown in
(a) Problem 3-26, and (b) Problem 3-27.

4-35 An electrolytic cell is used as the working substance of a Carnot cycle. In the
appropriate temperature range the equation of state for the cell is ¢ = & — (T — Ty),
where a > 0 and T > T,. The energy equation is

dé
U=Uy= (o - rﬁ)z+ CoT =T
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where C, is the heat capacity at constant Z which is assumed to be a constant and Z is
the charge which flows through the cell. (a) Sketch the Carnot cycle onan & — £ diagram
and indicate the direction in which the cycle operates as an engine. (b) Use the expression
for the efficiency of a Carnot cycle to show that charge transferred in the isothermal
processes must have the same magnitude.

4-36 A building is to be cooled by a Carnot engine operated in reverse (a Carnot refriger-
ator). The outside temperature is 35°C (95°F) and the temperature inside the building is
20°C (68°F). (a) If the engine is driven by a 12 x 10° walt electric motor, how much heat
is removed from the building per hour? (b) The motoris supplied with electricity generated
in a power plant which consists of a Carnot engine operating between reservoirs at tem-
peratures of 500°C and 35°C. Electricity (transmitted over a 5 ohm line), is received at
220 volts. The motors which operate the refrigerator and the generator at the power plant
each have an efficiency of 90%{. Determine the number of units of refrigeration obtained
per unit of heat supplied. (c) How much heat must be supplied per hour at the power
plant? (d) How much heat is rejected per hour from the power plant?

4-37 Refrigerator cycles have been developed for heating buildings. Heat is absorbed
from the earth by a fluid circulating in buried pipes and heat is delivered at a higher tem-
perature to the interior of the building. If a Carnot refrigerator were available for use in
this way, operating between an outside temperature of 0°C and an interior temperature
of 20°C, how many kilowatt-hours of heat would be supplied to the building for every
kilowatt-hour of electrical energy needed to operate the refrigerator?

4-38 The temperature of a household refrigerator is 5°C and the temperature of the room
in which it is located is 20°C. The heat flowing from the warmer room every 24 hours is
about 3 x 10°J (enough to melt about 20 Ib of ice) and this heat must be pumped out
again if the refrigerator is to be kept cold. If the refrigerator is 60% as efficient as a
Carnot engine operating between reservoirs having temperatures of 5°C and 20°C, how
much power in watts would be required to operate it? Compare Lhe daily cost at 3 cents
per kilowatt-hour with the cost of 20 Ib of ice (about 75 cents).

4-39 An apprnximate equation of state fora gasis P(v — b) = RT, whereb is a constant.
The specific internal energy of a gas obeying this equation of state is 4 = ¢,T" + constant.
(a) Show that the specific heat at constant pressure of this gas is equal to ¢, + R. (b)
Show that the equation of a reversible adiabatic process is P(v — b)' = constant. (c)
Show that the efficiency of a Carnot cycle using this gas as the working substance is the
same as that for an ideal gas, assuming (du/dv)y = 0.
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6-1 THE SECOND LAW OF THERMODYNAMICS

Figure 5-1 shows three different systems, each enclosed in a rigid adiabatic bound-
ary. In part (a), a body at a temperature 7; makes thermal contact with a large
heat reservoir at a higher temperature T,. In part (b), a rotating flywheel drives
a generator that sends a current through a resistor immersed in a heat reservoir.
In part (c), a gas is confined to the left portion of the container by a diaphragm.
The remainder of the container is evacuated. We know from experience that in
part (a) there will be a heat flow from the reservoir into the body and that, even-
tually, the body will come to the same temperature T, as the reservoir. (The heat
capacity of a reservoir is so large that its temperature is not changed appreciably
bya flow of heatinto or out of'it.) In part (b) the flywheel will eventually be brought
to rest. Dissipative work will be done on the resistor and there will be a heat flow
out of it into the reservoir, equal in magnitude to the original kinetic energy of the
flywheel. If the diaphragm in part (c) is punctured, the gas will perform a free
expansion into the evacuated region and will come to a new equilibrium state at
a larger volume and a lower pressure. In each of these processes, the total energy
of the system, including any kinetic energy of the flywheel in part (b), remains
constant.

Fig.5-1 In part (a) there is a reversible heat flow between a body at temperature T; and a
large heat reservoir at a higher temperature T;,. In(b), a rotating flywheel drives a generator
which sends a current |hrou?h a resistor in a heat reservoir. In (c), a gas in the left portion
of the container performs a free expansion into the evacuated region when the diaphragm
is punctured.

Now suppose we start with the three systems at the end states of the above
processes and imagine the processes to take place in the reversed direction. In
the first example, the body originally at the same temperature as the reservoir
would spontaneously cool down until its original temperature was restored. In
the second, there would be a heat flow out of the reservoir into the resistor, which
would send a current through the generator (now serving as a motor), and the fly-
wheel would be set in rotation with its original kinetic energy. In the third, the gas
would compress itself back into its original volume,

Ll - T T YR
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Everyone realizes that these reversed processes do not happen. But why not?
The total energy in each case would remain constant in the reversed process as it
did in the original, and there would be no violation of the principle of conservation
of energy. There must be some other natural principle, in addition to the first law
and not derivable from it, which determines the direction in which a natural process
will take place. This principle is contained in the second law of thermodynamics. The
second law, like the first, is a generalization from experience and it asserts that
certain processes, of which the three considered above are examples, are essentially
one-way processes and will proceed in one direction only.

The three impossible, reversed processes were chosen as examples because they
appear at first sight to differ widely from one another. In the first, a composite
system originally at a uniform temperature would separate spontaneously into
two portions at different temperatures. In the second, there would be a flow of
heat out of a reservoir and an equivalent amount of kinetic energy would appear.
In the third, the volume of an isolated sample of gas would decrease and its pressure
would increase. Many other illustrations could be given. In the field of chemistry,
for example, oxygen and hydrogen gas in the proper proportions can be enclosed
in a vessel and a chemical reaction can be initiated by a spark. If the enclosure has
rigid adiabatic walls the internal energy of the system remains constant. After
the reaction has taken place, the system consists of water vapor at a high tem-
perature and pressure, but the water vapor will not spontaneously dissociate into
hydrogen and oxygen at a lower temperature and pressure.

Can we find some feature which all of these dissimilar impossible processes
have in common? Given two states of an isolated system, in both of which the
energy is the same, can we find a criterion that determines which is a possible
initial state and which is a possible final state of a process taking place in the
system? What are the conditions under which no process at all can occur, and in
which a system is in equilibrium? These questions could be answered if there
existed some property of a system, that is, some function-of the state of a system,
which has a different value at the beginning and at the end of a possible process.
This function cannot be the energy, since that is constant. A function having the
desired property can be found, however. [t was devised by Clausius* and is called
the entropy of the system. Like the energy, itis a function of the state of the system
only and, as we shall prove, it either remains constant or increases in any possible
process taking place in an isolated system. In terms of entropy, the setond law
can be stated:

Processes in which the entropy of an isolated system would decrease do not occur:
or in every process taking place in an isolated system the entropy of the system either
increases or remains constant,

Furthermore, if an isolated system is in such a state that its entropy is a maxi-
mum, any change from that state would necessarily involve a decrease in entropy

‘;{udolph J. E. Clausius, German physicist (1822-1888).
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and hence will not happen. Therefore the necessary condition for the equilibrium
of an isolated system is that its entropy shall be a maximum.

Note carefully that the statements above apply to isolated systems only. It
is quite possible for the entropy of a nonisolated system to decrease in an actual
process, but it will always be found that the entropy of other systems with which
the first interacts increases by at least an equal amount.

The second law has been stated here without defining entropy. In the next
sections the concept of entropy is developed by using first the properties of the
Carnot cycle and then by calculating entropy changes during reversible and irre-
versible processes. After a discussion of the physical significance of entropy pro-
duction, equivalent alternative statements of the second law are presented.

6-2 THERMODYNAMIC TEMPERATURE

Before proceeding to the development of the concept of entropy, we-shall use the
Carnot cycle to define the thermodynamic temperature. In Chapter 1, we intro-
duced the symbol T to represent temperature on the ideal gas thermometer scale,
with the promise that it would later be shown to equal the thermodynamic tem-
perature. Let us therefore return to the symbol 8, as used in Chapter 1, to desig-
nate an empirical temperature defined in terms of an arbitrary thermometric
property X, such as the resistance R of a platinum resistance thermometer or the
pressure P of a constant-volume hydrogen thermometer.

The Carnot cycle for a P¥8 system is shown in the 6-¥ plane in Fig. 5-2.
The shape of the adiabatics varies, of course, from one substance to another. Let
us first carry out the cycle a-b-c-d-a. In the process a-b there is a heat flow @, into
the system from a reservoir at a temperature 0,, and in the process ¢-d there is a
smaller heat flow @, out of the system into a reservoir at a temperature 6,. The
heat flows are zero in the adiabatic processes b-c and d-a. Since the system is
returned to its initial state at point a, there is no change in its internal energy;
and from the first law, since AU = 0, the work W in the cycle is

W =[Q: = 10\l
This is the only condition imposed on @, and @, by the first law: the work W in the
cycle equals the difference between the absolute magnitudes of Q, and Q,.

In Section 5-1 the second law was stated in terms of the entropy of a system,
but since we have not as yet defined this property we must begin with a consequence
of the second law that does not involve the entropy concept. Thus our starting
point will be the assertion that for any two temperatures 8, and 8,, the ratio of the
magnitudes of @, and @, in a Carnot cycle has the same value for all systems,
whatever their nature, That is, the ratio [Q,//|Q,| is a lunction only of the tem-
peratures 0, and 0,:

10|
== = f(0,0,). -
el J(05, 0,). (5-1)
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The form of the function f depends on the particular empirical temperature scale
on which 0, and 6, are measured, but it does not depend on the nature of the system
performing the cycle.

It should not be inferred that the quantities of heat absorbed and liberated
in a Carnot cycle have been measured experimentally for all possible systems and
all possible pairs of temperatures. The justification of the preceding assertion lies
in the correctness of all conclusions that can be drawn from it.

v

Fig. 5-2 Carnot cycles represented in
the 6~V plane. Curves a-f~d and b-e-c
are reversible adiabatics.

The function f(0;, 8,) has a very special form. To show this, suppose we first
carry out the cycle a-b-e-f~a in Fig. 5-2 in which the isothermal process e-f is at
some temperature @, intermediate between 6, and 6,. Let 0, be the heat absorbed
at temperature 0, and Q, the heat rejected at temperature 6,. Then

9 _ ron 0. 5-2)
[0
Now carry out the cycle f-e-c-d-f, between temperatures 0, and 6,, and let the

heat @, absorbed in this cycle, in the process f-¢, equal the heat rejected in the
first cycle in the process e-f. Then if Q, is the heat rejected at the temperature 0,,

124
— = [(6;, 0,). (5-3)
12l !

When Egs. (5-2) and (5-3) are multiplied, we get

0. 104 104l
—_——— = —= = 3,6,-' Bpﬂ)
104 10 " 1o /G0

and hence from Eq. (5-1),
C [0 8)) = f(Bs, 6) - (8, 6y).
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Since the left side is a function only of 6, and ,, this must be true of the right side
also. The form of the function f must therefore be such that the product on the
right does not contain 6, and this is possible only if

$(62) $(6,)
Oy, 0,) = ——, 00 0)) = ——.
S8 6) 0) S8, 0) 00

That is, although f(6;, 8,) is a function of both 8, and 6,, and f(6,, 6,) is a function
of both B, and 8,, the function f must have the special form such that it is equal to
the ratio of two functions ¢, where ¢(8,), $(¢,), and ¢(6,) are functions only of the
single empirical temperatures 6,, 6,, and 0,, respectively.

Again, the form of the function ¢ depends on the choice of the empirical
temperature scale but not on the nature of the substance carried through the Carnot
cycle. Then for a cycle carried out between any two temperatures 6, and 6,,

lod _ 40 »
o~ 96" =

It was proposed by Kelvin that since the ratio ¢(0;)/¢(6,) is independent of the
properties of any particular substance, the thermodynamic temperature T corre-
sponding to the empirical temperature ¢ could be defined by the equation

T = 44(6), -5
where A is an arbitrary constant.
Then
10 _ T
bt 5-6
i~ o=

and the ratio of two thermodynamic temperatures is equal to the ratio of the
quantities of heat absorbed and liberated when any system wharever is carried
through a Carnot cycle between reservoirs at these temperatures. In particular, if
one reservoir is at the triple point temperature T and the other is at some arbitrary
temperature T, and if Q; and Q are the corresponding heat flows,

e _T
0] T
and
12
=T,=, 5-7
*lodl =

If the numerical value of 273.16 is assigned to T, the corresponding unit of T is

1 Kelvin.
In principle, then, a thermodynamic temperature can be determined by carrying

out a Carnot cycle and measuring the heat flows Q and Q;, which take the place of
some arbitrary thermometric property X.

PN e o am
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Note that the form of the function $(6) need not be known to determine T°
experimentally, but we shall show in Section 6-11 how this function can be deter-
mined in terms of the properties of the thermometric substance used to define the
empirical temperature 6.

Since the absolute values of the heat flows are necessarily positive, it follows
from Eq. (5-6) that the thermodynamic or Kelvin temperature is necessarily
positive also. This is equivalent to stating that there is an absolute zero of thermo-
dynamic temperature, and that the thermodynamic temperature cannot be
negative. *

In Section 4-7, we analyzed a Carnot cycle for the special case of an ideal gas.
Although the results were expressed in terms of thermodynamic temperature T,
this temperature had not at that point been defined, and, strictly speaking, we should*
have used the gas temperature 6 defined by Eq. (1-4). Then if we define an ideal
gas as one whose equation of state is

Py = RO,
and for which
au)
Zl=o,
(av o
the analysis in Section 4-7 would lead to the result that
o _ 104
6 . 12

1t follows, then, that the ratio of two ideal gas thermometer temperatures is
equal to the ratio of the corresponding thermodynamic temperatures. This justifies
our replacing 6 with T in earlier chapters.

5-3 ENTROPY
In the preceding section, the relation between the temperatures 7, and T, and the
heat flows @, and @, in a Carnot cycle, were expressed in terms of the absolute
values |Q.] and |Q,|. However, since Q, is a heat flow into the system and O, is a
heat flow our of the system, the heat flows have opposite signs; and hence for a
Carnot cycle, we should write

L _0

n Q

Q.S

+_
L T

or

* However, see Section 13-5.
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Now consider any arbitrary reversible cyclic process such as that represented
by the closed curve in Fig. 5-3. The net result of such a process can be approximated
as closely as desired by performing a large number of small Carnot cycles, all
traversed in the same sense. Those adiabatic portions of the cycles which coincide
are traversed twice in opposite directions and will cancel. The outstanding result
consists of the heavy zig-zag line. As the cycles are made smaller, there is a more
complete cancellation of the adiabatic portions but the isothermal portions remain

outstanding.

Fig.5-3 Anyarbitrary reversible cyclic
process can be approximated by a
number of small Carnot cycles,

If one of the small cycles is carried out between temperatures T, and T), and
AQ; and AQ, are the corresponding heat flows, then for that cycle,

AQ, | AQ,
— iy Xk ),
Bt

and when all such terms are added, for ali cycles, we have
AQ:
— = 0.
2 T

The subscript *r serves as a reminder that the result above applied to reversible

cycles only.
In the limit, as the cycles are made narrower, the zig-zag processes correspond
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more and more closely to the original cyclic process. The sum can then be replaced
by an integral and we can write for the original process,

§‘—i:% =0 (5-8)

That is, if the heatflow 4'Q, into the system at any point is divided by the tem-
perature T of the system at this point, and these quotients are summed over the
entire cycle, the sum equals zero. At some points of the cycle @', is positive and
at others, negative. The temperature T is positive always*®. The negative contri-
butions to the integral just cancel the positive contributions. |

Since the integral of any exact differential such as dV or dU around a closed
path is zero, we see from Eq. (5-8), that although 4’0, is not an exact differential,
the ratio d'Q,/T is an exact differential. It is therefore possible to define a property
S of a system whose value depends only on the state of the system and whose
differential dS is

ds = d?Q (-9
Then in any cyclic process,
§ds =0 (5-10)

Another property of an exact differential is that its integral between any two
equilibrium states is the same for all paths between the states. Hence for any

path between states a and b,

J‘de =8, — 5, (5-11)

The property S is called the entropy of the system. The MKS unit of entropy
is evidently 1 joule per kelvin (1 J K™'). Entropy is an extensive property, and we
define the specific entropy s as the entropy per mole or per unit mass:

s==, o s==,
n m

Equations (5-9) or (5-11) define only differences in entropy. We shall see
later in Section 7-7 that it is possible to assign an absolute value to the entropy of
certain systems; but on the basis of the equations above, the entropy of a system
is determined only to within some arbitrary constant.

* However, see Section 13-5,
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6-4 CALCULATIONS OF ENTROPY CHANGES IN REVERSIBLE PROCESSES

In any adiabatic process, d'Q = 0, and hence in any reversible adiabatic process,
d'0,=0 and dS=0.

The entropy of a system is therefore constant in any reversible adiabatic process,
and such a process can be described as isentropic. This explains the use of the
subscript s in earlier chapters to designate a revetsible adiabatic process.

In a reversible isothermal process, the temperature T is constant and may be
taken outside the integral sign. The change in entropy of a system in a finite
reversible isothermal process is therefore,

*dg. 1 J' b [
5 —-5, J: T T ndQ, T (5-12)
To carry out such a process, the system is brought in contact with a heat reservoir
at a temperature infinitesimally greater (or less) than that of the system. In the
first case there is a heat flow into the system, Q, is positive, S, > §,, and the
entropy of the system increases. In the second case there is a heat flow our of the
system, Q, is negative, and the entropy of the system decreases.

A common example of a reversible isothermal process is a change in phase at
constant pressure during which the temperature remains constant also. The heat
flow into the system, per unit mass or per mole, equals the heat of transformation
1, and the change in (specific) entropy is simply

55— 5 =T (5-13)

For example, the latent heat of transformation from liquid water to water vapor at
atmospheric pressure and at the corresponding temperature of (approximately)
373 Kisfpy = 22.6 x 10°J kg™, The specific entropy of the vapor therefore exceeds
that of the liquid by

gl 26 X100k

T MK

In most processes a reversible flow of heat into or out of a system is accom-
panied by a change in temperature, and calculation of the corresponding entropy
change requires an evaluation of the integral

[4e
T

If the process takes place at constant volume, for example, and if changes in phase

are excludefl, the heat flow per unit mass or per mole equals ¢, dT and

rl
=5, =[ 4L (5-14)

= 6060 J kg™t K1,

~ oA e e s
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If the process is at constant pressure, the heat flow equals ¢p 4T and
Ty
(o= 0p = ep4L. (5-15)
rn, T

To evaluate these integrals for a given system, we must know ¢, or cp as
functions of 7. In a temperature interval in which the specific heat capacities can
be considered constant,

(52 = 1), = ¢, In(Ty/T)), (5-16)

(52 = s1)p = cpIn(T/T). (5-17)

To raise the temperature from T, to T, reversibly, we require a large number of
heat reservoirs having temperatures Ty + dT, Ty + 2dT,..., T, — dT, T,. The
system at temperature T, is brought in contact with the reservoir at temperature
Ty + dT and kept in contact with this reservoir until thermal equilibrium is reached.
The system, now at temperature T, + d7, is then brought into contact with the
reservoir at temperature 7; + 2 dT, etc., until the system reaches the temperature
T,.

For example, the value of ¢p for liquid water, in the temperature interval from T, =

273K (0°C) to T, = 373K (100°C) is 4.18 x 10°J kg™' K~! (assumed constant).

The specific entropy of liquid water at 373 K therefore exceeds that at 273 K by

7 n
(62 = s)p = cpln g =418 x 10°Tkg™ K™ x In 52 = 1310 kg KL,
1

In every process in which there is-a reversible flow of heat between a system
and its surroundings, the temperatures of system and surroundings are essentially
equal; and the heat flow into the surroundings, at every point, is equal in mag-
nitude and opposite in sign to the heat flow into the system. Hence the entropy
change of the surroundings is equal in magnitude and opposite in sign to that of the
system, and the net entropy change of system plus surroundings is zero. (In an
isothermal process, the surroundings consist of a single reservoir. In a process in
which the temperature of the system changes, the surroundings consist of all those
reservoirs at different temperatures that exchanged heat with the system.) Since
systems and surroundings together constitute a wniverse, we can say that the
entropy of the universe remains constant in every change in state in which there is
only a reversible heat flow into (or out of) a system.

If the boundary of the original system is enlarged so as to include the reservoirs
with which the system exchanges heat, all heat flows take place within this composite
system. There are no heat flows across the enlarged boundary and the process
is adiabatic for the composite system. Hence we can also say that any reversible
heat flows within a composite system enclosed by an adiabatic boundary produce
no net change in the entropy of the composite system.
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5-5 TEMPERATURE-ENTROPY DIAGRAMS

Since entropy is a property of a system, its value in any equilibrium state of the
system (apart from an arbitrary constant) can be expressed in terms of the variables
specifying the state of the system. Thus for a PF'T system, the entropy can be
expressed as a function of P and V¥, Pand T, or Tand V. Then, just as with the
internal energy, we can consider the entropy as one of the variables specifying the
state of the system, and we can specify the state in terms of the entropy S and one
other variable. If the temperature T is selected as the other variable, every state of
a system corresponds to a point in a 7-§ diagram and every reversible process

corresponds to a curve in this diagram.

T T e
| |
|

5, 5,

Fig. 5-4 The temperature-entropy
diagram of a Carnot cycle.

A Carnot cycle has an especially simple form in such a diagram, since it is
bounded by two isotherms, along which T is constant, and two reversible adia-
batics, along which § is constant. Thus Fig. 54 represents the Carnot cycle
a-b-¢-d-a of Fig. 5-2,

The area under the curve representing any reversible process in a 7-5 diagram is

J:.r ds =J:d'Q, = 0,

5o the area under such a curve represents the keat flow in the same way that the area
under a curve in a P-¥ diagram represents work. The area enclosed by the graph of
a reversible cyclic process corresponds to the met heat flow into a system in the
process.

e e e e
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56 ENTROPY CHANGES IN IRREVERSIBLE PROCESSES

The change in entropy of a system is defined by Eq. (5-9) for a reversible process
only; but since the entropy of a system depends only on the state of the system,
the entropy difference between two given equilibrium states is the same regardless
of the nature of a process by which the system may be taken from one state to the
other. We can, therefore, find the change in entropy of a system in an irreversible
process by devising some reversible process (any reversible process will do) between
the end states of the irreversible process.

Consider first the process in Fig. 5-1(a) in which the temperature of a body is
increased from T, to T, by bringing it in contact with a single reservoir at a tem-
perature Ty, instead of using a series of reservoirs at temperatures between T, and
T,. The process is irreversible since there is a finite temperature difference between
the body and the reservoir during the process, and the direction of the heat flow
cannot be reversed by an infinitesimal change in temperature. The initial and final
states of the body are the same, however, whether the temperature is changed
reversibly or irreversibly, so the change in entropy of the body is the same in either
process. Then, from Eq. (5-17), if the process is at constant pressure and the heat
capacity Cp of the body can be considered constant, the entropy change of the
body is

Ty
AS = Cpln=L,
body P"'Tl

Since T, > T, there is a heat flow into the body, In (T3/T)) is positive, and the
entropy of the body increases.

How does the entropy of the reservoir change in the process? The reservoir
temperature remains constant at the value T,; hence its change in entropy is the
same as in a reversible isothermal process in which the heat flow into it is equal in
magnitude to that in the irreversible process. Again assuming Cp to be constant,
the heat flow into the body is

Q = Cp(Ty— T)).

The heat flow into the reservoir is the negative of this, and the change in entropy
of the reservoir is
L-T
AS, -,
roseevolr T“ P 1_’
Since Ty > T,, there is a heat flow our of the reservoir, the fraction (T, — T))/T,
is positive, the entropy change of the reservoir is negative, and its entropy decreases.
The total change in entropy of the composite system, body plus reservoir, is

h_TL-T

]_
T

AS = As!rocly + Asmmruh' - C.P
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Fig. 5-5 A graphof In (T/T}) and (Ty =T))/T,
as a function of T,/T;.

Figure 5-5 shows graphs of In (T/T,) and of (T, — T,)/T;, as functions of the
ratio Ty/T;. It will be seen that when Ty > Ty, or when T3/T; > |, the quantities
In (Ty/T,) and (Ty — T))/T, are both positive, but the former is greater than the
latter. The increase in entropy of the body is then greater than the decrease in
entropy of the reservoir, and the entropy of the universe (body plus reservoir)
increases in the irreversible process.

As an example, suppose that the temperature of liquid water is increased from 273 K

to 373 K by bringing it in contact with a heat reservoir at a temperature of 373 K.

We have shown in the preceding example that the increase in specific entropy of the

water in this process is 1310 J kg~ K1, The heat flow into the water, per kilogram,

equal to the heat flow out of the reservoir, is
g =cp(Ty =T
=418 x 10°J kg K1 (373K — 273 K)
= 418 x 10*J kg,

The decrease in entropy of the reservoir is

-9 418 x 10°J kg™ - —
AS ol o 1120 J kg ' K-,
and the increase in entropy of the water is greater than the decrease in entropy of the
TESErvoir.

If the body is initially at a higher temperature than the reservoir, heat flows
out of the body into the reservoir. The entropy of the body decreases and that of
the reservoir increases. We leave it as a problem to show that in this irreversible
process the entropy of the universe also increases. Hence the entropy of the uni-
verse always increases in a process during which heat flows across a finite temperature
difference.

Consider next the process in part (b) of Fig. 5-1 in which a rotating flywheel
drives a generator which sends a current through a resistor in a heat reservoir.
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The temperature of the resistor remains constant. Therefore, if the resistor alone
is considered the system, none of the properties of the system change and there is
no change in the entropy of the system. We assume that the temperature of the
resistor during the process differs only slightly from that of the reservoir, so the
heat flow between resistor and reservoir is reversible; and if Q is the magnitude of
the heat flow, the entropy of the reservoir increases by Q/T. This is also the entropy
increase of the composite system, resistor plus reservoir, and again there is an
increase in entropy of the universe.

There appears at first sight to be a discrepancy here. If the entropy of the
reservolr increases as a result of a reversible flow of heat into it, why does not the
entropy of the resistor decrease by an equal amount, since there is an equal heat
flow out of it? Nevertheless, the entropy of the resistor does not change since there
is no change in its state. We can take two points of view. One is that since the
entropy of the resistor does not change, the performance of dissipative work on it
results in an increase in its entropy, even in the absence of a heat flow into it.
The same can be said of dissipative work of any form, such as that done in stirring
a viscous fluid. Thus the entropy increase of the resistor as a result of the per-
formance of dissipative work on it just balances the entropy decrease due to the
heat flow out of it.

The second point of view, as has been stated earlier, is that the performance of
dissipative work on a system is equivalent to a flow of heat into the system, equal
in magnitude to the dissipative work. Then the net heat flow into the resistor is
zero, and there is no change in its entropy; the only heat flow that need be con-
sidered is that into the reservoir.

If we choose to consider resistor and reservoir together as a single composite
system, there is no heat flow into it from its surroundings, but dissipative work is
done on it with a corresponding inciease in entropy.

Finally, in the irreversible free expansion of a gas in part (c) of Fig. 5-1, there
are no heat flows within the system and there is no dissipative work. The same final
state of the gas can be reached, however, by a reversible expansion. In such an
expansion some external work will be done; and since the internal energy of the
gas is constant, there will be a reversible heat flow into it, equal in magnitude to
this work. The entropy of the gas would therefore increase in this reversible process
and there will be the same increase in entropy as in the original free expansion.

5-7 THE PRINCIPLE OF INCREASE OF ENTROPY

In all of the irreversible processes described in the preceding section, it was found
that the entropy of the Universe increased. This is found to be the case in any
irreversible process that may be analyzed, and we conclude that it is true for all
irreversible processes. This conclusion is known as the principle of increase of
entropy and is considered as a part of the second law of thermodynamics: The
entropy of the Universe increases in every irreversible process. If all systems that
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interact in a process are enclosed in a rigid adiabatic boundary, they form a com-
pletely isolated system and constitute their own universe. Hence we can also say
that the entropy of a completely isolated system increases in every irreversible
process taking place within the system. Since, as discussed in Section 5-4, the
entropy remains constant in a reversible process within an isolated system, we have
Jjustified the statement of the second law in Section 5-1 namely, that in every process
taking place in an isolated system, the entropy of the system either increases or
remains constant. 1

We can now gain a further insight into the concepts of reversible and irre-
versible processes. Consider again the first example in Section 5-1 in which a body
at a temperature T, eventually comes to thermal equilibrium with a reservoir at a
different temperature T,. This process is irreversible in the sense in which we
originally defined the term; that is, the direction of the heat flow between the body
and the reservoir cannot be reversed by an infinitesimal change in the temperature
of either. This is not to say, however, that the original state of the composite
system cannot be restored. For example, we can bring the body back to its original
temperature, in a reversible process, by making use of a series of auxiliary reservoirs
at temperatures between 7, and Ty; and the original state of the reservoir can be
restored by a reversible flow of heat into or out of it to an auxiliary reservoir at an
infinitesimally different temperature. In these reversible processes, the decrease in
entropy of the original composite system is equal in magnitude and opposite in
sign to its increase in the original irreversible process, so there is no outstanding
change in its entropy, but the entropy increase of the auxiliary reservoirs is the same
as that of the composite system in the first process. Hence the original entropy
increase has simply been passed on to the auxiliary reservoirs, If the state of the
composite system is restored by an irreversible process, the entropy increase of the
auxiliary reservoirs is even greater than the entropy increase in the original process.
Hence, although a system can be restored to its original state after an irreversible
process, the entropy increase associated with the process can never be wiped out,
At best, it can be passed on from one system to another. This is the true significance
of the term, irreversible. The state of the Universe can never be completely
restored.

In mechanics, one of the reasons that justifies the introduction of the concepts
of energy, momentum, and angular momentum is that they obey a conservation
principle. Enltropy is not conserved, however, except in reversible processes, and
this unfamiliar property, or lack of property, of the entropy function is one reason
why an aura of mystery usually surrounds the concept of entropy. When hot and
cold water are mixed, the heat flow out of the hot water equals the heat flow into
the cold water and energy is conserved. But the increase in entropy of the cold
water is larger than the decrease in entropy of the hot water, and the total entropy
of the system is greater at the end of the process than it was at the beginning.
Where did this additional entropy come from? The answer is that it was created
in the mixing process. Furthermore, once entropy has been created, it can never

< O e s
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be destroyed. The Universe must forever bear this additional burden of entropy
(a statement that implies the assumption, which may be questionable, that the
Universe constitutes an isolated, closed system). *“Energy can neither be created
nor destroyed,” says the first law of thermodynamics. “Entropy cannot be
destroyed,” says the second law, “but it can be created.”

The preceding discussion relates to the thermodynamic definition of the entropy
concept. The methods of statistics, to be discussed in later chapters, will give
additional insight into the entropy concept.

In Section 3-7, the difference in internal energy between two states of a system
was defined as equal to the negative of the work in any adiabatic process between
the states. It was mentioned at that time that not all states of a system could be
reached from a given initial state by an adiabatic process, but that whenever a
final state & could not be reached from an initial state @ by an adiabatic process,
state a could always be reached from state b by such a process. We can now under-
stand why this should be the case.

Only those states having the same entropy as the initial state can be reached
from this state by a reversible adiabatic process, along which the entropy is con-
stant. To reach any arbitrary state one must also make use of an irreversible
adiabatic process, such as a free expansion or a stirring process, as shown in Fig.
5-1. Butin the irreversible process the entropy always increases and never decreases.
Hence the only states that can be reached from a given initial state by adiabatic
processes are those in which the entropy is equal to, or greater than, that in the
initial state. |

However, if the entropy in some arbitrary state is /ess than that in the initial
state, the entropy in the initial state is necessarily greater than that in the arbitrary
state, and the (original) initial state can always be reached from the arbitrary
state by an adiabatic process.

In a process in which two bodies at different temperatures are brought in
contact and come to thermal equilibrium, the net change in energy of the system
is zero, since the heat flow out of one body equals the heat flow into the other.
In what significant way have things changed? Who cares whether or not the
entropy of the system has increased?

The mechanical engineer is concerned, among other things, with heat engines,
whose energy input is a flow of heat from a reservoir and whose useful output is
mechanical work. At the end of the process above, we have a single system all at
one temperature, while at the start we had two systems at different temperatures.
These systems could have been utilized as the reservoirs of a heat engine, with-
drawing heat from one, rejecting heat to the other, and diverting a part of the heat
to produce mechanical work. Once the entire system has come to the same tem-
perature, this opportunity no longer exists. Thus any irreversible process in a heat
engine, with an associated increase in entropy, reduces the amount of mechanical
work that can be abstracted from a given amount of heat flowing out of the high
temperature reservoir. What has been “lost™ in the irreversible process is not
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energy, but opportunity—the opportunity to convert to mechanical work a part of
the internal energy of a system at a temperature higher than that of its surroundings.

The physical chemist is concerned not so much with the magnitude of the
entropy increase in an irreversible process as with the fact that a process can take
place in an isolated system only if the entropy of the system increases. Will two
substances react chemically or will they not? If the reaction would result in a
decrease in entropy, the reaction is impossible. However, while the entropy might
decrease if the reaction were to take place at one temperature and pressure, it is
possible that it could increase at other values of temperature and pressure. Hence
a knowledge of the entropies of substances as functions of temperature and pressure
is all-important in determining the possibilities of chemical reactions.

6-8 THE CLAUSIUS AND KELVIN-PLANCK STATEMENTS OF THE SECOND LAW

We have chosen to consider the second law as a statement regarding possible
entropy changes during arbitrary processes. Entropy was defined in terms of heat
flows into and out of a Carnot cycle. Two other statements are often taken as the
starting point for defining entropy both of which lead, of course, to the same end
result but by a somewhat more lengthy argument. The Clausius statement of the
second law is:

No process is possible whose sole result is a heat flow out of one system at a given
temperature and a heat flow of the same magnitude into a second system at a higher
temperature.

The Clausius statement seems at first to be a trivial and obvious assertion,
since heat can flow by conduction only from a higher to a lower temperature.
However, the mechanism of heat conduction is used to define what is meant by
“higher” and “lower” temperatures; numerical values are assigned to temperature
such that heat flows by conduction from a higher to a lower temperature. But the
Clausius statement goes further and asserts that no process whatever is possible
whose sgle result would conflict with the statement.

The Clausius statement can be seen to be a direct consequence of the principle
of increase of entropy. Suppose that the sole result of a process were a heat flow Q0
out of system A at a temperature T3, and a heat flow of equal magnitude into a
system B at a higher temperature 7p. Such a process would not violate the first
law, since the work in the process would be zero and the increase in internal energy
of B would equal the decrease in internal energy of 4. The entropy changes of the
systems would be

0l 1l
Agym =2 a5 wlE
= T ST

But T, < T,, so JAS,| > |ASy| and the net result would be a decrease in the
entropy of the universe.
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It might appear at first sight that the outstanding result of operating a re-
frigerator would contradict the Clausius statement. Suppose for example, that a
Carnot refrigerator is operated between a reservoir at a temperature 7; and a second
reservoir at a higher temperature T;. In each cycle, there is a heat flow @, out of
the reservoir at the lower temperature T, and a heat flow @, into the reservoir at
the higher temperature T,. The magnitudes of the heat flows are notequal, however,
since 0,/Qy = T,/Ty,and T, > T;. Thus, although there is a transfer of heat from
a lower to a higher temperature, the heat flow out of one reservoir is not equal to
the heat flow into the other; and the heat flows are not the sole result of the process
because work, equal in magnitude to |Q,| — |Q:l, must be done in order to carry
out the cycle,

The Kelvin-Planck statement of the second law is:

No process is possible whose sole result is a heat flow Q out of a reservoir at asingle
ature, and the perli of work W equal in magnitude to Q.

Such a process, if it took place, would not violate the first law, but the prin-
ciple of increase of entropy forbids such a process because the entropy of the
reservoir would decrease by an amount |Q|/T, with no compensating increase in
the entropy of any other system. In the operation of any heat engine, there is a
heat flow out of a high-temperature reservoir and work is done, but this is not the
sole result of the process because some heat is always rejected to a reservoir at a
lower temperature.

The Clausius statement of the second law can be used to show that there is an
upper limit to the thermal efficiency of any heat engine, and to the coefficient of
performance of a refrigerator. Thus let the circle in Fig. 5-6(a) represent a Carnot
engine operating between two reservoirs at temperatures T, and T, taking in heat
|Qq| from the reservoir at the higher temperature T,, rejecting heat |Q,] to the
reservoir at the lower temperature T, and doing work W = |Q,| — |Q,|. The
thermal efficiency n = W/|Q,| is about 50%,. The rectangle at the right of the
diagram represents an assumed engine having a higher thermal efficiency than the
Carnot engine (about 75%). Let primed symbols refer to the assumed higher
efficiency engine. We assume that the engines are constructed so that each delivers
the same mechanical work and hence W' = W. The thermal efficiency of the

assumed engine is

A
10:  1os”

Since we assume that %" > #, it follows that [Q]] < |Q,]. The assumed engine
therefore takes in a smaller quantity of heat from the high-temperature reservoir
than does the Carnot engine. It also rejects a smaller quantity of heat to the Jow-
temperature reservoir, since the work, or the difference between the heats absorbed
and rejected, is the same for both engines.
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Fig. 5-6 In part (a), the circle represents a Carnot engine and the rectangle an
assumed engine having a higher thermal efficiency. If the assumed engine were to drive
the Carnot engine in reverse as a refriferular, as in part (b), the result would violate
the Clausius statement of the second law.

Because the Carnot engine is reversible (in the thermodynamic sense) it can
also be operated as a refrigerator with no change in the magnitudes of W, |Q,|, and
|Q:]. Hence let the assumed engine be connected to the Carnot engine as in Fig.
5-6(b). The system will run itself because the work output of the assumed engine
is equal to the work required to operate the Carnot refrigerator. The assumed
engine withdraws heat |Q;| from the high-temperature reservoir, while the Carnot
refrigerator delivers a larger quantity of heat [Q,] to this reservoir. Also, the as-
sumed engine rejects heat |Qj] to the low-temperature reservoir while the Carnot
refrigerator withdraws from this reservoir a larger quantity of heat |(4].

It should be evident from the diagram that a part of the heat delivered to the
high-temperature reservoir can be diverted to provide the heat input to the assumed
engine, and that the heat delivered to the low-temperature reservoir will provide a
part of the heat removed from this reservoir by the Carnot refrigerator.

The sole result of operating the composite system is then a transfer of heat
from the low- to the high-temperature reservoir, represented in Fig. 5-6(b) by
the width of the “pipeline™ at the left side of the diagram, in violation of the Clausius
statement of the second law. It follows that the assumed engine cannot exist and
that no engine operating between two reservoirs at given temperatures can have a
higher thermal efficiency than a Carnot engine operating between the same pair of
reservoirs.

The same reasoning as that above shows that no refrigerator can have a higher
coefficient of performance than a Carnot refrigerator, for two reservoirs at given
temperatures.

The statement of the second law in terms of entropy as stated in Section 5-1
was used directly to verify the Clausius and Kelvin-Planck statements of the second
law. The Kelvin-Planck statement can be used to show that the ratios of heat

O L I I T e
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flows in and out of a Carnot cycle depend only on the temperatures of the reser-
voirs between which the cycle operates. (See Problem 5-33.) This property of the
Carnot cycle was used to define entropy and thermodynamic temperature.

PROBLEMS

5-1 Suppose a temperature scale is defined in terms of a substance A such that the
efficiency of a Carnot engine operating between the boiling and melting points of this
substance (at a pressure of 1 atm) is exactly 50%. One degree on this new scale is equal to
two degrees on the Fahrenheit scale and there are 75 A-degrees between the melting and
boiling points of the substance. Determine the melting- and boiling-point temperatures of
the substance on the Kelvin scale.

5-2 Analyze a Carnot cycle for the special case of an ideal paramagnet to show that the
ratio of two empirical temperatures defined by Curie's law, 0; = Co#'[M,, is equal to
the ratio of the corresponding thermodynamic temperatures, The internal energy of an
ideal paramagnet depends on T alone; and during an adiabatic process 5#°/0; remains
constant.

p
27485 C 137085 C
Py———= 13 «
- d
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1 1
! i
I I
| |
v, V; v
Figure 5-7

5-3 Find the change in entropy of the system during the following processes: (a) 1 kg
of ice at 0°C and 1 atm pressure melts at the same temperature and pressure. The latent
heat of fusion is 3.34 x 10°J kg™ (b) 1 kg of steam at 100°C and one atm pressure
condenses to water at the same temperature and pressure. The latent heat of vaporization
is 2.26 x 10°J kg™

5-4 A system is taken reversibly around the cycle a-b-c-d-a shown in Fig. 5-7. The
temperatures ¢ are given in degrees Celsius. Assume that the heat capacities are indepen-
dent of temperature and Cpy = 8J K™ and C, = 10J K™%, (a) Calculate the heat flow
[ d'Q into the system in each portion of the cycle. According to the first law, what is the
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significance of the sum of these heat flows? (b) If ¥; =9 x 10*m? and ¥, = 20 x

102 m?, calculate the pressure difference (P, — P,). (c) Calculate the value of T

along each portion of the cycle. According to the second law, what is the significance of
the value of the sum of these integrals? (d) Suppose that a temperature T’ were defined as
the Celsius temperature plus some value other than 273.15. Would it then be true that

d
§ T? = 07 Explain.

5-5 A 50-ohm resistor carrying a constant current of I A is kept at a constant tempera-
ture of 27°C by a stream of cooling water. In a time interval of 1 s, (a) what is the change
in entropy of the resistor? (b) what is the change in entropy of the universe?

5-6 A Carnot engine operates on | kg of methane, which we shall consider to be an ideal
gas. The ratio of the specific heat capacities y is 1.35. If the ratio of the maximum volume

to the minimum volume is 4 and the cycle efficiency is 257, find the entropy increase of
the methane during the isothermal expansion.

f |
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Figure 5-8

5-7 The circle in Fig. 5-8 represents a reversible engine. During some integral number of
complete cycles the engine absorbs 1200 J from the reservoir at 400 K and performs 200 J
of mechanical work. (a) Find the quantities of heat exchanged with the other reservoirs,
and state whether the reservoir gives up or absorbs heat. (b) Find the change in entropy
of each reservoir. (c) What is the change in entropy of the universe?

5-8 One kilogram of water is heated reversibly by an electric heating coil from 20°C to
80°C. Compute the change in entropy of (a) the water, (b) the universe. (Assume that
the specific heat capacity of water is a constant.)

5-9 A thermally insulated 50-ohm resistor carries a current of 1 A for I's. The initial
temperature of the resistor is 10°C, its mass is 5 g, and its specific heat capacity is
850 J kg™ K. (a) What is the change in entropy of the resistor? (b) What is the change
in entropy of the universe?

5-10 The value of ¢, for a certain substance can be represented by ¢, = a + bT. (a)
Find the heat absorbed and the increase in entropy of a mass m of the substance when its
temperature is increased at constant pressure from T, to T,. (b) Using this equation and
Fig. 3-10, find the increase in the molal specific entropy of copper, when the temperature
is increased at constant pressure from 500 K to 1200 K.

5-11 A body of finite mass is originally at a temperature T;, which is higher than that of
a heat reservoir at a temperature T,. An engine operates in infinitesimal cycles between
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the body and the reservoir until it lowers the temperature of the body from T3 to T;. In
this process there is a heat flow Q out of the body. Prove that the maximum work obtain-
able from the engine is @ + Ty(S; — S,), where §; — S, is the decrease in entropy of the
body.

5-12 On asingle T-S diagram, sketch curves for the following reversible processes for an
ideal gas starting from the same initial state: (a) an isothermal expansion, (b) an adiabatic
expansion, (c) an isochoric expansion, and (d) an isochoric process in which heat is added.

TIK)

-
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£

Figure 5-9

5-13 A system js taken reversibly around the cycle a-b-c-d-a shown on the T-5 diagram of
Fig. 5-9. (a) Does the cycle a-b-c-d-a operate as an engine or a refrigerator? (b) Calculate
the heat transferred in each process. (c) Find the efficiency of this cycle operating as an
engine graphically as well as by direct calculation. (d) Whal is the coefficient of perfor~
mance of this cycle operating as a refrigerator?

5-14 Show that if a body at temperature T} is brought in contact with a heat reservoir at
temperature T, < T), the entropy of the universe increases. Assume that the heat capacity
of the body is constant.

5-15 Suppose the heat capacity of the body discussed in Section 5-6 is 10J K~ and
T, = 200 K. Calculate the changes in entropy of the body and of the reservoir if (a)
T, = 400 K, (b) T, = 600 K, (c) T; = 100 K. (d) Show that in each case the entropy of
the universe increases.

5~16 (a) One kilogram of water at 0°C is brought into contact with a large heat reservoir
at 100°C. When the water has reached 100°C, what has been the change in entropy of the
water, of the heat reservoir, and of the universe? (b) If the water had been heated from
0°C to 100°C by first bringing it into contact with a reservoir at 50°C and then with a
reservoir at 100°C, what would have been the change in entropy of the universe? (c)
Explain how the water might be heated from 0°C to 100°C with no changeinthe entropyof
the universe.

5-17 Liquid water having a mass of 10 kg and a temperature of 20°C is mixed with 2 kg
of ice at a temperature of ~5°C at | atm pressure until equilibrium is reached. Compute
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the final temperature and the change in entropy of the system. [c,.(water) = 4.18 x
100 J kg™ K eplice) = 2,09 x 10°J kg ' K™, and /;, = 3.34 x 10°) kgL.]

5-18 Construct a reversible process to show explicitly that the entropy increases during a
free expansion of an ideal gas,

5-19 What are the difficulties in showing explicitly that the entropy of an ideal gas must
increase during an irreversible adiabatic compression.

5-20 Two identical finite systems of constant heat capacity Cp are initially at tempera-
tures T, and T, where Ty > T. (a) These systems are used as the reservoirs of a Carnot
engine which does an infinitesimal amount of work d'W in each cycle. Show that the final
equilibrium temperature of the reservoirs is (T;73)"/%. (b) Show that the final temperature
of the systems if they are brought in contact in a rigid adiabatic enclosure is (T; + Ty)/2.
(c) Which final temperature is greater? (d) Show that the total amount of work done by
the Carnot engine in part (a) is Cp.(T)’® — T{/*)%. (e) Show that the total work available
in the process of part (b) is zero,

5-21 A mass m of a liquid at a temperature T is mixed with an equal mass of the same
liquid at a temperature T;. The system is thermally insulated. Show that the entropy
change of the universe is

71 + Ty)2

2mecp In (-—1 — 2

VTl

and prove that this is necessarily positive.

5-22 One mole of monatomic ideal gas initially at temperature T; expands adiabatically
against a massless piston until its volume doubles. The expansion is not necessarily
quasistatic or reversible. It can be said, however, that the work done, the internal energy
change, and the entropy change of the system, and the entropy change of the universe
must fall within certain limits. Evaluate the limits for these quantities and describe the
process associated with each limit.

5-23 When there is a heat flow out of a system during a reversible isothermal process,
the entropy of the system decreases. Why does this not violate the second law?

5-24 Show that (9s/3T), > 0 for all processes where x is an arbitrary intensive or
extensive property of the system.

5-25 Use Fig. 5-10 to show that whenever a system is taken around a closed cycle, the
sum of the heat flow Q; divided by the reservoir temperture T} for each process is less than
or equal to zero; i.e.,

Q;
=<0, -
> T, < (5-18)

This is the Clausius inequality. [Hint: Arrange for 0, = Q, and Q; = @, and use the
Kelvin-Planck statement of the second law.]

5-26 (a) In the operation of a refrigerator, there is a heat flow out of one reservoir at a
lower temperature and a heat flow into a second reservoir at a higher temperature.
Explain why this process does not contradict the Clausius statement of the second law.
(b) In the operation of a heat engine, there is a heat flow Q out of a reservoir, and
mechanical work W is done. Explain why this process does not violate the Kelvin-Planck
statement of the second law.
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Figure 5-10

5-27 An inventor claims to have developed an engine that takes in 107 J at a temperature
of 400 K, rejects 4 x 10°J at a temperature of 200 K, and delivers 3.6 x 10°J of
mechanical work. Would you advise investing money to put this engine on the market?
How would you describe this engine?

5-28 Show that if the Kelvin-Planck statement of the second law were not true, a vio-
lation of the Clausius statement would be possible.

5-29 Show that if the Clausius statement of the second law were not true, a violation of
the Kelvin-Planck statement would be possible.

5-30 Assume that a certain engine has a greater efficiency than a Carnot engine operating
between the same pair of reservoirs, and that in each cycle both engines reject the same
quantity of heat to the low-temperature reservoir. Show that the Kelvin-Planck state-
ment of the second law would be violated in a process in which the assumed engine drove
the Carnot engine in the reversed direction as a refrigerator.

Figure 5-11
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5-31 Show that no refrigerator operating between two reservoirs at given temperatures
can have a higher coefficient of performance than a Carnot refrigerator operating between
the same two reservoirs.

$-32 In Fig. 5-11, abed represents a Carnot cycle, bounded by two adiabatics and by
two isotherms at the temperatures T; and T, where Ty > T,. The oval figure is a revers-
ible cycle for which T; and T',are, respectively, the maximum and minimum temperatures,
In this cycle, heat is absorbed at temperatures less than or equal to T; and is rejected at
temperatures greater than or equal to T,. Prove that the efficiency of the second cycle is
less than that of the Carnot cycle. [Hint: Approximate the second cycle by a large number
of small Carnot cycles.]

5-33 Starting from either the Kelvin-Planck or the Clausius statement of the second law,
show that the ratio |Qql/IQ,| must be the same for all Carnot cycles operating between the
same pair of reservoirs, [Hini: Arrange for a heat flow Q from a Carnot engine to a reservoir
in n cycles and have the same heat flow into a Carnot refrigerator operating between the
same reservoirs in m cycles where n and m are integers.]
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6-1 INTRODUCTION

We now combine the first and second laws to obtain several important thermo-
dynamic relations. The analytical formulation of the first law of thermodynamics,
in differential form, is

d'Q =dU +d'W. (6-1)
The second law states that for a reversible process between two equilibrium states,
d'Q, = Tds. (6-2)
Also, the work in a reversible process, for a PV'T system, is
d'W = PadV. (6-3)
It follows that in any infinitesimal reversible process, for a PF'T system,
TdS =dU + PdV. (64)

Equation (6-4) is one formulation of the combined first and second laws for a PVT
system. For other systems, such as a stretched wire or a surface film, the ap-
propriate expression for the work replaces the term P d¥.

Although Egs. (6-2) and (6-3) are true only for a reversible process, it is
important to realize that Eq. (6-4) is not restricted to a process at all, since it
simply expresses a relation between the properties of a system and the differences
between the values of these properties, in two neighboring equilibrium states.
That is, although we made use of a reversible process to derive the relation between
dS, dU, and d¥, once we have determined what this relation is it must be true for
any pair of neighboring equilibrium states, whatever the nature of a process between
the states,| or even if no process at all takes place between them.

Suppose a system undergoes an irreversible process between two equilibrium
states. Then both Eqs. (6-1) and (6-4) can be applied to the process, since the
former is correct for any process, reversible or not, and the latter is correct for any
two equilibrium states, However, if the process is irreversible, the term T'dS in
Eq. (6-4) cannot be identified with the term @'Q in Eq. (6-1), and the term P dV
in Eq. (6-4) cannet be identified with the term 4'W in Eq. (6-1). As an example,
consider an irreversible process in which adiabatic stirring work d'W is done on a
system kept at constant volume. The entropy of the system increases so 77dS # 0,
but d’Q = 0 because the process is adiabatic. Also, P dV = 0 because the process
is at constant volume, while d'W = 0.

A large number of thermodynamic relations can now be derived by selecting
T and v, T and P, or P and v as independent variables. Furthermore, since the
state of a pure substance can be defined by any two of its properties, the partial
derivative of any one property with respect to any other, with any one of those
remaining held constant, has a physical meaning, and it is obviously out of the
question to attempt to tabulate all possible relations between all of these deriva-
tives. However, every partial derivative can be expressed in terms of the coefficient

b
by

*
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of volume expansion g = (1/v)(80/2T)p, the isothermal compressibility « =
—(1/0)(90[P)g, and cp, together with the properties P, v, and T themselves, so
that no physical properties of a substance other than those already discussed need
be measured. A derivative is said to be in standard form when it is expressed in terms

of the quantities above.

Once the partial derivatives have been evaluated, the results can be collected
in a systematic way devised by P. W, Bridgman*, so that when a particular deriva-
tive is needed, it is not necessary to calculate it from first principles. The procedure

is explained in Appendix A.
We next demonstrate the general method by which the derivatives are evaluated,

and work out a few relations that will be needed later,

6-2 T AND v INDEPENDENT

Let us write our equations in terms of specific quantities, so that the results are
independent of the mass of any particular system and refer only to the material of
which the system is composed. From the combined first and second laws, we have

1
ds = —(du + P dv),
s T(u v),

and considering u as a function of T and v,

_ (8u du
au = (B ar + (G} ©9

= 25wk + 2 G+ 7]
ds (BT a‘T+T Bur+P do,

But we can also write,

e ( :;,) aT + (3‘) doi (6-6)

Note that one could not carry out a corresponding procedure on the basis of
the first law alone, which states that

d'qg = du + d'w.
dq= ar d
. (ar * e

because g is not a function of Tand », and d"g is not an exact differential. It is only
because s is an exact differential that we can express it in terms of d7 and dv.

Therefore

One cannot write

* Percy W. Bridgman, American physicist (1882-1961).
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Since dT and dv are independent, their coefficients in the preceding equations
must be equal. Therefore

(55 75 ©
(k= 7ol 7 o4}

Furthermore, as shown in Section 2-10, the second derivatives of s and u with
respect to T and v (the “mixed” second-order partial derivatives) are independent
of the order of differentiation. Thus:

HEIRE AR
aThlr T\dv/rle wdT aT v’

Hence from Eqs. (6-7) and (6-8), differentiating the first partially with respect
to v and the second with respect to T, we obtain

;as’;r T g"l:au + (gg)-] B # [(%)r+ P]’
which simplifies to
@-rEr-2or e

The dependence of internal energy on volume, at constant temperature, can there-
fore be calculated from the equation of state, or from the values of g, «, T, and P.
Since (du/dT), = ¢,, Eq. (6-5) may now be written:

du = e, dT + [ (g; )' .P:l do. (6-10)

Hill and Lounasmaa have measured the specific heat capacity at constant volume and
the pressure of liquid He* as a function of temperature between 3 and 20 K and for a
range ¢ of rlens:tlu.' The data for ¢, and P are shown on Figs. 6-1(a) and 6-1(b),
d as a function of a reduced density p, which is the ratio of the actual density of
Het to its density at the critical point, taken by them to be 68.8 kg m™%. The molal

specific volume is, then, 0.0582/p, m® kilomole™,
For example, at a temperature of 6 K and a pressure of 19.7 atm, p, = 2.2,
thus » = 2,64 x 10~ m?kilomole™?. The isothermal compressibility of He at 6 K
and 19.7 atm can be found to be 9.42 x 107* m* N~ by measuring the slope of the
6 K isotherm at 19.7 atm and dividing by p, = 2.2. The value of the expansivity
B = 535 x 1072 K~ is calculated by dividing the fractional change of the reduced
density along the 19.7 atm isobar as the temperature is varied by £1 K and dividing

by the temperature change.
*R. W. Hill and O. V. Lounasmaa, Philosophical Transactions of the Royal Society of
London, 252A, (1960): 357. Actually (3P/aT), was also directly measured, making it
ible to calculate all the thermodynamic properties of He! exoepl ¢p to an accuracy of
% by direct numerical integration of the data. Data used by permission.
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Fig. 6-1 (a) The specific heat capacity at constant volume and (b) the pressure of He*asa
function of reduced density at temperatures between 3 and 20 K. Each curve is marked
with the temperature in kelvins. The reduced density p, is the ratio of the actual density of
He" to 68.8 kg m™3, The dashed lines are the tangents to the 6 K isotherm at g, = 2.2, The
experiments were performed by Hill and Lounasmaa. (These figures are reprinted by
permission from O. V. Lounasmaa’s article, “The Thermodynamic Properties of Fluid
Helium, Philosophical Transactions of the Royal Society of London 252A (1960): 357
(Figs. 4 and 7).)

These data can be used to calculate (/) by Eq. (6-9):

W\ TH (6)(5.35 x 1079 =
(a_u), = - p = ST S 1970101 X 109 = 142 X 1090 o,

By using values of (2u/dv)p and ¢,, determined at various temperatures and densities,
Eq. (6-5) can be integrated numerically to obtain values of the change in internal
energy.

In Section 4-2, using the first law alone, we derived the equation

e (@A o

Making use of Eq. (6-9), we see that

S T(%‘e).(:_;')f &, (6-12)

K
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Thus the difference ¢, — ¢, can be calculated for any substance, from the equation
of state or from § and x. The quantities, T, v, and « are always positive, and
although # may be positive, negative, or zero (for water, it is zero at 4°C and is
negative between 0°C and 4°C), f* is always positive or zero. It follows that ¢
is never smaller than c,.

Using the data for He! given above,

A 2 02
g 1:2":’(;? X 107 4810 J kilomole= K1,
Since ¢, is measured to be 9950 J kilomole™* K™ at 6 K and p, = 2.2,
cp = 14,760 J kilomole™ K™,

Even at these low temperatures (cp — ¢,)/c, = 48 percent.

Let us now return to the expressions for (@s/07), and (ds/0v)y in Eqs. (6-7)
and (6-8). Using Eq. (6-9) and the fact that (9u/dT), = c,,

os\ ¢
(a'r)._ T )
and |
as\ _ (aP
(Bu)r_ (ar); =M
Therefore from Eq. (6-6),
€ a
ds=—d —)dv,
s=riTH (ar At
or
Tds = ¢, dT + r(g—‘;)d». (6-15)

For liquid He* at 6 K and 19.7 atm,
as 9950
il i i -1 K2
(ET). 3 1.66 x 10°J kilomole™! K-2,

and
s’ 535 x 10

it} -1 -9

(Bu)( 942 x 10 568 x 1°JK'm™3,

Using the values of these quantities determined at various temperatures and densities,
Egq. (6-6) or Eq. (6-15) can be numerically integrated to yield values of the entropy as
a function of temperature and volume.

Finally equating the mixed partial second derivatives of s with respect to »

and T, we get
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For any substance for which the pressure is a linear function of temperature at
constant volume, (3*P/dT%), = 0 and ¢, is independent of volume, altough it
may be dependent on temperature,

The value for (2¢,/2v)p for He! is calculated by measuring the slope of the 6 K iso-
therm on Fig. 6-1(a) at p, = 2.2, The slope, (3c,/3p,)y, is related to (dc,/2v)p by

ac, 3:, aF'r

W \apfe\o o
The value for (2°P/2T?), for re* is estimated by calculating values for the change in
pressure as the temperature is changed by 1 K, keeping p, constant at 2.2, and

measuring the slope of the curve obtained by plotting these values of AP/AT versus
T. This process yields a value of T(3*P/2T?), which is close to 1.7 x 10°J K~ m™,

AN il
('é';,),-m"'” 1087 K™ 'm™3,

6-3 T AND P INDEPENDENT
In terms of the enthalpy A = u + P, the combined first and second laws can be
written,

- %_(dh - vdP),

and considering / as a function of T and P,

dh = (%)Pdr % (%)TJP. (6-17)
Therefore
a5 = 2(Gper + 2 (P e»
But
ds = ( ) (E—P) dp, (6-18)
and hence
(:;") i (%‘) (6-19)

(5eh= 7GR ] o

Equating the mixed second-order partial derivatives of s, we find that

@@ pren o
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which is the analogue of Eq. (6-9). The dependence of enthalpy on pressure, at
constant temperature, can therefore be calculated from the equation of state, or
from f, v, and T,

Since (84/8T)p = cp, Eq. (6-17) can be written,

dh = cpdT — [r(:—;)‘n— v] dp. 6-22)

Using Eq. (6-21) and the fact that (64/éT)p = cp, the partial derivatives of s
with respect to T and P are

3:) cp
—] ==£, 6-23
(ar e T €2
&) - _(22) 6-24
(ar T ar/e’ e
Hence
TdS =cpdT — T(ﬁ'i) dP, (6-25)
aT/e
and
ac,,) (a'u)
—_—] =-T|—]). 6-26
(BP r aT/p 2%
Continuing with our ple of liquid He* at 6 K and 19.7 atm

(:_f’),- (2.64 x.107%)[~(5.35 x 107%)(6) + 1] = 1.79 x 10~* m? kilomole™1,

Similarly
14760
(ai) =22 = 2460 ] kilomole K~2,
aT/le 6
and

(:_;‘.)r- ~(5.35 x 107%)(2.64 x 107%) = —=14.1 x 10~ m?kilomole™! K1,

6-4 P AND v INDEPENDENT
It is left as an exercise to show that if P and v are considered independent, we can

write
(e 26055 @)
G- 7675 2

Tdsm cp(aa—D’du + c,(g—i) dP. (6-29)
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For liquid He®,
a5
e ¥ -3 md ki -1 K1
(ap), 2.92 x 107¥m? kilomole™ K1,
and

2
(-55) = 174 x 1007 K- m"2,
v /P

6-5 THE Tds EQUATIONS

The three expressions for T'ds derived in the preceding sections are collected
below:

oP
Tds = ¢, dT T(-—)d,
s =, - Pkl (6-30)
an)
Tds =cpdT — T|{—) dP, 6-31
=t (3?9 &0
Tds = cp(a_r) dv+ ¢ (-@* dP. (6-32)
dv/p *\ ol

These are called the “7Tds" equations. They enable one to compute the heat
flow d'g, = T'ds in a reversible process; and when divided through by T, they
express ds in terms of each pair of variables. They also provide relations between
pairs of variables in a reversible adiabatic process in which s is a constant, and
ds = 0.

The increase in temperature of a solid or liquid when it is compressed adia-
batically can be found from the first T ds equation. In terms of 8 and x, we have

Tds =0=¢,dT, +Edo,,
K

dT, = — ‘a—Td'v,. (6-33)
Ke,
If the volume is decreased, dv, is negative and 47, is positive when £ is positive,
but is negative when f is negative. Thus while ordinarily the temperature of a
solid or liquid increases when the volume is decreased adiabatically, the tempera-
ture of water between 0°C and 4°C decreases in an adiabatic compression.
If the increase in pressure, rather than the decrease in volume, is specified,
the temperature change can be found from the second T ds equation:

Tds =0 = cpdT, — foT dP,,

at, = 2T ap, (6-34)
cp
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If § is positive, the temperature increases when pressure is applied. Hence if
it is desired to keep the temperature constant, there must be a heat flow out of the
system. This heat flow can also be found from the second T'ds equation, setting
dT = 0 and T'ds = d'qp. Thus

d'qp = —poT dPy. (6-35)
Comparison of Eqs. (6-34) and (6-35) shows that for a given change in pressure
the heat flow in an isothermal process equals the temperature rise in an adiabatic
process, multiplied by the specific heat capacity at constant pressure.

Consider an adiabatic compression of 10~? kilomole of liquid He* which decreases the
volume by 1%, Assume that for He', 8, T, «, ¢, and ¢p remain essentially constant
during the compression. Then by Eq. (6-33)
(5.35 x 107%)(6)(2.64 x 1075)
(9.42 x 107%)(9.95 x 10%)

Similarly if the pressure on 10~ kilomole of He? is increased by 1%, by Eq. (6-34)

(535 % 1079(2.64 X 10-5(6)(19.7)(1.01 x 109(01) .
arT, = R =11 x 10K,

Helium is a rather soft solid, for which fis large and « is small. Even so, the tempera-
ture changes during adiabatic processes are very small. For gases the temperature
changes during an adiabatic process can become significant.

The heat which must flow out of the same sample of He! in order to keep the
temperature constant during an isothermal process for the same change in volume is

d T P dom = (6)(5.35 x 107%)(2.64 x 10~-%)(.01)
E P A 942 x 10-° =
For an isothermal increase in pressure,

d'gp = —(5.35 + 1079)(2.64 x 10-5)(6)(19.7)(1.01 x 105)(.01)
= —0.17 J kilomole™,

(=01) =9 x 10°K.

[

=0.9 J kilomole™2,

The pressure needed to decrease the volume of a substance adiabatically is
found from the third T ds equation:

KC,, cp
Tds=0=—dP, + —dy,,
B Bv

1 ( 6u) G
A P el (6-36)
It will be recalled that the compressibility « is the isothermal compressibility, de-
fined by the equation

and hence
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The left side of Eq. (6-36) defines the adiabatic compressibility, which we shall
write as x,. (To be consistent, the isothermal compressibility should have been
written xz; we will continue to use x, however.) Denoting the ratio cp/c, by , Eq.
(6~36) becomes .

K==, (6-37)
y

Since cp is always greater than (or equal to) ¢,, ¥ is always greater sthaﬂ (or
equal to) unity even for a solid or liquid, and the adiabatic compressibility is
always less than (or equal to) the isothermal compressibility. This is natural,
because an increase in pressure causes a rise in temperature (except when 8 = 0)
and the expansion resulting from this temperature rise offsets to some extent the
contraction brought about by the pressure. Thus for a given pressure increase
dP, the volume change dv is less in an adiabatic than in an isothermal compression
and the compressibility is therefore smaller.

When a sound wave passes through a substance, the compressions and rare-
factions are adiabatic rather than isothermal. The velocity of a compressional
wave, it will be recalled, equals the square root of the reciprocal of the product of
density and compressibility, and the adiabatic rather than the isothermal com-
pressibility should be used. Conversely, the adiabatic compressibility can be deter-
mined from a measurement of the velocity of a compressional wave and such
measurements provide the most precise method of determining the ratio cp/e,.

For our example of liquid Het, y = 14760/9950 = 1.48 and p = 4/2.64 x 107 =
162 kg m™% Therefore the velocity of sound is given by
1.48 e
- =3 -1
v |:l62(9.43 = 10)":' 311 x 10°ms

This is about 10%; lower than an extrapolation of sound velocity data taken at 20 atm
below 4.5 K would yield.

6-6 PROPERTIES OF A PURE SUBSTANCE

The general relations derived in the preceding sections can be used to compute the
entropy and enthalpy of a pure substance from its directly measurable properties,
namely, the P-v-T data and the specific heat capacity at constant pressure cp.
Since temperature and pressure are the quantities most readily controlled experi-
mentally, these are the variables usually selected. We have, from the second T ds

equation, Eq. (6-31),
cp 80)
=2ar - (Z) ap,
- T (ar P
and from Eq. (6-22),

a») ]
dh = ¢pdT = T|=) | dP.
o [” (aT P,
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Let 5, and 4, represent the entropy and enthalpy in an arbitrary reference
state Py, v, and Ty Then

T Pl oo
=| Z2ar—| (=) dP + 5, 6-38
¥ 7, T ar jp.(aT)p T 38
and
T P o
h =f ¢pdT +f [u - T(—) ] dP + hy. (6-39)
T, Py aT/p.

Fig. 6-2 Integration paths used in evaluation of
entropy.

Since 5 and 4 are properties of a system, the difference between their values in
any two equilibrium states depends only on the states and not on the process by
which the system is taken from the first state to the second. Let us therefore evaluate
the first integrals in each of the preceding equations at the constant pressure £, and
the second integrals at a constant temperature 7. The paths of integration are
illustrated in Fig. 6-2. The vertical height of point a above the P-T plane represents
the entropy s, at the reference pressure P, and the reference temperature 7.
Curve ab is the first integration path, at the constant pressure P,. The first integral
in Eq. (6-38) is represented by the length of the line segment be. Curve bd is the
second integration path, at the constant temperature 7, and the second integral is
represented by the length of the line segment be. The vertical height of point d
above the P-T plane represents the entropy s at the pressure P and temperature 7.
The change in entropy of the system as it is taken from state a to state d is just the
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difference in the vertical heights of a and d above the P-T plane. In practice, other
integration paths are often used because they simplify the treatment of experi-
mental data.

In evaluating the first integral, we must use the specific heat capacity at the
reference pressure Py, or ¢p,. This, of course, must be expressed as a function of
temperature. The coefficient of 4P in the second integral must be expressed as a
function of P, at the constant temperature T,

Experimental data on ¢ are often available only at a pressure P different from
the reference pressure P,. Equation (6-26) can then be used to compute ¢p, from
cpand the P-p-T'data. Integrating Eq. (6-26) at the constant temperature T, we get

i
e, = e+ T (T7) ar. (40

Thus the entropy and enthalpy of a system can be determined from a knowledge
of its equation of state and of its specific heat capacity as a function of temperature,
both of which can be measured experimentally.

6-7 PROPERTIES OF AN IDEAL GAS
The integrals in Eqs. (6-38), (6-39), and (6-40) are readily evaluated for an ideal
gas. We have

v = RT/P, (0/0T)p = R/P, (9%[2T%p =0.

Hence, from Eq. (6-40) the value of ¢p is the same at all pressures, and cp isa
function of temperature only. The entropy and enthalpy are then

s r"’dr PP (6-41)
T, T T
- o

h -_f cpdT + hy. (6-42)
T'

Over a temperature range in which ¢p can be considered constant, these
simplify further to :
smepinZ —RInL 4 5, (6-43)
o Py
h=cplT = T) + h. (6-44)
The quantities s, and /i, are arbitrary values that may be assigned to s and 4 in the

reference state Ty, Py.
The entropy as a function of temperature and volume, or of pressure and

volume, can now be obtained from the equation of state, or by iutegratioln of the
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first and third T ds equations. We give the results only for a range of variables in
which the specific heat capacities can be considered constant:

smelnl 4+ RInS 45 (6-45)
Ty Vo

s-c,iu—g-i-cplni{-i-s.. (6-46)
| P, Uo

The internal energy u, as a function of T"and P, is

u=~h-—Pv

- o
=I ¢pdT + hy — RT.
T‘

Since for an ideal gas, cp = ¢, + R, this can be written
T
u =f ¢y dT + uy, (6-47)
Tﬂ

where u, is the internal energy in the reference state. This equation could have been
obtained more simply by the direct integration of Eq. (6-10). The method above
was used to illustrate how u can be obtained from 4 and the equation of state.
Since for an ideal gas, ¢,, (like ¢p), is a function of temperature only, the internal
energy is a function of temperature only. If ¢, can be considered constant, then

u=c(T =Ty + U (6-48)

To find the equation of a reversible adiabatic process, we can set s = constant
in any expression for the entropy. Thus from Eq. (6-46),

¢,In P 4 ¢pln v = constant
In P% + In v°# = constant
Pu#’® = constant,
a familiar result.
The heat absorbed in a reversible process can be found from any of the 7' ds
equations, setting T'ds = d'q. Thus in a reversible isothermal process, from the

first T ds equation,
d'gp = Pdvy.

6-8 PROPERTIES OF A VAN DER WAALS GAS

We next make the same calculations as in the preceding section, but for a van der
Waals gas. These serve to illustrate how the properties of a real gas can be found
if its equation of state and if its specific heat capacity are known. A van der Waals

|
|
|
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gas has been selected because of its relatively simple equation of state,
(p + 1,)(» — b) = RT.
v

The expressions for the properties of a van der Waals gas are simpler if T and v,
rather than T and P, are selected as variables. From the first T'ds equation,

'R 2
ds = 2ar + (a;)‘du.

(330 o

since P is a linear function of 7. That is, ¢, is a function of temperature ohly and
does not vary with the volume at constant temperature,
From the equation of state,

(-2
8T/ V—'b.

Then if s, is the entropy in a reference state Py, vy, Ty, we have

From Eq. (6-16),

r
c, v—>b
5= —'dT-l-RIu( )+:.
fr, T vy — b 2
If ¢, can be considered constant,
PR 18 Rln(ﬂ—-“-—b) o (6-50)
T vp— b

The internal energy is obtained from Eq. (6-10),

aP) :[
du = ¢, dT + |T(=—=)— P|d
=T +[(ar.. !

=¢,dT + E-’ do.
v
If u, is the energy in the reference slate,
T
u =J‘ c,dT—a(-l-—l) + up
LA v o

and if ¢, is constant,

w=efT —T)) - a(% - ;‘-.) + 4 (6-51)
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The internal energy of a van der Waals gas therefore depends on its specific volume
as well as on its temperature. Note that only the van der Waals constant a appears
in the energy equation. The reason is that this constant is a measure of the force
of attraction between the molecules, or of their mutual potential energy. which
changes as the specific volume changes and the intermolecular sep on in

or decreases. The constant b is proportional to the volume occupied by the mole-
cules themselves and does not affect the internal energy. It does, however, enter
into the expression for the entropy because the entropy of a gas depends on the
volume throughout which its molecules are dispersed, and the fact that the
molecules themselves occupy some space makes the available volume less than the

volume of the container.
The difference between the specific heat capacities, from Eq. (6-12), is

fiTv 1

-, = e == R —
e T T 2 —by
RTY

The second term in the denominator is a small correction term, so in this term we
can approximate (v — b) by v, and assume that Pv = RT. Then, approximately,

- e R(l + ;f:,) (6-52)

The constant a for carbon dioxide is 366 x 10° J m? kilomole™; and at a pressure
of | bar = 10° N m™® and a temperature of 300 K,

2aP
w10

so that within 1 percent, cp — ¢, = R.

The relation between T and v, in a reversible adiabatic process, is obtained by
seiting s = constant. If we assume ¢, = constant, then from Eq. (6-50),
¢,InT + Rin (v — &) = constant,

& T(v — b)®'* = constant. (6-53)
The heit absorbed in a reversible isothermal process, from the first T'ds
equation, is

d'qy = RT—d'-{-;
Since the change in internal energy is

du,vnag;o,
v

(t



69 PROPERTIES OF A LIQUID OR SOLID UNDER HYDROSTATIC PRESSURE 163

the work d'w, from the first law, is
RT a
", = d' - d = [=————=]d =Pd';
dwe = da = dur = (5 = 5) o= e
and in a finite process,

»=RTI2=D 4 a(l - -'-). (6-54)
=0 v

6-9 PROPERTIES OF A LIQUID OR SOLID UNDER HYDROSTATIC
PRESSURE
The expressions for the properties of a liquid or solid under hydrostatic pressure
can be obtained by introducing f, «, and ¢p in the general equations as functions
of Tand P, Tand v, or P and v. We shall, however, consider only the special case
in which £ and x can be assumed constant.
Let us first obtain the equation of state of a solid or liquid under hydrostatic

pressure. We have
do (a:r) dT + (a.,) dP = BodT — xvdP.

Therefore
P
“ kv dP,

<Py

T
V=1 +J. pvdT —
T.

where v, is the specific volume at the temperature T, and the pressure P,. The
first integral is evaluated at the pressure P, and the second at the temperature T.
Because of the small values of # and « for liquids and solids, the specific volume »
will change only very slightly, even with large changes in 7 and P. Hence only a
small error will be made if we assume v to be constant in the integrals and equal
to v,. Then if #and « are constant also, we have the approximate equation of state

v = o[l + (T — Tp) — «(P — Py)]. (6-55)
The entropy as a function of T and P can be found from the second T'ds
equation:
i[5,
=| —dT dP + 6-56
' fr, T P,\OT, » (6-56)

Following the procedure described in Section 6-6 and Fig. 6-2, we evaluate
the first integral at the pressure P, (so that cp = cp ) and the second at the tem-
perature T. If cp has been measured at atmospheric pressure P, then from Eq.

-4 P oo
tp, = ¢Cp +fp,(5T—l;)de
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From the alpprox!mntc equation of state, given in Eq. (6-55),
& )
=) = —) =0
(3T)p Poon (ar’

Hence, to within the approximation that § can be considered constant, we can

assume that ¢, is equal to its value ¢ at atmospheric pressure, and can be taken

outside the integral sign in Eq. (6-56).
Replacing (dv/8T)p in Eq. (6-56) by the constant fv,, which can also be taken
outside the integral sign, we have the approximate expression for the entropy:

5= cﬂn% — Buo(P — Py) + 5. . (6-57)
°

The enthalpy can be calculated from Eq. (6-39), replacing (dv/dT)p by fu,.

The difference ep — ¢, is
B*Tv

Cp— 6=
For copper at 1000 K,
B=~6x 10K, v=~72 x 107°mkilomole~?,
w210 x 1072 m? N3,

and hence
cp = ¢, = 4300 J kilomole™? K~!

which equals 0.52R and is in good agreement with the graphs of ¢p and ¢, in Fig.
3-10. At lower temperatures, both f and T are smaller, and below about 350 K,

¢p and ¢, are practically equal.

6-10 THE JOULE AND JOULE-THOMSON EXPERIMENTS

The experiments of Gay-Lussac and Joule, and of Joule and Thomson, were
described in Section 4-5 where, on the basis of the first law alone, we derived the

equations : (aa_T) =— l(a_u) ?

w= (k- oo
‘We have now shown from the combined first and second laws that the quantities

(0u/dv)y and (0h/0P)p can be calculated from the equation of state of a system
through Egs. (6-9) and (6-21):
ar)
Tf—])—P
(aT !

(-
(5pl= -Gt
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For a van der Waals gas,

(k=

(af.) _ RTo% — 2au(0 — b)*

9P/t RTv* — 2a(v — b)* *
Hence in a Joule expansion of a van der Waals gas,

” (é‘l') S 1
" vl e’

and in a finite change in volume (dropping the subscript u for simplicity)

n-n=41-1). (6-58)
o\l Uy
Thus for a given change in specific volume, the expected temperature change is
proportional to the van der Waals constant a, which is a measure of the attractive
force between the molecules. For an ideal gas, a = 0 and the temperature change
is zero. Because v, is necessarily larger than v, T, is less than T, for all real gases,
In a Joule-Thomson expansion of a van der Waals gas

1 RTv'b — 2av(v — b)?
=== ————
i (aD. cp RTV — 2a(o — b)' <

The inversion curve in Fig. 4-4(b) is the locus of points at which (27/aP), = 0,
and the temperature at such a point is the inversion temperature, T;. Hence,
setting (8T/@P), = 0 in Eq. (6-59), we obtain the equation of the inversion curve
of a van der Waals gas,

2a(v — b)*
A Rb -

The relation between T; and the corresponding pressure P; is obtained by
eliminating v between this equation and the equation of state. The resulting curve
has the same general shape as those observed for real gases, although the numerical
agreement is not close.

When the Joule-Thomson effect is to be used in the liquefaction of gases, the
gas must first be cooled below its maximum inversion temperature, which occurs
when the pressure is small and the specific volume is large. We can then ap-
proximate (v — &), in Eq. (6-60), by v, and for a van der Waals gas,

Ti(max) = %% . (6-61)

Reference to Table 2-1 will show that the values of b (which is measure of
molecular size) are nearly the same for all gases, so that maximum value of 7, for
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a van der Waals gas is very nearly proportional to a. Table 6-1 list values of
2a[Rb for carbon dioxide, hydrogen, and helium; and for comparison, the observed
values of T; are also given. The agreement is surprisingly good. In order to be
cooled in a Joule-Thomson expansion, hydrogen must be precooled to about
200 K, which is usually done with the aid of liquid nitrogen. Helium must be
cooled to about 40 K and that can be accomplished with liquid hydrogen or by
allowing the helium to do adiabatic work.

Table 6-1 Calculated and observed values of the maximum inversion
temperature

a b
Gas | (5 3 gilomole™?) | (m® kilomole—t)y | 20/RE | Ti(max)

Co, 366 x 10° 0429 2040K ~1500 K
H, 24.8 0266 224K 200K
He 3.44 0234 35K ~40 K

6-11 EMPIRICAL AND THERMODYNAMIC TEMPERATURE
In Section 5-2, thermodynamic temperature T was defined by the equation

T = A¢(6), (6-62)

where A is an arbitrary constant and ¢(6) is a function of the empirical tempera-
ture 0 as measured by a thermometer using any arbitrary thermometric property.
The form of the function ¢(8) need not be known, however, to determine the tem-
perature T of a system, because it follows from the definition above that the ratio
of two thermodynamic temperatures is equal to the ratio of the quantities of heat
absorbed aI:i rejected in a Carnot cycle. In principle, then, the thermodynamic
temperature of a system can be determined by measuring these heat flows; and, in
fact, this procedure is sometimes followed in experiments at very low temperatures.

We now show how the function ¢(0) can be determined for any gas ther-
mometer filled to a specified pressure Py at the triple point, so that T can be found
from Eq. (6-62) without the necessity of extrapolating to zero pressure Py as in
Fig. 1-4. We assume that the equation of state of the gas, and its energy equation,
have been determined on the empirical temperature scale § defined by the gas, so
that P and U are known experimentally as functions of ¥ and 6. We start with Eq.

©9),
GG
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Because T is a function of & only, constant T implies constant 6 and
(96/2T)y = dfldT. Therefore we can write,
il GP) db
=l=T|=) ——P
(BV g (30 vdT
or
dT (aP/o6)y
L LIS, \L X bl | S 663
T P+ (U[aV), 669
Since the left side of this equation is a function of T only, the right side must
be a function of 6 only. If we represent the coefficient of dfl by g(6),
(2P[20)y
80) = ———"—,
P+ (U3
an (8Ufav),

dT
T 2(6)

and
InT =fg(a)do +lnd,

T=A4 cxp[ 2(6) dﬂ], (6-64)

where A’ is an integration constant. Comparison with Eq. (6-62) shows that the
function ¢(0) is
4 = exp[ [s0)a0], (6-65)

if A = A’. Since g() can be found experimentally, the thermodynamic tempera-
ture T, corresponding to any empirical temperature 6, can be calculated from Eq.
(6-64).
As an example, suppose the gas is a “Boyle’s law" gas, for which we have
found by experiment that the product PV is constant at constant temperature.
We choose the product PV as the thermometric property X and define the empirical
temperature 6 as
PV
0 =0,—, 6-66
TN (6-66)
where (PV), is the value of the product PV at the triple point and 8, is the arbitrary
value assigned to 0 at the triple point. Then
PV), 0
P =2
b, V
and

0l 6V

(aP) (PV),
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If, in addition, we have found from the Joule experiment that the internal
energy of the gas is independent of its volume and is a function of temperature

only,
Uy _

(k=
and

=<V _1

59 =5vs, "5
Then
Ig(ﬂ)dﬂ=f%£=ln9,
$(0) = eprg(ﬂ) dﬂ] = exp(In 0) = 6,

and finally

T = A6.

In this case, the function ¢(6) equals & and the thermodynamic temperature
T is directly proportional to the empirical temperature f, But a gas which obeys
Boyle’s law and whose internal energy is a function of temperature only is an ideal
gas, and the empirical temperature 0 is the ideal gas temperature. This is in agree-
ment with the result obtained earlier when we analyzed a Carnot cycle carried out
by an ideal gas.

It may be noted that if the only condition imposed on the gas is that it obeys
Boyle's law, the empirical temperature defined by Eq. (6-66) is not directly pro-
portional to the thermodynamic temperature, Only if in addition (3U/éV) = 0
will g(6) reduce to 1/6.

6-12 MULTIVARIABLE SYSTEMS. CARATHEODORY PRINCIPLE

Thus far, we have considered only systems whose state can be defined by the values
of two independent variables such as the pressure P and the temperature 7, The
volume ¥ is then determined by the equation of state, and the internal energy U
by the energy equation. For generality, let X represent the extensive variable
corresponding to the volume ¥, and Y the associated intensive variable corre-
sponding to the pressure P. The work d'W in an infinitesimal reversible process is
then Y dX and the first law states that in such a process

d'Q, = dU + d'W = dU + YdXx, (6-67)

1f we choose U and X as the independent variables specifying the state of the
system, then from the equation of state and the energy equation we can find ¥
as a function of U and X and Eq. (6-67) expresses the inexact differential 4'Q, in
terms of U and X and their differentials.

- e

t
it
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Itis shown in textbooks of mathematics that any equation expressing an inexact
differential in terms of rwo independent variables and their differentials always
has an integrating denominator, and when the equation is divided through by this
denominator, the left side becomes an exact differential. But we have shown that
d'Q,/T is the exact differential 45, so that in this case the integrating denominator
is the thermodynamic temperature T and

d'0, 1 Y
C5r o S = = 4U + = dX,
T VT

or
TdS = dU + YdX. (6-68)

Now consider the more general case of a multivariable system, for which the
values of more than two independent variables are necessary to specify the state.
It will suffice to consider a 3-variable system (that is, three independent variables).
An example is a paramagnetic gas in an external magnetic field 5#°, whose state
can be specified by its volume ¥/, its magnetic moment M, and its temperature 7.
The work d'W in a reversible process undergone by such a system is

d'W = PdV — o dM. (6-69)

Let X; and X, represent the two extensive variables (corresponding to ¥ and
—M) and Y, and Y, the associated intensive variables (corresponding to P and
). Then in general

d'W=Y,dX, + Y,dX;;
and from the first law,
I

d'Q, = dU + d'W = dU + Y, dX, + Y,dX,. (6-70)

If we choose U, X,, and X; as the independent variables specifying the state
of the system, this equation expresses the inexact differential @’Q, in terms of three
independent variables and their differentials. Unlike the corresponding Eq. (6-67)
for a 2-variable system, an equation such as Eq. (6-70), expressing an inexact
differential in terms of the differentials of three (or more) independent variables,
does not necessarily have an integrating denominator, although it may have one,
and indeed does have one if the variables are those defining a thermodynamic
system.

To show that this is true, we return to the assertion in Section 5-2 that when
any system whatever is carried throughout a Carnot cycle, the ratio |Q,|/|Q,| has
the same value, for the same pair of reservoir temperatures. Hence regardless of
the complexity of a system, we can still define thermodynamic temperature by the
equation

10 _T

ol &
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and by exactly the same reasoning as in Section 5-3, the entropy change of a multi-
variable system can be defined as

ds = —=.

Hence when Eq. (6-70) is divided through by T, the left side becomes the exact
differential 4S and the thermodynamic temperature T'is an integrating denominator
for d'Q,, regardless of the complexity of a system. Equation (6-70) can therefore

be written
%ua=%w+nﬂﬁnu¢

or
TdS = dU + Y, dX, + Y, dX,. (6-71)

Since the entropy S is a property of any system, it can be considered a function
of any three of the variables specifying the state of a 3-variable system. Thus if we
consider X;, X,, and the temperature T as independent variables, the entropy

equation of a system is
§=8(T, X, X).

If 5 is constant, the preceding equation is the equation of a surface in a three-
dimensional T-X,-X; space. That is, all isentropic processes carried out by the
system, and for which § has some constant value, say §), lic on a single surface
in a T-X,-X, diagram. All processes for which § has a constant value S, lie on a
second surface, and so on, These isentropic surfaces are generalizations of the
isentropic curves for a 2-variable system. Similarly, all isothermal processes at a
given temperature lie on a single surface which, in a 7-X,-X, diagram, is a plane
perpendicular to the temperature axis. In general, for a system defined by m
independent variables, where m > 3, isothermal and isentropic processes lie on
hypersurfaces of (m — 1) dimensions, in an m-dimensional hyperspace.

Itis of interest to consider the geometrical representation, in a 7-X,-X, diagram,
of the possible Carnot cycles that can be carried out by a 3-variable system.
Figure 6-3 shows portions of two isothermal surfaces at temperatures 7, and T;,
and of two isentropic surfaces at entropies S; and S,, where S, > §,.

Suppose we start a Carnot cycle at a point at which T = T; and § = §,.
Then any curve in the plane T = T, from the intersection of this plane with the
surface § = S, to its intersection with the surface § = §,, is an isothermal process
at temperature T} in which the entropy increases from'S) to S;. The process might
start at any one of the points a,, a;, a,, efc., and terminate at any one of the points
by, by, by, etc. Even a process such as a,-a5-b,-b, satisfies the conditions. (Any
process represented by the line of intersection of an isothermal and an isentropic
surface, such as processes a,-a; and by-b;, has the interesting property of being
both isothermal and isentropic.) Thus in contrast to a 2-variable system, for which
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only one isothermal process between entropies S, and S, is possible at a given
temperature, there are in a 3-variable system (or in a multivariable system) an
infinite number of such processes.

The next step in the cycle could consist of any curve on the isentropic surface
§ = §,, from any point such as by, by, b, etc., to any point such as ¢,, ¢,, ¢, etc.
The cycle is completed by any process in the plane T = T, to the surface S = S,
and a final process in this surface to the starting point.

T

Fig. 6-3 Any process such as a,-by-cy-dy-a, is a
Carnot cycle for a 3-variable system.

Note that the heat flow Q is the same in all reversible isothermal processes at
a given temperature between the isentropic surfaces S, and §,, since in any such
process Q = T(S, — §5,).

When any one of the cyclic processes described above is represented in the I-S
plane, it has exactly the same form as that for a 2-variable system, namely, as
shown in Fig. 5-4, a rectangle with sides parallel to the T- and S-axes.

We have pointed out earlier that the only states of a 2-variable system that
can be reached from a given state by an adiabatic process are those for which the
entropy is equal to or greater than that in the initial state. All adiabatically
accessible states then cither lie on the isentropic curve through the given state, or
lie on the same side of that curve. The same is true for a 3-variable system, except
that the accessible states either lic on the isentropic surface through the given
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state, or lie on the same side of that surface, namely, that side for which the entropy
is greater. States for which the entropy is less than that in the initial state lie on the
other side of the surface and are adiabatically inaccessible from the given state.

Carathéodory* took the property of adiabatic inaccessibility as the starting
point of the formulation of the second law. The Carathéodory principle asserts
that in the immediate vicinity of every equilibrium state of a thermodynamic system,
there are other states that cannot be reached from the given state by an adiabatic
process. Carathéodory was then able to show, by a lengthy mathematical argument,
that if this is the case, an expression like Eq. (6-70), in three (or more) independent
variables, necessarily does have an integrating denominator. The mathematics is
not easy to follow and we shall not pursue the matter further.

Starting with the Carathéodory principle, one can deduce the existence of
thermodynamic temperature and the entropy function. We have reversed the
argument and, by starting with a statement regarding the quantities of heat ab-
sorbed and liberated in a Carnot cycle, together with the principle of increase of

entropy, have shown that the Carathéodory principle is a ry conseq

PROBLEMS

6-1 Express (9u/2P)p in standard form by (2) the method used to obtain Eq. (6-9) and
(b) the method devised by Bridgman. (c) Find (8u/aP)y for an ideal gas.

6-2 (a) Find the difference cp — ¢, for mercury at a temperature of 0°C and a pressure of
1 atm taking the values of # and « from Fig. 2-17. The density of mercury is 13.6 x 10°
kg m~® and the atomic weight is 200.6. (b) Determine the ratio (cp — ¢,)/3R.

6-3 The equation of state of a certain gasis (P + &)y = RT. (a) Findcp — ¢,. (b) Find
the entropy change in an isothermal process. (c) Show that ¢, is independent of v,

6-4 The energy equation of a substance is given by u = aT*®v, where a is a constant.
(a) What information can be deduced about the entropy of the substance? (b) What are
the limitations on the equation of state of the substance? (c) What other measurements
must be made to determine the entropy and the equation of state?

6-5 The equation of state of a substance is given as (P + b)v = RT. What information
can be deduced about the entropy, the internal energy, and the enthalpy of the substance ?
What other experimental measurement(s) must be made to determine all of the properties
of the substance?

6-6 A substance has the properties that (9u/2v)p = 0 and (3h/8P); = 0. (a) Show that
the equation of state must be T = APv where A is a constant. (b) What additional infor-
mation is necessary to specify the entropy of the substance?

6-7 Express (h/dv)p in standard form by (a) the method used to derive Eq. (6-21) and
(b) by the method devised by Bridgman. (c) Find the value of (34/2v)y for an ideal gas.

* Constantin Carathéodory, Greek mathematician (1873-1950).
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as cp
6-8 Show that T(W)n- l—m

@ 2 v
69 Show that (;a- (%)'- -

6-10 Derive (a) Eq. (6-21), (b) Eq. (6-27), (¢) Eq. (6-28), and (d) Eq. (6-29).
6-11 Derive Eq. (6-27) by the Bridgman method.
6-12 Derive Eq. (6~12), the relation for ¢p ~ ¢y, from the T ds equations.
6-13 Show that the difference between the isothermal and adiabatic compressibilities is
T8
K— Ky =—
tp
6-14 Show that (3h/a), = y/x.
6-15 Can the equation of state and cp as a function of T be determined for a substance
if s(P, T)and h(P, T)are known? If not, what additional information is needed?
6-16 Hill and Lounasmaa state that all the thermodynamic properties of liquid helium
can be calculated in the temperature range 3 to 20 K and up to 100 atm pressure from their
measurements of ¢,, (3P/3T), and P as a function of T for various densities of helium,
(a) Show that they are correct by deriving expressions for u, s, and 4 in terms of the
experimentally determined quantities. (b) Which of the measurements are not absolutely
necessary in order to completely specify all the properties of He* in the temperature and
Ppressure range given? Explain.
6-17 Use the data of Figs. 6-1(a) and 6-1(b) to calculate the change of entropy of 10-°
kilomoles of He* as its temperature and reduced density are changed from 6 K and 2.2 to
12 K and 2.6,
6-18 (a) Derive Eqgs. (6-45) and (6-46). (b) Derive expressions for A(T, v) and (P, v)
for an ideal gas.
6-19 Assume that cp for an ideal gas is given by cp = a + bT, where a and b are
constants. (a) What is the expression for ¢, for this gas? (b) Use the expression for cp
in Eqs. (6-41) and (6-42) to obtain expressions for the specific entropy and enthalpy of
an ideal gas in terms of the values in some reference state. (c) Derive an expression for
the internal energy of an ideal gas.
6-20 One kilomole of an ideal gas undergoes a throttling process from a pressure of
4 atm to | atm. The initial temperature of the gas is 50°C, (a) How much ‘1::: could
have been done by the ideal gas had it undergone a reversible process to the e final
state at constant temperature? (b) How much does the entropy of the universe increase as
a result of the throttling process?
6-21 Show that the specific enthalpy of a van der Waals gas is given by ¢,T — 2afv —
RTv/(v — b) + constant.
6-22 The pressure on a block of copper at a temperature of 0°C is increased isothermally
and reversibly from 1 atm to 1000 atm. Assume that g, «, and p are constant and equal
respectively to 5 x 107° K™, 8 x 1072 N~ m®, and 8.9 x 10°kgm™3. Calculate (a)
the work done on the copper per kilogram, and (b) the heat evolved. (c) How do you
account for the fact that the heat evolved is greater than the work done? (d) What would
be the rise in temperature of the copper, if the compression were adiabatic rather than
isothermal? Explain approximations made.
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6-23 For a solid whose equation of state is given by Eq. (6-55) and for which cp and ¢,

are independent of T, show that the specific internal energy and specific enthalpy are given

" v 1 ’
u=cy(T =T + [(ZBT., +;_; = l)i-; —P.,](v - vy + Uy

and

b = cp(T = Ty) + 0P — P.,)[l - BT, -§ @ - Po)] + e

6-24 Figures 2-16, 2-17, 310 and 3-11 give data on copper and mercury. Are these
data sufficient to determine all of the properties of copper and mercury between 500 and
1000 K? If so, determine expressions for the entropy and enthalpy. If not, specify the
information needed.

6-25 The table below gives the volume of 1 g of water at a number of temperatures at a
pressure of 1 atm.

1°C)  V(em?) t1°C)  Viem?)

0 100013 20 1.00177

2 1.00003 50 1.01207

4 1.00000 75 1.02576

6  1.00003 100 1.04343
10 1.00027

Estimate as closely as you can the temperature change when the pressure on water in a
hydraulic press is increased reversibly and adiabatically from a pressure of 1atm to a
pressure of 1000 atm, when the initial temperature is (a) 2°C, (b) 4°C, (c) 50°C. Make
any reasonable assumptions or approximations, but state what they are.

6-26 The isothermal compressibility of water is 50 x 10~*atm™ and cp = 4.18 x
10°J kg™ K~ Other properties of water are given in the previous problem. Calculate the
work done as the pressure on 1 g of water in a hydraulic press is increased reversibly from
1 atm to 10,000 atm (a) isothermally, (b) adiabatically. (c) Calculate the heat evolved in
the isothermal process.

6-27 Sketch a Carnot cycle in the /-5 plane for (a) an ideal gas, (b) a van der Waals gas,
(c) a solid, Make reasonable approximations but state what they are. (See Problem 6-21
and 6-23 for expressions for the specific enthalpy.)

6-28 Compute n and u for a gas whose equation of state is given by (a) P(v ~ b) = RT
and (b) (P + b)v = RT, where b is a constant. Assume that ¢, and cp are constants,
6-29 Assuming that helium obeys the van der Waals equation of state, determine the
change in temperature when one kilomole of helium gas undergoes a Joule expansion at
20 K to atmospheric pressure. The initial volume of the helium is 0.12 m®. (See Tables
2-1 and 9-1 for data.) Describe approximations.

6-30 Carbon dioxide at an initial pressure of 100 atm and a temperature of 300 K under-
goes an adiabatic free expansion in which the final volume is ten times the original volume.

. P
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Find the change in temperature and the increase in specific entropy, assuming that CO, is
(a) an ideal gas, (b) a van der Waals gas. (Use Tables 2-1 and 9-1 and make any other
assumptions that seem reasonable.) [
6-31 Beginning with the van der Waals equation of state, derive Egs. (6-59) and (6-60).
6-32 Assuming that helium is a van der Waals gas, calculate the pressure so that the
inversion temperature of helium is 20 K. (See Table 6-1 for data.)
6-33 The helium gas of Problem 6-29 undergoes a throttling process. Calculate the
Joule-Thomson coefficient at (a) 20 K and (b) 150 K. (c) For each process calculate the
change of the temperature of the helium if the final pressure is 1 atm, assuming # is
independent of P and T.
6-34 Calculate the maximum inversion temperature of helium.
6-35 Show that if P and 6 are chosen as independent variables, the relation between
thermodynamic temperature T and empirical temperature 0 on the scale of any gas
thermometer is

dr (20/30)

T ~ o - (P
6-36 (a) Show that on the empirical temperature scale 8 of any gas thermometer,

dr  (2P|26), (2/20)p
T P- r,c,‘” v +W-',pda'

where » and 4 are, respectively, the Joule and Joule-Thomson coefficients of the gas.
(b) Show also that

dr - (2P)26),

T (cp —c)obja)p

6-37 For a paramagnetic substance, the specific work in a reversible process is —# dm,
(a) Consider the state of the substance to be defined by the magnetic moment per unit
volume m and some empirical temperature 6. Show that

dT (3¢/26),,
T F — (dufom)y

(b) It is found experimentally that over a range of variables which is not too great, the
ratio (F/m) is constant at constant temperature. (This corresponds to the property of a
*“Boyles' law™ gas that PV is constant at constant temperature.) Choose the ratio (a/m)
as the thermometric property X, and define an empirical temperature 6 in the usual way.
Show that the thermodynamic temperature T is directly proportional to @ only if the
internal energy u is independent of m at constant temperature.

6-38 (a) On a T-V-M diagram sketch two surfaces of constant entropy for an ideal gas
obeying Curie's law. (b) Using the two surfaces of part (a) together with two isothermal
surfaces, sketch two possible Carnot cycles for this system. (c) Derive the relation be-
tween M and V for processes which are both isothermal and isentropic. Sketch the process

in the V-M plane.
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6-39 On Fig. 6-4, the states a and b lie on a line of constant x, and x,. (a) Show that
both a and & cannot be reached by isentropic processes from the state / by proving that
the cycle i-a-b-i violates the Kelvin-Planck statement of the second law.
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7-1 THE HELMHOLTZ FUNCTION AND THE GIBBS FUNCTION

In addition to the internal energy and the entropy of a system, several other useful
quantities can be defined that are combinations of these and the state variables,
One such quantity, already introduced, is the enthalpy, H, defined for a PV¥T
system as
H=U+PV. 7-1)

There are two other important quantities, the Helmholtz* function F and the
Gibbst function G, which are now defined.

From the first law, when a system performs any process, reversible or irre-
versible, between two equilibrium states, the work W in the process is

' W= (U=U)+Q;

that is, the work is provided in part by the system, whose internal energy decreases
by (Uy = Uy), and in part by the heat reservoirs with which the system is in
contact and out of which there is a heat flow of magnitude Q.

We now derive expressions for the maximum amount of work that can be
obtained when a system undergoes a process between two equilibrium states, for
the special case in which the only heat flow is from a single reservoir at a tempera-
ture 7" and the initial and final states are at this same temperature. From the
principle of the increase of entropy, the sum of the increase in entropy of the
system, (S; — §)), and that of reservoir, ASy, is equal to or greater than zero:

(53— 8) + ASz > 0.

The entropy change of the reservoir is

=i

B -
Hence
SB-s0-2>0
T
and

TS, - 5) 2 Q.
Therefore from the first law,

Wer < (U, — Uy) — T(S, — 5y). (7-2)

Let us define a property of the system called its Helmholtz function F, by the

equation
F=U-TS. (7-3)

* Herman L. F. Helmholtz, German physicist (1821-1894).
1 Josiah Willard Gibbs, American physicist (1839-1903).
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Then for two equilibrium states at the same temperature T,
(Fr = F) = (U, — Uy — T(5, — 5,

and from Eq. (7-2),
Wr < (Fy = F. -4
That is, the decrease in the Helmholtz function of a system sets an upper limit to
the work in any process between two equilibrium states at the same temperature,
during which there is a heat flow into the system from a single reservoir at this
temperature. If the process is reversible, the total entropy of system plus reservoir
is constant, @ = T(S; — S,), and
Wrp= (U — U) — T($; — S = (F, — F). 7-5)

The equality sign then holds in Eq. (7-4) and the work is a maximum. If the process
is irreversible, the work is less than this maximum.

Because its decrease equals the maximum energy that can be “freed” in a
process and made available for work, the quantity F is sometimes called the free
energy of a system. However, since the same term is also applied to another
property to be defined shortly, we shall use the term “Helmholtz function” to
avoid confusion. Note, however, that although the decrease in the Helmholtz
function of a system equals the maximum work that can be obtained under the
conditions above, the energy converted to work is provided only in part by the
system, the remainder coming from heat withdrawn from a heat reservoir,

Equation (7-2) is perfectly general and applies to a system of any nature. The
process may be a change of state, or a change of phase, or a chemical reaction.
In general, the work in a differential process will be given by P dV plus a sum of
terms such as —& dZ or —#° dM, but for simplicity we assume only one additional
term which will be represented by Y dX. The total work in any finite process is
then the sum of the “P 4F” work and the * Y dX™ work. Let us now represent the
former by W’ and the latter by 4. The work in any process is then W’ + 4 and
Eq. (7-4) becomes
7+ Az < (Fy = F. (7-6)

In a process at constant volume, the “PdF™* work W' = 0 and in such a
process,
Ary £ (L — F). (-7
The decrease in the Helmholtz function therefore sets an upper limit to the “non-
P dV" work in a process at constant temperature and volume. If the process is
reversible, this work equals the decrease in the Helmholtz function. If both ¥
and X are constant, then 4 = 0 and

0 (A —F)
or
KA (7-8)
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That is, in a process at constant volume for which A = 0 and T is constant, the
Helmholtz function can only decrease or, in the limit, remain constant. Con-
versely, such a process is possible only if Fy < F,.

Consider next a process at a constant external pressure P. The work W' in
such a process is P(V; — V,), and from Egq. (7-6),

Arp S (L= F) + Py = V)
Arp £ (U= U) — T(S, = ) + P(Vy — V)
Let us define a function G called the Gibbs function by the equation
G=F+PV=H-T5S=U=TS + PV. 7-9)

Then for two states at the same temperature T and pressure P,
Gy = Gy = (Uy = Up) — T(S; — 5)) + PV, = V),

and
App £ (G — Gy (7-10)

The decrease in the Gibbs function therefore séts an upper limit to the “non-
P dV" work in any process between two equilibrium states at the same temperature
and pressure. If the process is reversible, this work is equal to the decrease in the
Gibbs function. Because its decrease in such a process equals the maximum energy
that can be “freed” and made available for “non-P V" work, the Gibbs function
has also been called the free energy of a system, but as stated earlier, we shall use
the term “Gibbs function™ to avoid confusion with the Helmholtz function.
If the variable X is constant in a process, or if the only work is “P dV™ work,
then A = 0 and
G, < Gy (7-11)

That is, in such a process the Gibbs function either remains constant or decreases.
Conversely, such a process is possible only if G, is equal to or less than G,.

In Sections 6-7 and 6-8, we derived expressions for the specific enthalpy and
entropy of an ideal gas and of a van der Waals gas. Making use of Eqs. (6-41)
and (6-42), the specific Gibbs function g = u — Ts + Pv = h — Ts for an ideal
gas, selecting T and P as independent variables, is

x T oar P
= ch—TJc—+RTIn—+h-—sT. 7-12
g _L P 2T F T =k (7-12)
If cp can be considered constant,
|

g =¢p(T = T)) = cpT |n§ + R:rxnf — (T = T) + g (7-13)
] []

e

-
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which can be written more compactly as

g=RT(nP + ¢), (7-14)
where

RT$ = cp(T = T) — cﬂ"ln% — RTIn Py — 84T — T)) + go. (7-15)
o

Note that ¢ is a function of T only.

We see that while s, », and 4 are indeterminate to within arbitrary constants
So, Mg, and /iy, the Gibbs function is indeterminate to within an arbitrary linear
JSunction of the temperature, hy — s,T.

It is left as a problem to show that the specific Helmholtz function f = u — T
for an ideal gas, selecting T and v as the independent variables, is

f=c(T=T) =TIl —RTINE = (T = T) + fo. (1-16)
T vy
For a van der Waals gas

T 1 1 v—b
f—t‘,(T—T.)—t,Tln;‘;-c(;—-;:) —RT[n(m)—SQ(T-Tg)-l—fg

(7-17)

which is seen to reduce to the ideal gas expression whena = b = 0,

7-2 THERMODYNAMIC POTENTIALS

The differences between the values of the Helmholtz and Gibbs functions in two
neighboring equilibrium states of a closed* PVT system are

dF = dU — TdS — §dT, (7-18)
dG = dU — TdS — SdT + PdV + VdP. (7-19)
Since
dU = TdS — Pdv, (7-20)
we can eliminate dU between Eqgs. (7-18) and (7-19), obtaining
dF = —SdT — Pav, 2 (7-21)
dG = —SdT + VdP. (7-22)

Also, from the definition of enthalpy,
dH = TdS + VdP. (7-23)

* No matter crosses the boundary of a closed system.
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The coefficients of the differentials on the right sides of the four preceding equa-
tions can be identified with the partial derivatives of the variable on the left side.
For example, considering U as a function of S and ¥, we have

au BU)
- dv. 7-24
aw = (545 + (5 e

Comparison with Eq. (7-20) shows that (3U/9S), = T and (3U/3V)s = —P.

Similar relations can be written for dF, dG, and dH. It follows that

o R R 29
(ﬁF’) " ( ‘“') =P, (7-26)
@ G- a-2n
Bor (o

It will be recalled that the intensity E of an'electrostatic field is, at every point,
equal to the negative of the gradient of the potential ¢ at that point. Thus the
components of E are

E = -(3_‘:), E = —(Z—":) 5=~(5)

Because the properties P, V, T, and S can be expressed in a similar way in
terms of the partial derivatives of U, F, G, and H, these quantities can be described
as thermodynamic potentials, although the term is more commonly applied to F
and G only. But to avoid confusion as to which of these is meant by the term
“thermodynamic potential,” we shall refer to F simply as the Helmholtz function,
and to G as the Gibbs function.

Although there are mnemonic aids to remembcnng Eqs. (7—20) to (7-23),
there is a certain useful symmetry to these equations which can also be used to
remember them. The differential of each thermodynamic potential is expressed
in terms of the differentials of the “characteristic variables™ for that potential;
S and ¥ for the potential U; T and V for the potential F; T and P for the potential
G; and S and P for the potential H. Furthermore, dS and dP always appear with
the plus sign and 4T and dV always appear with the minus sign. Also, each term
in the expressions for the differentials must have the dimensions of energy.

It was pointed out earlier that the properties of a substance are not completely
specified by its equation of state alone, but that in addition we must know the energy
equation of the substance. Suppose, however, that the expression for any thermo-
dynamic potential is known in terms of its characteristic variables. That is, suppose

Tt
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U'is known as a function of S and ¥, or Fis known as a function of T'and ¥, or G
is known as a function of T and P, or that H is known as a function of S and P.
If so, then all thermodynamic properties can be obtained by differentiation of the
thermodynamic potential, and the equation for the thermodynamic potential in
terms of its characteristic variables is known as the characteristic equation of the
substance.

For example, suppose that the Helmholtz function F is known as a function
of Tand V. Then from the second of Egs. (7-26) we can calculate P as a function
of Vand T, which is the equation of state of the substance, The entropy S can be
found from the first of these equations, and from the definition of F we then have

the energy equation. Thus

P
s=~(3), |

2,
U=F+4+TS=F~T|=). 7-
* T(B‘I‘r (a0

In the same way, if G is known as a function of T and P, then
V= (3_0)

op/r’
- 3_0)
i (BT P
aG
H=G+4+TS=G-T|—]. 7-30
+ (37, -0

Equations (7-29) and (7-30) are known as the Gibbs-Helmholtz equations.

All of the preceding equations can be written for systems other than PVT
systems. Suppose, for example, that the system is a wire in tension for which the
work in a differential reversible process is —% dL. Then considering the Helm-
holtz function F = U — TS as a function of T"and L, we would have

The Gibbs function for the wire is defined as
G=U-T5S-¥%1L,

where the product #L is preceded by a minus sign because the work dW equals

—F dL. Then
BG)
—) = =L.
(35*' T

The preceding equations are the analogues of the second of Egs. (7-26) and (7-27).



184 THERMODYNAMIC POTENTIALS 7-2

We now consider a multivariable closed system, but limit the discussion to one
whose state can be described by its temperature T, two extensive variables X; and
X, and the corresponding intensive variables Y; and Y;. The work in a differen-
tial reversible process is

d'W = Y,dX, + Y,dX,,

and the combined first and second laws take the form
dU = TdS — Y,dX, — YydX;. (7-31)
Because the system has two equations of state, the equilibrium state of the system
can be considered a function of T, and either of the two extensive variables X,
and X,, or the two intensive variables ¥, and Y, or one extensive variable X; and
the other intensive variable Y,. We could equally well let Y, and X, represent these

variables.
We first consider the state of the system to be expressed as a function of T,

X, and X,. The Helmholtz function F is defined, as for a system described by two

independent variables, as
F=U-=TSs,

so that
dF = dU — Td§ — §dT,
and eliminating dU between this equation and Eq. (7-31), we have
dF = —5dT — Y,dX, - Y, dX,.
The coefficient of each differential on the right side of this equation is the corre-
sponding partial derivative of F, with the other variables held constant. Thus

a_F) = E) = (3_1“') - - g
(BTX:.X. % (6){l T,.Xs hy aX,Jr x, L

The Gibbs function of the system is defined as
G=U=T5+ IX, + IhX,
When the expression for dG is written out, and dU eliminated, making use of Eq.

(7-31), the result is
dG = —SdT + X, dY, + X,dY,.

It follows that

E) = - (.3_5.) - (a_G = _
(ar Yi¥s S Y, /r.v, X, aY,)r,r._ s i

In the special case in which ¥, is the intensity of a conservative force field
(gravitational, electric, or magnetic), the system has a potential energy £, = Y,X,,
and its total energy E is

E=U+E,=U+ YyX,
We then define a new function F* as
FPaE-TS=U-T5+ Y\, (7-34)
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The function F* = E — TS can be considered a generalized Helmholtz function,
corresponding to F = U — T for a system whose total energy equals its internal
energy only. Proceeding in the same way as before, we find that

aF') X (aF . (BF‘)
) =5 () =-vs () =+x. (@35
(ar X1V X, /1.v, . aYy/r.x: * (78

Itis left as a problem to show that if X, and X are selected asvariables, we have
the generalized Gibbs-Helmholtz equation,

a
UsF—=T|— . 7-36
(37‘ XXy ( )
The enthalpy /{ is defined as
He= U+ X, + YX,,
and we find that

aa)
H=GC—-T|— i 7-37
(ar Y1V k=D
If Y is the intensity of a conservative force field,
oF
= F* - T|— ¥ -

From the purely thermodynamic viewpoint, we are at liberty to consider
either X, and X, Y, and Y,, or X, and Y, as independent, in addition to . We
shall show later that the methods of statistics lead directly to expressions for F,
G, or F*, in terms of the parameters that determine the energy of the system. All
other thermodynamic properties can be calculated when any one of these is known,

7-3 THE MAXWELL RELATIONS

A set of equations called the Maxwellt relations can be derived from the fact that
the differentials of the thermodynamic potentials are exact. In Section 2-10 it was
pointed out that if

dz = M(x, y) dx + N(x,y) dy,

G- Go) -

t James Clerk Maxwell, Scottish physicist (1831-1879).

dz is exact when
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Applying éq (7-39) to Eq. (7-20) through (7-23) we have

(g%;)s‘ _(%)v' (7-40)
(- ) -4
i (57~ G -
(?‘D: (%), (7-43)

These equations are useful because they provide expressions for the entropy change
in terms of P, ¥, and T, and they are called the Maxwell relations. These equations
can also be derived from the fact that the mixed partial derivatives of U, F, G, and
H are independent of the order of differentiation.

Note that in each of the Maxwell relations the cross product of the differen-
tials has the dimensions of energy. The independent variable in the denominator
of one side of an equation is the constant on the other side. The sign can be argued
from considering the physics of the process for a simple case. As an example,
consider Eq. (7-41). During an isothermal expansion of an ideal gas, heat must be
added to the gas to keep the temperature constant. Thus the right side of Eq.
(7-41) has a value greater than zero. At constant volume, increasing the tempera-
ture of an ideal gas increases the pressure, and the left side of Eq. (7-41) also has a
value greater than zero.

Maxwell relations can also be written for systems having equations of state
which depend on thermodynamic properties other than P and V.

7-4 STABLE AND UNSTABLE EQUILIBRIUM

Thus far, it has been presumed that the “equitibrium state” of a system implies a
state of stable equilibrium. In some circumstances, a system can persist for a long
period of time in a state of metastable equilibrium, but eventually the system trans-
forms spontaneously to a stable state. We now consider the necessary condition
that a state shall be one of stable equilibrium.

Our earlier definitions of the properties of a substance were restricted to states
of stable equilibrium only, and according to these definitions it is meaningless to
speak of the entropy, Gibbs function etc., of a system in a metastable state. How-
ever, since a substance can remain in a metastable state for a long period of time,
its directly measurable properties, such as pressure and temperature, can be
determined in the same way as for a system in a completely stable state. We simply
assume that the entropy, Gibbs function, etc., are related to the directly measurable
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properties in the same way as they are in a stable equilibrium state. The assumption
is justified by the correctness of the conclusions drawn from it

Figure 7-1 is a schematic diagram of the P-V-T surface representing the states
of stable equilibrium of a pure substance. Suppose the substance is originally
in the vapor phase at point a and the temperature is decreased at constant pressure.
In the absence of condensation nuclei such as dust particles or ions, the tempera-
ture can be reduced considerably below that at point b, where the isobaric line
intersects the saturation line, without the appearance of the liquid phase. The
state of the vapor is then represented by point ¢, which lies above the P-V-T surface.
If no condensation nuclei are present, it will remain in this state for a long period
of time and is in metastable equilibrium. It is in mechanical and thermal equi-
librium, but not in complete thermodynamic equilibrium. If a condensation
nucleus is introduced, and if pressure and temperature are kept constant, the vapor
transforms spontaneously to the liquid phase at point . The vapor at point ¢ is
said to be supercooled.

A supercooled vapor can zalso be produced by the adiabatic expansion of a
saturated vapor. In such a process, the volume increases and the pressure and tem-
perature both decrease. If no condensation nuclei are present, the state of the

PRESSURE

Fig. 7-1 The P-V-T surface representing states of stable
equilibrium for a pure substance.
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vapor again lies at some point above the equilibrium surface. This is the method
used to obtain a supercooled vapor in the Wilson cloud chamber. When an ionizing
particle passes through the chamber, the ions it forms serve as condensation nuclei
and liquid droplets are formed along its path.

The temperature of a liguid can also be reduced below that at which it is in
stable equilibrium with the solid, and the liquid is also described as supercooled.
Thus if a molten metal in a crucible is cooled slowly, it may remain in the liquid
phase at temperatures well below the normal freezing point. The converse does not
seem to happen—as the temperature of a solid is increased, it starts to melt
promptly at the normal melting point.

If the substance is originally in the liquid phase at point fin Fig. 7-1, and if
the temperature is increased at constant pressure, the vapor phase may not form
when point e is reached, and the liquid may be carried to the state represented by
point d, which lies below the equilibrium surface. This is also a metastable state,
and the liquid is said to be superheated.* A slight disturbance will initiate a spon-
taneous vaporization process, and if pressure and temperature are kept constant
the system transforms to the vapor phase at point a.

In the bubble chamber, a superheated liquid (usually liquid hydrogen) is pro-
duced by an adiabatic reduction of pressure on a saturated liquid. Small bubbles
of vapor are then formed on ions produced by an ionizing particle passing through
the chamber.

We now consider the specific conditions that determine which of two possible
states of a system is the stable state, If a system is completely isolated from its
surroundings, a spontaneous process from one state to another can take place only
if the entropy of the system increases, that is, if the entropy (Sy), in the second
state is greater than the entropy (Sy), in the first state. The final state of stable
equilibrium is therefore that in which the entropy is larger, that is, when (Sy), >
So)w

Very often, however, we wish to compare two states of a system that is not
completely 'isolated. Suppose first that the volume of the system is constant, so
that the work in a process is zero, but the system is in contact with a heat reservoir
at a temperature T, and we wish to compare two states at this temperature. By
Eq. (7-8), under these conditions, a spontaneous process from one state to another
can occur only if the Helmholtz function for the system decreases. The final state
of equilibrium is that in which the Helmholtz function is the smaller, that is,
(Fr.v)z < (FT.V)I'

Finally, let us remove the restriction that the volume of the system is constant,
but assume that the system is subjected to a constant external pressure P. The
system is in contact with a heat reservoir at a temperature T and its pressure is P

* The term “‘superheated™ as used here does not have the same significance as when one
speaks of “superheated steam™ in a reciprocating steam engine or turbine. See Section
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in the initial and final states of a process. By Eq. (7-11) a spontaneous process
can only occur under these conditions if the Gibbs function decreases. The state
of stable equilibrium is that in which the Gibbs function is smaller, that is,
(Gr.p): < (Gpph-

As a corollary of the preceding conclusions, if a completely isolated system can
exist in more than one state of stable equilibrium, the entropy S must be the same
in all such states. If a system at constant volume and in contact with a single heat
reservoir can exist in more than one state of stable equilibrium, the Helmholtz
function F must be the same in all such states; and if a system, in contact with a
single heat reservoir and in surroundings at constant pressure, can exist in more
than one stable state, the Gibbs function G must be the same in all such states.

The preceding discussion referred to a system whose initial state was a meta-
stable one. But we assumed it possible to assign values to the entropy, Helmholtz
function, and so on to this state, even though strictly speaking these properties are
defined only for states of stable equilibrium. From the definition of a state of stable
equilibrium as one in which the properties of a system do not change with time,
it is evident that no spontaneous process can take place from an initial state of
stable equilibrium. Such processes can occur, however, if some of the constraints
imposed on a system are changed. For example, suppose a system enclosed in a
rigid adiabatic boundary consists of two parts at different temperatures, separated
by an adiabatic wall. Each of the parts will come to a state of stable equilibrium,
but they will be at different temperatures. The adiabatic wall separating them
then constitutes a constraint that prevents the temperatures from equalizing,

As a second example, suppose that a system in contact with a reservoir at a
temperature T is divided internally by a partition. Each portion of the system con-'
tains a gas, but the pressures on opposite sides of the partition are different. Both
gases are in a state of equilibrium, and the partition constitutes a constraint that
prevents the pressures from equalizing.

As a third example, suppose that on opposite sides of the partition in the pre-
ceding case there are two different gases, both at the same pressure. If the partition
is removed, each gas will diffuse into the other until a homogeneous mixture results,
and the partition constitutes a constraint that prevents this from happening.

If now the adiabatic wall in the first example is removed, or if the partition
in the next two examples is removed, the state immediately following the removal
of the constraint is no longer one of stable equilibrium, and a spontaneous process
will take place until the system settles down to a new state of stable equilibrium.
During the process, while the temperature, pressure, or composition of the gas
mixture is not uniform, the system is in a nonequilibrium state. The entropy,
Helmholtz function, etc., are undefined and no definite values can be assigned to
them. However, if we compare the initial state of stable equilibrium, before the
removal of the constraint, with the final equilibrium state after its removal, all of
the results derived earlier in the section will apply. Thus in the first example, in
which the system is completely isolated, the final entropy is greater than the
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initial entropy. In the second example, if the volume of the system is kept constant,
the final value of the Helmholtz function is smaller than its initial value. In the
third example, if the pressure is kept constant, the final value of the Gibbs function

is less than its initial value.

7-5 PHASE TRANSITIONS

Suppose we have a sy consisting of the liquid and vapor phases of a substance
in equilibrium at a pressure P and a temperature 7. In Fig. 7-2(a), the total specific
volume of the system is ;. The number of moles in the liquid phase is »{ and the
number of moles in the vapor phase is ny'. The state of the system corresponds to
point b, in Fig. 7-2(c). In Fig. 7-2(b), the total specific volume of the system is vy,
and the numbers of moles in the liquid and vapor phases are respectively n and
ny. The state of the system corresponds to point &, in Fig. 7-2(c).

|
|
|
|
|
!
I

(a) (b) (c)
Fig.7-2 Theequilibrium between a liquid and its vapor at the two different molal
volumes shown in (a) and (b) is represented on the portion of the P-v diagram in (c).

The states of the liquid and vapor portions of the system shown in Figs.
7-2(a) and 7-2(b) are represented in Fig. 7-2(c) by points @ and ¢ respectively,
and the states differ only in the relative numbers of moles of liquid and vapor.
If g" and g" are the specific Gibbs functions of the liquid and vapor phases, the
Gibbs functions of the two states are, respectively,

G, = mig” + ni'g",
: Gy = nig” + ny’g"

Since the total number of moles of the system is constant,

ni + ny = n3 + n3;

and since both states are stable,
G, = G;.
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It follows from these equations that
g = 8"; (7-44)

that is, the specific Gibbs function has the same value in both phases. The same result
holds for any two phases in equilibrium. At the triple point, the specific Gibbs
functions of all three phases are equal.

@

Fig.7-3 The specific Gibbs function of the
vapor and liquid in processes a-b-c and d-e-f
of Fig. 7-1,

Let us now return to a consideration of the stable and metastable states illus-
trated in Fig. 7-1. Figure 7-3, which is lettered to correspond to Fig. 7-1, shows
graphs of the specific Gibbs functions of the vapor and liquid in the processes
a-b-¢ and d-e-f of Fig. 7-1. Since

-+
aT /e ’

where 5" is the specific entropy of the vapor phase, the curve abc has a negative
slope, of magnitude equal to the specific entropy s”. Similarly, the curve def also
has a negative slope, equal to the specific entropy s” of the liquid. The difference
between the entropies s and s” equals the latent heat of transformation, ly,
divided by the temperature T

[

==,

Since Iy is positive, s > 5" and the magnitude of the slope of the curve abc is
greater than that of the curve def. The curves intersect at point b, e where g” = g,
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Points ¢ and f represent two possible states of the system at the same tem-
perature and pressure, but the Gibbs function in state ¢ is greater than that in
state /. We have shown that in a spontaneous process between two states at the
same temperature and pressure, the Gibbs function must decrease. Hence a
spontaneous transition from state ¢ to state f is possible, while one from state f
to state ¢ is not. State fis therefore the state of szable equilibrium, while the equi-
librium at state ¢ is metastable.

Similarly, states d and 4 are at the same temperature and pressure, but the
Gibbs function at d is greater than that at a. State a is stable and state d is meta-
stable.

At points b and e, where the Gibbs functions are equal, the equilibrium is
neutral. At this temperature and pressure the substance can exist indefinitely, in
either phase, or in both,

If the substance in Fig. 7-1 is taken from the stable liquid state at point f to
the stable vapor state at point a, in the process f~e-b-a which does not carry it into
a metastable state, the curve representing the process in Fig. 7-3 consists only of
the segments fe and ba. The phase transition from liquid to vapor, in the process
e-b, is called a first-order transition because although the specific Gibbs function
is itself continuous across the transition, its first derivative, equal to —s” or —s*
and represented by the slopes of the curves fe and ba, is discontinuous.

In principle there should also be phase transitions in which both the specific
Gibbs function and its first derivative are continuous, but the second derivative
changes distominuous!y. In such transitions the latent heat of transformation is

zero and the specific volume does not change for PoT systems. But, since
B‘g) ( Bs) cp
=) ==|=) =-=£, 7
(BT P oT/e T =)

the value of cp must be different in the two phases. Examples of such transitions
would be the liquid-vapor transition at the critical point, the transition of a super-
conductor from the superconducting to the normal state in zero magnetic field,
ferromagnetic to paramagnetic transitions in a simple model, order-disorder trans-
formations, etc. Very careful experiments have been done on many systems,
some to within one-millionth of a degree of the phase transition. It appears that
the superconducting transition may be the only true second-order transition.

An example of a third type of transition, known as a lambda-transition, is that
between the two liquid phases of He¢, ordinary liquid helium He I, and superfluid
helium He IL. This transition can take place at any point along the line separating
these two liquid phases in Fig. 2-13. A graph of ¢, versus 7 for the two phases
has the general shape shown in Fig. 7-4, and the transition takes its name from the
resemblance of this curve to the shape of the Greek letter 1. The value of ¢» does
uot change discontinuously, but its variation with temperature is different in the
two phases.
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Fig. 7-4 The lambda transition for
liquid He*.

7-6 THE CLAUSIUS-CLAPEYRON EQUATION

The Clausius-Clapeyron® equation is an important relation describing how the
pressure varies with temperature for a system consisting of two phases in equi-
librium. Suppose a liquid and its vapor are in equilibrium at a pressure P and a
temperature T, so that under these conditions g" = g”. Ata temperature T + 4T,
the vapor pressure is P 4 dP and the Gibbs functions are respectively g” + dg”
and g” + dg"”. But since the liquid and vapor are in equilibrium at the new tem-
perature and pressure, it follows that the changes dg” and dg” are equal.
We have shown that
dg = —sdT + vdP.

The changes in temperature and pressure are the same for both phases, so
—5"dT + v"dP = —5" dT + v" dP,

or
(5" = s dT = (v" — v")dP.

But the difference in specific entropies, (s" — s”), equals the heat of vaporiza-
tion /y, divided by the temperature T, and hence
(_a_ o (7-46)
0Ty TQ" = ")
which is the Clausius-Clapeyron equation for liquid-vapor equilibrium. Geo-
metrically speaking, it expresses the slope of the equilibrium line between the

* Benoit-Pierre-Emile Clapeyron, French chemist (1799-1864),
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liquid and vapor phases in a P-T diagram such as Fig. 2-8(a), in terms of the heat
of transformation, the temperature, and the specific volumes of the phases.

When the same reasoning is applied to the solid and vapor, or solid and liquid
phases, we obtain the corresponding equations

(i’_ e (d_P) N ' - 1 (7-47)
dThy T@" —v)" \dThy T(" —7)

Although the latent heat of any transformation varies with temperature, it is
always positive (except for He® below 0.3 K), as is the temperature 7. Also, the
specific volume of the vapor phase is always greater than that of either the liquid
or solid phase and the quantities (v* — ¢") and (v — v') are always positive,
The slopes of the vapor pressure curves and sublimation pressure curves are there-
fore always positive. The specific volume of the solid phase, however, may be
greater or less than that of the liquid phase, and so the slope of the solid-liquid
equilibrium line may be either positive or negative. We can now understand more
fully why the P-v-T surface for a substance like water, which expands on freezing,
differs from that for a substance which contracts on freezing. (See Figs. 2-6 and
2-7). The term (" — ') is negative for a substance that expands on freezing and is
positive for a substance that contracts on freezing. Therefore the solid-liquid
equilibrium surface, or its projection as a line in the P-T plane, slopes upward to
the left for a substance like water that expands and upward to the right for a sub-
stance that contracts. Projections of the liquid-vapor and solid-vapor surfaces
always have positive slopes.

An examination of Fig. 2-10 will show that Ice I (ordinary ice) is the only
form of the solid phase with a specific volume greater than that of the liquid phase.
Hence the equilibrium line between Ice I and liquid water is the only one that slopes
upward to the left in a P-T diagram; all others slope upward to the right.

For changes in temperature and pressure that are not too great, the heats of
transformation and the specific volumes can be considered constant, and the slope
of an equilibrium line can be approximated by the ratio of the finite pressure and
temperature changes, AP/AT. Thus the latent heat at any temperature can be
found approximately from measurements of equilibrium pressures at two nearby
temperatures, if the corresponding specific volumes are known. Conversely, if the
equilibrium pressure and the latent heat are known at any one temperature, the
pressure at a nearby temperature can be calculated. In calculations of this sort we
usually assume that the vapor behaves like an ideal gas.

To integrate the Clausius-Clapeyron equation and obtain an expression for
the pressure itself as a function of temperature, the heats of transformation and the
specific volumes must be known as functions of temperature. This is an important
problem in physical chemistry but we shall not pursue it further here except to
mention that if variations in latent heat can be neglected, and if one of the phases
is a vapor, and if the vapor is assumed to be an ideal gas, and if the specific volume
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of the liquid or solid is neglected in comparison with that of the vapor, the integra-
tion can be readily carried out. The resulting expression is

(d_ = Ly
dT)s T(RT/P)’
dP _ I dT
P RT'
InP=— ;__; + In constant. (7-48)

The Clausius-Clapeyron equation can also be used to explain why the triple-
point temperature of water, Ty = 273,16 K, should be higher than the ice-point
temperature T, = 273.15 K. This appears puzzling at first, since at both tempera-
tures ice and water are in equilibrium.

The triple-point temperature T is defined as the temperature at which water
vapor, liquid water, and ice are in equilibrium. At this temperature, the vapor
pressure of water equals the sublimation pressure of ice and the pressure of the
system equals this pressure, P, which has a value of 4.58 Torr. Water at its triple
point is represented in Fig. 2-9(a).

The ice point is defined as the temperature at which pure ice and air-saturated
water are in equilibrium under a total pressure of 1 atm. There is air in the space
above the solid and liquid, as well as water vapor, and air is also dissolved in the
water. The total pressure P is | atm and by definition the temperature is the ice-
point temperature T,. Thus the triple-point temperature and the ice-point tem-
perature differ for two reasons; one is that the total pressure is different, and the
other is that, at the ice point, the liquid phase is not pure water.

Let us first neglect any effect of the dissolved air and find the equilibrium tem-
perature of ice and pure water when the pressure is increased from the triple point
to a pressure of [ atm. From Eq. (7-47), we have for the liquid-solid equilibrium,

- I —v) dP.
"18

The changes in temperature and pressure are so small that we can assume that
all terms in the coefficient of dP are constant. Let T'; represent the equilibrium tem-
perature of ice and pure water. Integrating the left side between T3 and 77, 'and the
right side between P, and atmospheric pressure P, we have

, T — o'
T,—T,:LI—D)(P—PS).
12
To three significant figures, T = 273 K, v = 1.09 x 10 m®kg?, v’ = 1.00 x
10*m*kg™, I;, = 3.34 x 10°J kg™, and P — Py = 1.01 x 10N m=% Hence
T; — T, = —0.0075K.

That is, the ice-point temperature T is 0.0075 K below the temperature of the triple
point.

dT
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The effect of the dissolved air is to lower the temperature at which the liquid
phase is in equilibrium with pure ice at atmospheric pressure by 0.0023 K below
the equilibrium temperature for pure water. Hence the ice-point temperature 7,
lies 0.0023 K below T, or 0.0023 + 0.0075 = 0.0098 K below the triple-point
temperature Ty, In other words, the triple-point temperature is 0.0098 K or
approximately 0.01 K above the temperature of the ice point. Then since a tem-
perature of exactly 273.16 K is arbitrarily assigned to the triple point, the tem-
perature of the ice point is approximately 273.15 K.

7-7 THE THIRD LAW OF THERMODYNAMICS

The principle known as the third law of thermodynamics governs the behavior
of systems, which are in internal equilibrium, as their temperature approaches
absolute zero. Its history goes back more than one hundred years, having its origin
in attempts to find the property of a system that determines the direction in which
a chemical reaction takes place; and, of equal importance, to find what deter-
mines when no reaction will take place and a system is in chemical equilibrium as
well as in thermal and mechanical equilibrium.

A compleéte discussion of this problem would take us too far into the field of
chemical thermodynamics, but the basic ideas are as follows. Suppose that a
chemical reaction takes place in a container at constant pressure, and that the con-
tainer makes contact with a reservoir at a temperature T. If the temperature of
the system increases as a result of the reaction, there will be a heat flow to the reser-
voir until the temperature of the system is reduced to its original value . For a
process at constant pressure the heat flow to the reservoir is equal to the change of
enthalpy of the system. If the subscripts / and 2 refer to the initial and final states
of the system, before and after the reaction, then

AH=H, - H, = =0, (7-49)
where — @, the heat flow out of the system, is the fieat of reaction. The components
and products of the reaction will of course be different chemical substances. Thus
if the reaction is

Ag + HCl== AgCl + {H,,
then H, is the enthalpy of the silver and hydrochloric acid and H, is the enthalpy
of the silver chloride and hydrogen.

Before the second law of thermodynamics was well understood, it was assumed
that all of the heat generated in a chemical process at constant pressure should be
available to perform useful work. All spontaneous processes would proceed in a
direction so that heat flows to the reservoir and the speed of the reaction would
depend upon the heat of reaction. Many experiments were done by Thomsen* and
by Berthelott. They found some spontaneous processes which absorb heat during

* H. P. 1. Julius Thomsen, Danish chemist (1826-1909),
1 Pierre M. Berthelot, French chemist (1827-1907).

|
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the reaction. Thus the heat of reaction cannot always be used to determine the
direction in which a process takes place.

On the basis of the second law we have shown in Section 7-4 that a spontaneous
process can occur in a system subjected to a constant pressure and ifi contact
with reservoir at a temperature T if the Gibbs function, and not the enthalpy,
decreases. The two are related by Eq. (7-30), the Gibbs-Helmholtz equation.
The change in the Gibbs function can be related to the change in enthalpy by

G, — G,I)
G, — G, = Hy — oot Bl
which can be rewritten as
9AG
86 = an + 7(%29) . 7-50
* (M" P i
Thus the change in enthalpy and the change in Gibbs function are equal only when
T(3AG/0T)p approaches zero.

AG, AH

/M‘
AG
Fig. 7-5 The temperature dependence of

the change in the Gibbs function and
in the enthalpy for an isobaric process.

T

Nernst* noted from the results of the experiments by Thomsen and by
Berthelot and careful experiments with galvanic cells, that ina reaction AG generally
approached AH more closely as the temperature was reduced, even at quite high
temperatures. In 1906, he therefore proposed as a general principle that as the
temperature approached zero, not only did AG and A/ approach equality, but
their rates of chang~ with temperature both approached zero. That is.

2 aAG) ; ( a AH)
lim(—) =0, lim(——/—)=0. 7-5
#'IE:( aT /p z!-r-nu aT /p (51
In geometric terms this means that the graphs of AG and AH as a function of T

both have the same horizontal tangent at 7 = 0 as shown in Fig. 7-5.

* Walter H. Nernst, German chemist (1864-1541).
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The first of Eq. (7-51) can be written as
in (2= %)y [(29) _ (9]
;'[-'-':( ar P lf-r-'; aT/e \oT/el
But (8G/3T)p = —S so that
lim(S; — 5) = 0. (7-52)
T=0

This is the Nernst heat theorem which states that:

in the neighborhood of absolute zero, all reactions in a liquid or solid in internal
equilibrium take place with no change in entropy.

Planck, in 1911, made the further hypothesis that not only does the entropy
difference vanish as T — 0, but that:
the entropy of every solid or liquid substance in internal equilibrium at absolute
zero Is itself zero,
that is

lim§ = 0. (7-53)

T=0
This is known as the third law of thermodynamics. Then if the reference tempera-
ture in the thermodynamic definition of entropy is taken at Ty = 0, the arbitrary
constant S, = 0, and the arbitrary linear function of the temperature appearing
in the expressions for the Gibbs and Helmholtz functions for an ideal gas is zero.
If the substance is heated reversibly at constant volume or pressure from T = 0

to T = T, its entropy at a temperature T is
T T
SV, T) = f T, seD= j L (7-54)
o T o T
Since the entropy at a temperature T must be finite, the integrals may not diverge;

and Cyp and Cp must approach zero as the temperature approaches zero:

limCp = lim Cp = 0. (7-55)
T=0 T-0
We leave it as a problem to show, however, that Cp/T = (95/3T)p may in fact
diverge as T approaches 0 K (Problem 7-29).
The Nernst theorem implies that the change in entropy is zero in any process

at 0 K. For example,
li | =0. 2
(33, =1im (), = o 50

Using the Maxwell relations (Section 7-3), we obtain
lim (gV) = lim (EP) 0; (7-57)

7-0\dT/p -0 \0T
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and since ¥ remains finite as T— 0, we can also write
limp = 0. (7-58)
T=0
Reference to Figs. 3-10 and 2-16, which show what is typical of all solids, will
show in fact that the specific heat capacities and the expansivities do approach zero
at T— 0. The methods of statistics, as will be shown in Chapter 13, predict that
at very low temperatures the specific heat capacities do approach zero. Statistical
methods also lead to an expression for the entropy at absolute zero, and in certain
systems the entropy does become zero in agreement with the Planck hypothesis.
The third law also implies that it is impossible to reduce the temperature of a
system to absolute zero in any finite number of operations, as we shall see. The
most efficient method for reaching absolute zero is to isolate the system from its
surroundings and reduce its temperature below that of the surroundings in an adia-
batic process in which the work is done by the system solely at the expense of its
internal energy. Consider a reversible adiabatic process which takes a system in a
state | to state 2 by a path which changes a property X and the temperature T of
the system. It follows from Eq. (7-54) that

T,
s = [ Sear
° T
and
P
SiXy T = j "Cxvyr,
* T

In a reversible adiabatic process,
51X, T) = Si(X,, T
and therefore,

Ts Ty
J- Cx, 41 =J' Exar, (7-59)
o T " T

If the process continues until 7, = 0, since each of the integrals converges,

T,
o C
f XegT = 0.
b T

However, Cy._ is greater than zero for 7, not equal to zero and Eq. (7-59) cannot
be true. Therefore the absolute zero of temperature cannot be attained. This is
sometimes called the wnartainability statement of the third law. Mathematically
the unattainability statement can be stated as

@T]aX)g =0 at T=0K. (7-60)

Temperatures of 10~? K have been reached in the laboratory. In fact the nuclei
of copper have been cooled to almost 10-® K but the poor thermal contact between
the nuclear spin system and the lattice prevented the entire lattice from reaching

such low temperatures.
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PROBLEMS

7-1 Derive Eqgs. (7-16) and (7-17).
7-2 Draw a careful sketch of a Carnot cycle of an idcal gas on a g-s diagram. Label each
process and show the direction traversed if the cycle is that of a refrigerator. Assume that

5 is larger than cp.
7-3 Show that if Fis known as a function of ¥ and T,

eF v aF
L T(ﬁ)v_ ('B_V T

oF
| G=F- V(W)T.

and

7-4 Use Eq. (7-16) to derive (a) the equation of state, (b) the energy equation, (c) the
Gibbs function, and (d) the enthalpy of an ideal gas,

7-5 Derive the equation of state and the energy equation for a van der Waals gas from
Eq. (7-17).

7-6 The specific Gibbs function of a gas is given by

& = RTIn(P|Py) — AP,

where A is a function of T only. (a) Derive expressions for the equation of state of the
gas and its specific entropy. (b) Derive expressions for the other thermodynamic poten-
tials. (c) Derive expressions for ¢p and ¢,. (d) Derive expressions for the isothermal
compressibility and the expansivity. (e) Derive an expression for the Joule-Thomson
coefficient. .

7-7 The specific Gibbs function of a gas is given by

& = —RTln (v/vy) + Bo,

where B is a function of T only. (a) Show explicitly that this form of the Gibbs function
does not completely specify the properties of the gas. (b) What further information is
necessary so that the properties of the gas can be completely specified ?
7-8 Does the expression

[ = RTn (vy/v) + CT?,
where C is a positive constant, result in a reasonable specification of the properties of a
gas at normal temperatures and pressures?
7-9 Derive Eqs. (7-36), (7-37), and (7-38).
7-10 Let us define a property of a system represented by @ which is given by the equation

U+Pry

=5 .
5 T
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Show that
a0
V= —T(-B—}; ’
ap a
v =1[r(57),+ 2(3p). )
and

3 Ta@)

7-11 The work necessary to stretch a wire is given by Eq. (3-6). (a) Derive expressions
for the differentials of the thermodynamic potentials, (b) Derive the four Maxwell
relations for this system. (c) Derive the TdS equations.

7-12 (a) Derive the thermodynamic potentials and their differentials for an £Z7 system.
(b) Derive the Maxwell relations and (c) the T dS equations for the system.

7-13 The work d'W in a reversible process undergone by a paramagnetic gas is given by
Eq. (6-69). (a) Write expressions for dE, dU, dH, dF, dG, and dF* for this system. (b)
Use the expressions of part (a) to derive Maxwell relations for this system. (c) Write the
T dS equations for a paramagnetic gas.

7-14 Give an example of a change in the constraint imposed on a system which will
cause its properties to change if the system is (a) completely isolated, (b) at constant
temperature and pressure, (c) at constant lemperature and volume.

7-15 Show that the internal energy of a system at constant entropy and volume must
decrease in any spontaneous process.

7-16 1f the Gibbs function of a system must decrease during any spontaneous processes
in which the temperature and pressure remain constant, show that the entropy of an
isolated system must increase during a spontaneous process. [Hint: Show that (AG)p,
must increase for any process that includes a stage in which (AS)y decreases.]

7-17 By the same method as used in the previous problem, show that if the Gibbs
function of a system must decrease during any spontaneous process in which the tempera-
ture and pressure remain constant, (a) the Helmholtz function must also decrease in any
spontaneous process al constant volume and temperature; and (b) the enthalpy must
decrease in any spontaneous process at constant pressure and entropy.

7-18 What can be stated about the change of Gibbs function during a spontaneous
process of a completely isolated system?

7-19 Sketch qualitative curves in a g-Pand a g-T plane of the phases of a substahce which
sublimates rather than melts,

7-20 Sketch qualitative curves which represent the solid, liquid, and vapor phasc of pure
water in (a) the g-P plane at T = —10°Cand (b) the g-T plane at # = 2 atm so that the
transitions from one phase to the other can be indicated.

7-21 Sketch graphs of g and its first and second derivatives as a function of 7 and P for
(a) a first-order and (b) a second-order phase transition.

7-22 The specific Gibbs lunction of the solid phase and of the liquid phase of a substance
are plotted in Fig. 7-6 as a function of temperature at a constant pressure of 10° N m~%,
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At higher pressures the curves of g versus Tare parallel to those shown. The molal volume
of the solid and of the liquid are respectively 0.018 and 0,020 m* kilomole™, (a) Sketch,
approximately to scale, curves of g versus P for the solid and liquid phases. Justify your
curves. (b) If one kilomole of the liquid is supercooled to 280 K and then transformed to
solid isothermally and isobarically at 10° N m~2 calculate AG, AS, AH, AU, and AF for the

system and AS for the universe.

20x10¢

1.8x10*

£ (J kilomole )

1.6 x 10*

Temperature (K)

Figure 7-6

7-23 (a) Calculate the slope of the fusion curve of ice, in (N m~2 K~1), at the normal
melting point. The heat of fusion at this temperature is 3.34 x 10°J kg~ and the change
in specific volume on melting is —9.05 x 10~*m?kg™". (b) Ice at —2°C and atmospheric
pressure is compressed isothermally. Find the pressure at which the ice starts to melt.
(c) Calculate (2P/aT), for ice at =2°C. (f =157 x 107K and x = 120 x 102
m® N-1), (d) Ice at —2°C and atmospheric pressure is kept in a container at constant
lume, and the ure is gradually increased. Find the temperature and pressure
at which the ice starts to melt. Show this process and that in part (b) on a P-T diagram like
the one in Fig. 2-9(a), and on a P-¥-T surface like the one in Fig. 2-7. Assume that the
fusion curve and the rate of change of pressure with temperature, at constant volume, are
both linear.
7-24 Prove that in the P-¥ plane the slope of the sublimation curve at the triple point is
greater than that of the vaporization curve at the same point.
7-25 The vapor pressure of a particular solid and of a liquid of the same malterial are
given by InP = 0.04 — 6/T and In P = 0.03 — 4/T respectively, where P is given in
atmospheres. (a) Find the temperature and pressure of the triple point of this material.
(b) Find the values of the three heats of transformation at the triple point. State approxi-
mations.
7-26 An idealized diagram for the entropy of the solid phase and the entropy of the liquid
phase of He? are shown in Fig. 7-7 plotted against temperature at the melting pressure.
(He? does not liquefy at atmospheric pressure.) The molal volume of the liquid is greater
than the molal volume of the solid by 10~ m? kilomole™ throughout the temperature
range. (a) Draw a careful and detailed plot of the melting curve on a P-T diagram. The
melting pressure at 0.3 K is 30atm. (b) Discuss processes to freeze He® below 0.2 K.
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06~
04
02
1 1 1 ' 1 J
01 02 03
T(K)
Figure 7-7

7-27 (a) Liquid He? at 0.2 K at a pressure just below the melting pressure is adiabatically
compressed to a pressure just above the melting pressure. Use Fig. 7-7 to calculate the
change in temperature of the He?. Explain approximations. (b) How can this effect be used
as a refrigerator at low temperatures?

7-28 In a second-order phase transition s; = 5; Or v; = v, at a particular temperature
and pressure where fand i denote the final and initial phase. Show that in these cases the
Clausius-Clapeyron equation can be written as

dP 1 ¢py—cp; dpP i B, — B

E'=ﬁ ﬁ,—ﬂI or d_T n,—x,'
respectively. [Hint: Begin with an appropriate T dS relation.]
7-29 A low temperature physicist wishes to publish his experimental result that the heat
capacity of a nonmagnetic dielectric material between 0.05 and 0.5 K varies as AT'? +
BT?, As editor of the journal, should you accept the paper for publication?
7-30 Show that the Planck statement of the third law can be derived from the unattain-
ability statement.
7-31 The Planck statement of the third law states that one isentropic surface covers the
T = 0 K plane. Derive Eq. (7-60) by showing that if this surface had a branch to higher
temperatures, the specific heat capacity at constant X would have to be negative.
732 A polymer, held at constant tension shrinks as the temperature is increased. Sketch
a curve of the length of the polymer as a function of temperature near 0 K and give
reasons for all pertinent parts of your sketch,
7-33 (a)Show that Curie's law for an ideal paramagnet and the van der Waals equation of
state cannot be valid near 0 K. (b) Show that there can be no first-order phase transition
at0 K.
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gases, and both occupy the same volume ¥ at the same temperature T,

P .4 n¥ il
' RT' T RT’ RT’
and hence
x =0, x,ni‘:}' (8-2)
Then
Inpy=InP+Inx, Inp,=InP+Inx,
and
gy=RI(InP+ ¢, +Inx), gy=RTInP + ¢ + Inxy).
The chemical potential p of each gas in the mixture is defined as
p=RT(InP+¢+Inx)
= RT(np + ¢)
=g+ RTInx, (8-3)

where g is the specific Gibbs function at temperature T and roral pressure P. The
final Gibbs function of the system is therefore

Gy = mpy + nopty.

The change in the Gibbs function in the mixing process is
Gy = Gy = m(p — &) + mlps — g2)

RT(m In xy + nyIn xy). (8-4)
The expression in parenthesis is necessarily negative, since x, and x, are both
fractions, less than I; and hence the Gibbs function decreases in the irreversible
mixing process, which we have shown is always the case in any such process at
constant tem perature and pressure.

As an example, consider a container of volume V divided into two parts by a
partition. On the left side are 2 kilomoles of helium gas and on the right side is 1
kilomole of neon gas. Both gases have a temperature of 300 K and a pressure of 1 atm,
After the partilion is removed, the gases difTuse into each other and a new equi-
librium state is reached. The mole fraction of each of the gases in the mixture is

given by Eq. (8-1):
2 1 1

et T R B T

and their partial pressures are
Pue =067atm  and  py, =033 atm.

The chemical potential of each gas is
Mige = &ue + R(300) In 0.67; Hxy = &xe + R(300) In 0.33,
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where gy, and gy, are the specific Gibbs functions of the separated gas at the same
temperature and pressure. The chemical potential of each constituent of the gas is a
linear function of temperature and depends upon the natural logarithm of the mole
fraction of that constituent in the gas.
The change in the Gibbs function in the mixing process is
AG = G, — Gy = RT(21n 0.67 + 1In 0.33),
= -5 x 10°J.

The change in entropy during the mixing process can be calculated from the first
of Eq. (7-27):

AG
AS = —(——) = — R(myInx; + ngln xy),
T Jp
= 2R,

= 16.6 x 1°JK™.

We have introduced the concept of chemical potential through the simple
example of a mixture of two ideal gases. The concept has a much wider significance,
however, and is basic to many problems in physical chemistry. It is applicable to
solutions as well as gases, to substances that can react chemically, and to systems
in which more than one phase is present. In the next section we prove that a system
is in chemical equilibrium when the chemical potential of each constituent has the
same value in each phase. i

The general relation between u and g, for any constituent in any phase, has
the same form as Eq. (8-3):

p=g+ RTInx,

where x is the mole fraction of the constituent:

ny;
Xy ==,
Xny
If a phase consists of only one constituent, x = 1, In x = 0, and
p=g -5)

In this case, the chemical potential equals the specific Gibbs function.

The problem of liquid-vapor equilibrium discussed in Section 7-5 is an example.
In this case there is only one constituent, x = g, and, as we have shown, the specific
Gibbs functions g and g” are equal in the state of stable equilibrium.

For a system consisting of a single pure substance, the concept of chemical
potential can be arrived at in a different way. The combined first and second laws

for a closed PVT system lead to the result that
dU = TdS — PdV.

!



8-1 CHEMICAL POTENTIAL 209

Considering U as a function of § and ¥, we can also write

dUu = v, 8-6,

(asu) —— (av) d &9
from which it follows that

a”) (29) - 87

( L= s 8 . (3-7)

The internal energy Uis an extensive property and is proportional to the number
of moles included in the system. It is implied in Eq. (8-6) that we are considering
a closed system for which the number of moles n is constant. If, however, the system
is open, so that we can add or remove material, the internal energy becomes a
function of n as well as of § and ¥, and

BU) (au) (BU)
dU = |—| d§ dav dn. 8-8
(BS;- * aV/sm ¥ nlsy wh
For the special case in which dn = 0, this must reduce to Eq. (8-7), and hence
sho T (k-
(as v v \avkea™ ™ &2

The additional subscript # on the partial derivatives simply makes explicit what
is implied in Egs. (8-7), namely, that in these equations » is assumed constant.
The coefficient of dn in Eq. (8-8) is now defined as the chemical potential u:

p= (B__U) H (8-10)

on/sy
that is, the chemical potential is the change of internal energy per mole of substance
added to the system in a process at constant S and ¥; and Eq. (8-8) can be written

dU = TdS — PdV + pdn. (8-11)

This equation is the general form of the combined first and second laws for
an open P¥T system. More generally, if X represents any extensive variable corre-
sponding to the volume ¥, and Y the intensive variable corresponding to the
pressure P, the work in a differential reversible process is Y dX and

dU = TdS — YdX + pdn o (8-12)

The chemical potential can be exprcsscd in a number of different ways. If we
write Eq. (8-12) as

ds =Lav + L ax — £ an,

T T T

and consider S as a function of U, X, and n, it follows that the partial derivatives
of S with respect to U, X, and n, respectively, the other two variables being held
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constant, are equal to the coefficients of the differentials dU, dX, and dn. Therefore

BS)
==T|—] .
3 (an U.X

The difference in the Helmholtz function F = U — TS, between two neigh-
boring equilibrium states, is

dF = dU — TdS — SdT;

and when dU is eliminated between this equation and Eq. (8-12), we have for an
open system,

(8-13)

dF = —SdT — YdX + pdn,
from which it follows that

w=(Z) -14)
on/r.x
In the same way, the difference in the Gibbs function G = U — TS + YX,
for an open system, is
dG = —SdT + XdY + pdn (8-15)
and
- @10
on/r.¥

This equation is equivalent to the definition of u for the special case discussed
earlier in this section. For a single constituent, G = ng and hence

=(a_c) =
| # én/r.¥ &

In summary, we have the following expressions for the chemical potential:
(2, (8,
on/lv.x \on/r.x \dn/ry

8-2 PHASE EQUILIBRIUM AND THE PHASE RULE

The discussion of the previous section can be easily extended to the case of a phase
composed of k constituents rather than just one. The internal energy of the phase is

U= UGS, V,nyn,...,n), (-17)

where n, is the number of moles of the ith constituent present in the phase. Equa-
tion (8-8) can be rewritten as )

= (U 3_U) (G_U) (B_U
= (35' v.nds . (BV s.adV * on,, s.v.n'dm > t on s.v.u'dnk'
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where the subscript ' signifies that the number of moles of all constituents is con-
stant except for the constituent appearing in the derivative.
Equation (8-11) can be written as
dU = TdS — PdV + pydny + *++ + py dny,

b= (a_u) , ete. (8-20)
anJsy.w

The last equation defines the chemical potential of the ith constituent in the phase.
Similarly, the difference in the Gibbs function between two states at the same

temperature and pressure for an open system of k constituents is
dG = dU — TdS + PdV.

Comparison with Eq. (8-19) yields
dG-,ujtfﬂl"’"'*'ﬂgdnp (8-21)

2G
ol (an)p.r.n" 30

It now remains to be shown that the chemical potential of a constituent is not
dependent on the size of the phase, but is specified by the relative composition,
the pressure, and'the temperature. Consider the phase to consist of two parts which
are equal in every respect. If An, moles of constituent / are added to each half of
the phase without changing the pressure or the temperature of either half, the
pressure and the temperature of the whole phase do not change and we can write

for each half

(8-19)
where

and

= Er‘ "
For the two halves, we get
_ 246G _ AG
=, An,  An,’

Hence the chemical potential x is independent of the size of the phase,

Now assume that we have a phase at temperature T, pressure P, and Gibbs
function Gy, and that we add mass which is at the same temperature and pressure,
As a result of the above discussion, Eq. (8-21) can now be written

G = Gy=pmy + " + iy (8-23)
Therefore we can also write
U=TS—PV+um + -+ pm + Gy,
He=TS+ pny + - + gy + Gy, (8-24)
F= =PV +pun + + pm + Gy
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It was shown in Section 7-5 that if two phases of a pure substance are in equi-
librium at constant temperature and pressure, the specific Gibbs function has the
same value in both phases. From this consideration we were able to derive the
Clausius-Clapeyron equation. We now consider equilibrium in a system composed
of more than one phase.

It is clear that only one gaseous phase can exist, since constituents added to
this phase will diffuse until a homogeneous mixture is obtained, However, more
than one liquid phase can exist because the immiscibility of certain liquids precludes
the possibility of homogeneity. Generally speaking, mixtures of solids do not form
a homogeneous mixture except in special circumstances. For example, a mixture
of iron filings and sulfur, or the different types of ice, must be regarded as forming
separate solid phases. On the other hand, some metal alloys may be considered
to comprise a single solid phase,

Our previous observation that the specific Gibbs function has the same value
in each phase for equilibrium between phases of a single constituent requires modi-
fication when more than one constituent is present in the system. We consider a
closed system consisting of = phases and k tituents in equilibrium at constant
temperature and pressure. As before, a constituent will be designated by a sub-
script § =1,2,3,...,k, and a phase by a superscript (j)=1,2,3,...,m
Thus the symbol ui* means the chemical potential of constituent 1 in phase 2.

The Gibbs function of constituent i in phase j is the product of the chemical

potential u{’ of that constituent in phase j, and the number of moles n}” of the
constituent in phase j. The total Gibbs function of phase j is the sum of all such

products over all constituents, that is, it equals

P
2w

el
Finally, the total Gibbs function of the entire system is the sum of all such sums over

all phases of the system, and can be written
i=ri=k
G=3 3 m'n’ (8-25)

F=li=1

We have shown in Section 7-1 that the necessary condition for stable equi-
librium of a system at constant temperature and pressure is that the Gibbs function
of the system shall be a minimum. That is, when we compare the equilibrium state
with a second state at the same temperature and pressure, but differing slightly
from the equilibrium state, the first variation in the Gibbs function is zero:
dGz.p=0.

In the second state, the numbers of moles n;” of each constituent in each
phase are slightly different from their equilibrium values. Then since the chemical
potentials are constant at constant temperature and pressure, we have from Eq.

(8-25),

oz fmke
dGr,p "El 3w dni? = 0, (8-26)
J=liml
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If the number of variables is one greater than the number of equations, an
arbitrary value can be assigned to one of the variables and the remainder are com-
pletely determined. The system is then called monovariant and is said to have a
variance of 1.

In general, the variance f is defined as the excess of the number of variables

over the number of equations, and
=[xk = 1)+ 2] = [k(= - 1)),

or
f=k—=m+2  (Nochemical reactions) (8-30)

This equation is called the Gibbs phase rule.
As an example, consider liquid water in equilibrium with its vapor. There is
only one constituent (H,0) and & = |. There are two phases, = = 2, and the

number of equations of phase equilibrium is
k(w — 1) = 1.

This single equation states simply that, as we have previously shown, the chemical
potential u has the same value in both phases,
The number of variables is

mk—1)+2=2

These variables are the temperature T and pressure P, since in both phases the
mole fraction of the single constituent must be 1. The variance f is therefore

f=k=m+2=1,

which means that an arbitrary value can be assigned to eitiier the temperature T
or the pressure P, but not to both. (Of course, limitations are imposed on these
arbitrary values since they must lie within a range in which liquid water and water
vapor can exist in equilibrium.) Thus if we specify the temperature 7, the pressure
P will then be the vapor pressure of water at this temperature and it cannot be
given some arbitrary value. If we make the pressure greater than the vapor pressure,
keeping the temperature constant, all the vapor will condense to liquid as shown in
the isotherm in Fig. 2-9. If we make the pressure less than the vapor pressure, all
the liquid will evaporate.

At the triple point of water, all three phases are in equilibrium and 7 = 3.
Then k(w — 1) = 2, and there are fhvo equations of phase equilibrium stating
that the chemical potential in any one phase is equal to its value in each of the other
phases. The number of variables is m(k — 1) + 2 = 2, which is equal to the
number of equations. The variance is

f=k-m+2=0,

and the system is therefore invariant, We cannot assign an arbitrary value to
either the temperature or the pressure. Once a system such as the triple point cell
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in Fig. 1-3 has been set up in any laboratory, its temperature is necessarily that of
the triple point of water, and its pressure is the vapor pressure at this temperature.
It is for this reason that the temperature of the triple point of water has been chosen
as the single fixed point of the thermodynamic temperature scale; it can be repro-
duced precisely at any point and at any time, Of course, the triple point of any
other pure substance would serve, but water was chosen because of its universal
availability in a pure state.

It can be readily shown that if a constituent is absent from a phase, the number
of variables and the number of equations are each reduced by one. Hence the
original restriction that every constituent be present in every phase can be removed,
and Eq. (8-30) remains valid.

If chemical reaction takes place within the system, the constituents are not
completely independent. Let us suppose that the four constituents 4, B, C, and
D undergo the reaction

ngAd + nyB=ngC + npD,
where the n's are the number of moles of the constituents. We now have an addi-
tional independent equation, so that the total number of independent equations
is k(w — 1) + 1. The number of variables is w(k — 1) + 2, as before. Therefore
the number of degrees of freedom is
l S=k-D—-7+2

But it is possible to conceive of a system where a number of chemical reactions
could take place, and accordingly we express the phase rule in the more general

form
f=k-r—m+2 (with chemical reaction), (8-31)

where 7 is the number of independent reversible chemical reactions.

8-3 DEPENDENCE OF VAPOR PRESSURE ON TOTAL PRESSURE

As an application of the concepts developed in the last two sections, we consider
the dependence of the vapor pressure of a liquid on the total pressure. Figure
8-1(a) represents a liquid in equilibrium with its vapor, The total pressure in the
system is the vapor pressure. An indifferent gas (that is, one that does not react
chemically with the liquid or its vapor), as represented by open circles in Fig.
8-1(b), is pumped into the space above the liquid, thereby increasing the total
pressure. The question is: Will the vapor pressure be changed when this is done at
constant temperature?

‘We make use of the condition that the chemical potential of the original sub-
stance must have the same value in the liquid and gas phases. Since the liquid phase
consists of a single constituent, the chemical potential in this phase equals the
specific Gibbs function of the liquid:

uo=g
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The gas phase can be considered a mixture of ideal gases and we can use|the results

of Section 8-1:
4" = RT(Inp + ¢),

where u" is the chemical potential of the vapor and p is the vapor pressure.

Fig. 8-1 A liquid in equilibrium with its vapor
(a) at the vapor pressure, (b) at a higher pressure
caused by the presence of an indifferent gas,

Let P represent the toral pressure, and suppose that a small additional amount
of the indifferent gas is pumped in, at constant temperature, increasing the total
pressure from P to P + dP and changing the vapor pressure from p to p + dp.
Since the system is also in equilibrium at the new pressure, the changes du” and du”
must be equal. For the liquid,

dy" = dg" = —5"dT + v"dP = v" dP,
since the temperature is constant, Also, since ¢ is a function of temperature only,

du" = L4 dp.
P
Therefore
v"dP = .R'.l"ﬂ s
P
or
dp V"
£ = —dP. 8-32
» RT (8-32)

Let p, be the vapor pressure in Fig. 8-1(a), when no indifferent gas is present.
In this case, the total pressure P equals p,. We now integrate Eq. (8-32) from this
state to a final state in which the vapor pressure is p and the total pressure is P.
The volume v” can be considered constant, so
» ™ r
2 .x f dP,
P P RT 'Po *
and

P v
In==— (P — "
n RT( Po) (8-33)
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It follows that when the total pressure P is increased, the vapor pressure p
increases also. That is, as more of the indifferent gas is pumped in, more of the
liquid evaporates, contrary to what field might be expected. However, the partial
pressure of the vapor phase by itself is unaflected by the addition of the indifferent
gas, and only the liquid phase feels the additional pressure causing it to evaporate,

The change in vapor pressure, Ap = p — po, is very small since o/RT is small.
For water, v = 18 x 10~ m® kilomole™* and p, = 3.6 x 10* Nm™*at 300 K. If the
total pressure over the water is increased to 100 atm and none of the indifferent gas
dissolves in the water, then
P W RAUE ’ :
InPo @315 % 105600) (101 x 107 — 3.6 x 10%)
and
L. A
w22 2P 790 x 108,
Po Po
sinceln(l +x) =xforx« 1.

8-4 SURFACE TENSION
The phenomena of surface tension and capillarity can be explained on the hypo-
thesis that at the outer surface of a liquid there exists a surface layer, a few molecules
thick, whose properties differ from those of the bulk liquid within it. The surface
film and the bulk liquid can be considered as two phases of the substance in equi-
librium, closely analogous to a liquid and its vapor in equilibrium. When the
shape of a given mass of liquid is changed in such a way as to increase its surface
area, there is a transfer of mass from the bulk liquid to the surface film, just as
there is a transfer of mass from liquid to vapor when the volume of a cylinder
containing liquid and vapor is increased.

It is found that in order to keep the temperature of the system constant when
its surface area is increased, heat must be supplied. Let us define a quantity 4,
analogous to the latent heat of vaporization, as the heat supplied per unit increase
of area at constant temperature:

40y = Addy. (8-34)

If a film of liquid is formed on a wire frame as in Fig. 3-6, the inward force
exerted on the frame as indicated by the short arrows originates in the surface
layers as if they were in a state of tension. The force per unit length of boundary
is called the surface tension o, and we have shown in Section 3-3 that the work,
when the slider is moved down a short distance dx and the area of the film increases
by dA, is

d'W = —qgdd.

Although the area of the film increases, the surface tension force is found

to remain constant if the temperature is constant, That is, the surface tension ¢
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does not depend on the area but only on the temperature. Thus the film does not
act like a rubber membrane, for which the force would increase with increasing
area. As the slider is moved down, molecules move from the bulk liquid into the
film. The process does not consist of stretching a film of constant mass, but rather
of creating an additional area of film whose properties depend only on the tem-
perature.

If the temperature of the system is changed, however, the surface tension
changes. Thus surface tension is analogous to vapor pressure, remaining constant
for two phases in equilibrium if the temperature is constant, but changing with
changing temperature. Unlike the vapor pressure, however, which increases with
increasing temperature, the surface tension decreases with increasing temperature,
as shown on Fig. 8-2, and becomes zero at the critical temperature, where the prop-
erties of liquid and vapor become identical.

v_ I
‘u+ll¢'Tdr

0.15
ook
E
=
Sk
o
€ 005~
ol | 1 I |
wn 3713 473 573 T, 673

Temperature (K)

Fig. 8-2 Surface tension o, “latent heat" A, and
surface energy per unit area U/A, for water, as a
function of temperature,

Consider an isothermal process in which the area of a surface film increases
by dAp. The heat flow into the film is d'Qp = Addyp, the work is d'Wp =
—o dAy, and the increase in internal energy, which in this case is the surface

energy, is
dUp =d'Qp —d'Wp = (A + o) dAy.

Therefore
dUp alj)
— == =1 3 8-35
dAp (3 T *e e

Since the work in a process is —o dA, a surface film is analogous to a PVY'T
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system, for which the work is P dV. The surface tension o corresponds to —P, and
the area A to the volume ¥. Hence we can write, by analogy with Eq. (6-9),
BU) do
—)=06—-T—,
(BA T dT
where (99/9T) 4 has been replaced with do/dT, since o is a function of T only.
From the two preceding equations,
do
iw =Tl 8-36
=T (8-36)
which relates the “latent heat™ 2 to the surface tension 0. Figure 8-2 also shows a
graph of 4 versus T. (Because o is a function of temperature only, the same is true

of 1)
Suppose the area of the film is increased isothermally from zero to A, by

starting with the slider in Fig. 3-6 at the top of the frame and pulling it down.
Since U = 0 when A = 0, the surface energy, when the area is 4, is
do
U=(4 aA=(u—T—)A; 8-3
(A+0) = (8-37)
that is, the surface energy is a function of both 7 and 4. The surface energy per
unit area is
U da
—=l4+0=0—-T—.
A dT
A graph of UJA is also included in Fig. 8-2. Its ordinate at any temperature is
the sum of the ordinates of the graphs of 4 and o.
By analogy with the heat capacity at constant volume of a P¥'T system, the

heat capacity at constant area, Cy, is

ouU
G, =%},
“ (BT)A

From Eq. (8-37),

BU) [du ds a‘cr] d*s
e [(ES | oa, L R RTL,
(BT A dT dT*  dT. Ta‘T”
and hence,
d’c
Cy=—AT—. 8-38
4 dT? ks
The specific heat capacity ¢ is the heat capacity per unit area:
d*a
Cqg==-T—,
& dar*
The internal energy U and Helmholtz function F are related by the equation

U=F-T(-€f).
0T/a
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Comparison with Eq. (8-37) shows that the Helmholtz function for a surface
film is

F = cA;
and hence

F
==; 8-39
il | (8-39)
that is, the surface tension equals the Helmholtz function per unit area.
The entropy of the film is
a.F) do
s=—(Z) =-4°2,

(aT A dT

and the entropy per unit area is
do

s=- (8-40)

8-5 VAPOR PRESSURE OF A LIQUID DROP

The surface tension of a liquid drop causes the pressure inside the drop to exceed
that outside. Asshown in Section 8-3, this increased pressure results in an increase
in vapor pressure, an effect which has an important bearing on the condensation
of liquid drops from a supercooled vapor.

Consider a spherical drop of liquid of radius r, in equilibrium with its vapor.
Figure 8-3 is an “exploded” view of the drop. The vertical arrows represent the
surface tension forces on the lower half of the drop, the total upward force being

2nra.

MRS,

Fig.8-3 Surface tension
forces in a spherical
drop.
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Let Py be the internal pressure and P, the external pressure. The resultant
downward force on the lower half of the drop due to these pressures is

(Py — Poymr?;
and for mechanical equilibrium,

(P, — Par® = 2o,
or

Pim B2,
r

The pressure P, in the liquid therefore exceeds the external pressure P, by
20/r. The smaller the radius of the drop, the greater the pressure difference.

For complete thermodynamic equilibrium, the pressure P, must equal the
vapor pressure p. We can use Eq. (8-33) to find the vapor pressure p, which will
be larger than the vapor pressure p, at a plane surface. In Eq. (8-33), the symbol P
represented the total pressure of the liquid, which in the present problem is the
pressure Py = P, + 20/r = p + 20/r, since P, = p when the system is in equi-
librium. Hence

2. _v:[ - 22]
In 5 RT (P Pg) + P .

Inall cases of interest, the difference (p — p,) between the actual vapor pressure
p and the vapor pressure p, at a flat surface is small compared with 2¢/r and can
be neglected. Then

or

"= RTn(rlr)’ 4l

and a liquid drop of this radius would be in equilibrium with its vapor at a pressure
P, = p. The equilibrium would not be stable, however. Suppose that by the chance
evaporation of a few molecules the radius of the drop should decrease. Then the
vapor pressure p would increase, and if the actual pressure P, of the vapor did not
change, the vapor pressure would exceed the pressure of the vapor. The system
would not be in thermodynamic equilibrium, and the drop would continue to
evaporate. On the other hand, if a few molecules of vapor should condense on the
drop, its radius would increase, the vapor pressure would decrease, the pressure
of the vapor would exceed the vapor pressure, and the drop would continue to
ow.
L The distinction between *“‘vapor pressure p” and “pressure P, of the vapor”
can be confusing. The term “pressure P, of the vapor" means the actual pressure
exerted by The vapor surrounding the drop. The term “vapor pressure p” is the
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particular value that the “pressure P, of the vapor” must have for thermodynamic
equilibrium.

For water at 300K, o =70 x 107* Nm™, p, = 27 Torr = 3.6 x 10° N m™%,

and " =~ 18 x 107" m® kilomole™, It is found that the pressure P, of water vapor

can be increased to at least 5 times the vapor pressure p, over a flat surface before
drops of liquid start to form. Setting p/p, = 5, we find from the values above that

re=6x10"m=~6 x 10%cm,

A drop of this radius contains only about twelve molecules, and there is some
question as to whether it is legitimate to speak of it as a sphere with a definite
radius and surface tension. However, if'a group of this number of molecules should
form in the vapor it would continue to grow once it had been formed.

8-6 THE REVERSIBLE VOLTAIC CELL

It was shown in Section 3-3, that when a charge dZ flows through a voltaic cell of
emf &, the work is
d'W= —&dZ.

If there are gaseous products of reaction, P dV work must be included also,
but we shall neglect any changes in volume and treat the cell as an &ZT system,
corresponding to a P¥'T system. We also assume, as is nearly true in many cells,
that the emf is a function of temperdture only, so that

(¥
T/z dT’

Every real cell has an internal resistance R, so that dissipative work at a rate
I*R is done within the cell when there is a current in it. Let the terminals of the
cell be connected to a potentiometer. If the voltage across the potentiometer is
made just equal to the emf of the cell, the current in the cell is zero. By making
the voltage slightly larger or smaller than the emf, the reaction in the cell can be
made to go in either direction. Further, since the dissipative work is proportional
to the square of the current, while the electrical work is proportional to the first
power, the former can be made negligible by making the current very small. Hence
the cell can be operated as a reversible system in the thermodynamic sense.

It is found, however, that even when the current / is very small so that I*R
heating is negligible, there may still be a heat flow into or out of the cell from its
surroundings in an isothermal process. Let us define a quantity y as the heat flow
per unit charge, so that in an isothermal process,

d'Qp = pdZy.

|
I
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The change in internal energy is then
dUp =d'Qp —d'Wr = (y + &) dZy,

and
du BU)
=[—] = é. 8-42
dzy (az Kk ) (-42)
By analogy with Eq. (6-9),
! (3_U) s pif 8-43
9Z/r TdT' @43
and therefore
dé
=-=T—. 8-44
¥ a7 (8-44)

Since & is a function of T only, the same is true of y. The heat flow in an iso-
thermal process is therefore

d'0p = pdZy = —r:—i dz. (8-45)

When the cell “discharges™ and does electrical work on the circuit to which it
is connected, dZ is a negative quantity. Hence if the emf increases with tempera-
ture, d&'/dT is positive, d'Qy is positive, and there is a heat flow into the cell from
its surroundings. On the other hand, if d§/dT is negative, then d'Qy is negative
when the cell discharges and there is a heat flow out of the cell, even in the absence
of any I*R heating.

The isothermal work is

d'Wp = —dUp + d'Qr.
Thus if d’Qyp is positive, the work is greater than the decrease in internal energy;
and if d’Qp is negative, the work is less than the decrease in internal energy. In
the former case, the cell absorbs heat from its surroundings and *‘converts it into
work.” Of course, there is no conflict with the second law because this is not the
sole result of the process. In the latter case, a portion of the decrease in internal
energy appears as a flow of heat to the surroundings.

In a finite isothermal process in which a change AZ flows through the cell,
the heat flow is

d&
= —T—AZ,, 5
Qr aroer (8-46)
The work is
Wp = —&AZp, (8-47)

and the change in internal energy is
&
AUp = (J - Tﬁ‘) AZ, (8-48)
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In physical chemistry, Eq. (8-48) is most useful when looked on as a method
of measuring heat of reaction. As a specific example, the Daniell* cell consists of
a zinc electrode in a solution of zinc sulfate, and a copper electrode in a solution
of copper sulfate. When the cell discharges, zinc goes into solution and copper is
deposited on the copper electrode. The net chemical effect is the disappearance of
Zn and Cu** and the appearance of Zn*+ and Cu, as represented by

Zn 4 Cut* — Zn** + Cu.

By forcing a current through the cell in the opposite direction the process can
be reversed, that is, copper goes into solution and zinc is deposited.

The same chemical reaction can be made to take place in a purely chemical
manner, quite apart from a Daniell cell. Thus if zinc powder is shaken into a solu-
tion of copper sulfate, all the zinc will dissolve (i.e., become ions in solution) and
all the copper ions will become metal atoms, provided the original amounts of the
two substances are chosen properly. If the process takes place at constant volume,
no work is done and the heat liberated equals the change in internal energy, given
by Eq. (8-48).

Since emf"s can be measured very precisely, then (provided two reacting sub-
stances can be combined to form a voltaic cell) the heat of reaction can be computed
from measurements of the emf and its rate of change with temperature more pre-
cisely than it can be found by direct experiment.

For example, when 1 kilomole of copper and zinc react directly at 273 K, the
i | energy change as d experimentally by calorimetric methods is 232 x
10°J. When the substances are combined to form a voltaic cell at 273 K, the
observed emf is 1.0934 V and its rate of change with temperature is —0453 x
1073V K1, Because the ions are divalent, the charge AZ passing through the cell is
2 faradayst per kilomole, or 2 x 9.649 x 10’ C kilomole™’. Then the internal
energy change is found to be

AU = 234.8 x 10° J kilomole™.

8-7 BLACKBODY RADIATION

The principles of thermodynamics can be applied not only to material substances
but also to the radiant energy within an evacuated enclosure. If the walls of the
enclosure are at a uniform temperature T, and the enclosure contains at least a
speck of a complete absorber or blackbody (a substance which absorbs 1007/ of
the radiant energy incident on it, at any wavelength), the radiant energy within the
enclosure is a mixture of electromagnetic waves of different energies and of all
possible frequencies from zero to infinity. Suppose that an opening is made in the
walls of the enclosure, small enough so that the radiant energy escaping through

* John F. Daniell, English chemist (1790-1845).
1 Michael Faraday, English physical chemist (1791-1867).
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the opening does not appreciably affect that within the enclosure. It is found experi-
mentally that the rate at which radiant energy is emitted from the opening, per unit
area, is a function only of the temperature 7 of the walls of the enclosure and does
not depend on their nature, or on the volume ¥ or shape of the enclosure. The rate
of radiation of energy through the opening is proportional to the radiant energy
per unit volume withir the enclosure, or to the radiant energy density u, where

Hence we conclude that the energy density u is also a function only of the
temperature T
u = u(T).
It follows from electromagnetic theory that if the radiant energy in the enclosure
is isotropic (the same in all directions) it exerts on the walls of the enclosure a
pressure P equal to one-third of the energy density:

P= ;-. (8-49)

The radiation pressure, like the energy density, is a function of T only and is inde-
pendent of the volume V.

The energy density, the frequency, and the temperature are found experi-
mentally to be related by an equation known as Planck’s law, according to which
the energy density Au, in an interval of frequencies between » and » + A», and at

a temperature 7, is given by

. . S (8-50)
exp(ey/T) — 1

where ¢, and ¢, are constants whose values depend only on the system of units
employed. The dependence of the fotal energy density on temperature can be found
by integrating Planck's equation over all frequencies from zero to infinity, but the
principles of thermodynamics enable us to find the form of this dependence without
a knowledge of the exact form of Planck’s equation. To do this, we again make
use of Eq. (6-9), which is derived from the combined first and second laws and
which we now write in extensive form:

BU)

! =] =T
(aV T
Since U = uV, and u is a function of T only,

().~ o5

(g—;)r- P. (8-51)
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Also, since both P and u are functions of T only,

a_P) - l(ﬂ) _1ldu 8-53
(arv ot/ 34T L
Hence Eq. (8-51) becomes b
1..da 1
v=yTar s
du dT
Pl
u=oTY, (8-54)

where o is a constant,

The energy density is therefore proportional to the 4th power of the thermo-
dynamic temperature, a fact which was discovered experimentally by Stefan*
before the theory had been developed by Planck and which is called Srefan's law,
or the Stefan-Boltzmannt law. The best experimental value of the Stefan-Boltzmann
constant ¢ is

o = 7.561 x 1071%J m=2 K4, (8-55)

From Egs. (8-49) and (8-54), the equation of state of the radiant energy in an
evacuated enclosure is

1 1
P=3n —iaT‘. (8-56)
The total energy U in a volume V is
U=uV=oVT (8-57)
The heat capacity at constant volume ¥ is
&U)
= () = 4oVT" 8-58
‘e (BT = ek

To find the entropy, imagine that the temperature of the walls of an enclosure
at constant volume is increased from 7= 0to T'= T, Then

T r
S =J‘ = Cp dT =f 4oV T dT,
o T ]
and hence

S= ‘3‘ VT, (8-59)

* Josef Stefan, Austrian physicist (1835-1893).
+ Ludwig Boltzmann, Austrian physicist (1844-1906).
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The Helmholtz function is
4
| F=U~TS=oVT' = 7oV,

and
F=—3oVr. (8-60)

The Gibbs function is
G=F+ PV = -—%oVI‘+;aVT‘,

and hence
G=0. (8-61)

We shall return to a discussion of blackbody radiation in Section 13-3 and show
how Planck’s law, and the value of the Stefan-Boltzmann constant, can be deter-
mined by the methods of statistics and the principles of quantum theory.

8-8 THERMODYNAMICS OF MAGNETISM
We showed in Section 3-3 that in a process in which the magnetic moment M of a
paramagnetic system is changed by dM, the work is
d'W = — dM,
where 5 is the external magnetic field intensity.

The magnetic systems of primary interest in thermodynamics are paramagnetic
crystals, whose volume change in a process can be neglected and for which the
“P dV™ work is negligible compared with —3#° dM. Such crystals have an internal
energy U, and also a magnetic potential energy

E, = =M. (8-62)

As described in Section 3-13, the appropriate energy function is therefore the

total energy E:
E=U+E,=U— #M, (8-63)

dE = dU — # dM — M d#.
The combined first and second laws state that
TdS =dU + d'W = dU — 3 dM. (8-64)

Hence in terms of E,
TdS = dE + M do#. (8-65)

Comparison with Eq. (7-23),
TdS =dH — VdP, (8-66)
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shows that the total energy E is the magnetic analogue of the enthalpy H of a
PVT system, and some authors speak of it as the “magnetic enthalpy™ and repre-
sent it by H*. There is an important distinction, however. The enthalpy H of a
PVT system is defined as

H=U-+ PV,
and the total energy E of a magnetic system as

E=U~— #M.

In the latter equation, the term —J#M is the potential energy of the system
in a conservative external magnetic field and is a joint property of the system and
the source of the field, while no such significance attaches to the product PV. Thus
the correspondence between Eqs. (8-65) and (8-66) is a mathematical analogy only.
But since the equations do have the same form, we can take over all of the equations
previously derived for the enthalpy H, replacing H with E, ¥ with —M, and P
with 5.

Thus the heat capacity at constant #, corresponding to Cp, is

)
C =] .
" (61‘ L | &4
The heat capacity at constant M, corresponding to Cy, is
[
Cyu=\|72) -
«=(arh am
The first and second T dS equations become .
2.
TdS = CydT — T(ai:)MdM, (8-69)
TdS = CedT + T(a—M) s (8-70)
* aTle

In Section 7-2 we have defined a function F*, corresponding to the Helmholtz

function F = U — TS, as
F¥=E - TS. (8-71)

Then
dF* = dE — TdS — SdT,

and making use of Eq. (8-65), we have

dF* = —SdT — M dof°. (8-72)
Therefore
éF' BF") '
—| = =8, —) = =M.
(BT * ’ (a.;!" d &-73)

The methods of statistics, as we shall show later, lead directly to an expression
for F* as a function of T'and #". Then from the second part of Eq. (8-73) we can
find M as a function of T and 5, which is the magnetic equation of state of the
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system. The first equation gives S as a function of T'and 5. The energy E is then
found from Eq. (8-71),

E=F*4T5,
and the internal energy U is
U=E+ M. (8-74)
Thus all properties of the system can be found from the expression for F* as a

function of T and 5.
The dependence of the entropy on the magnetic intensity can be determined

by the methed used to derive the Maxwell relations. Applying Eq. (7-39) to Eq.

(8-72) we obtain
(&~ Gl 79

For a paramagnetic salt obeying Curie's law, (9M/0T), < 0 and the entropy of
a paramagnetic salt decreases as the magnetic intensity increases.

In our discussion of the third law in Section 7-7, it was stated that all proc-
esses taking place in a condensed system at T = 0 K proceed with no change in
entropy. If these processes include the increase in magnetic intensity in a para-
magnetic crystal, it follows that at T = 0 K,

oS
(B.;f)z- e (1%

Figure (8-4) is a plot of the entropy of a magnetic system as a function of tem-
perature for values of the applied intensity # equal to zero and to 5#°;. The form
of these curves will be calculated in Section 13-4,

s
a =0
i
i
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r . /
b
|
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| |
| |
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T T T

Fig. 8-4 The temperature dependence
of the entropy of a magnetic system at
# =0 andat # = ¥},
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Substituting Eq. (8-76) into Eq. (8-75) we obtain that (8M/dT), =0 at
T = 0. However from Curie's law

=ng
_T ,

and (9M/3T), approaches infinity as T— 0. The conclusion is that Curie’s
law cannot hold at T = 0 and that a transition to an ordered magnetic state must
take place.

The production of low temperatures by adiabatic demagnetization of a para-
magnetic salt can be understood with the help of Fig. 8-4. Suppose that initially
the magnetic intensity is zero and that the temperature of the salt has been reduced
to a low value T by contact with a bath of liquid helium. The state of the system
is then represented by point a. The magnetic field is now increased isothermally
and reversibly, in the process a-b, to a value J#,. In this process there is a heat
flow out of the salt into the helium bath. The entropy of the system decreases while
its temperature remains constant at 7;. In the isothermal process a-b in which
dT = 0, Eq. (8-70) yields

d'Qr = TdSp = :r(ai‘) dof g
aT /e
At constant #°, (9M/9T), is negative. Then since 2 increases, d'Qy is negative
and there is a heat flow our of the system to the surroundings.

The next step is to isolate the system thermally from the surroundings and
perform the reversible adiabatic process b-c, in which the magnetic field is reduced
to zero while the entropy remains constant. The final temperature T,, from Fig.
8-4, is evidently less than the initial temperature T;. In this process, since S = 0,

Eq. (8-70) becomes
T (BM)
dTg = — —(——) di#,
“ Co\OT I A

and since (M/0T), and d#g are both negative, dTg is negative also. Tem-
peratures near 10~ K have been attained in this way.

The processes a-b and b-c in Fig. 8-4 are exactly analogous to those in which a
gas is first compressed isothermally and reversibly, and then allowed to expand
to its original volume, reversibly and adiabatically. The temperature drop in the
adiabatic expansion corresponds to the temperature drop from T} to Ty, in process
b-c in Fig. 8-4.

Process b-c, in Fig. 8-4, is commonly described as a “reversible adiabatic
demagnetization,” or as an “isentropic demagnetization.” Suppose, however,
that such a process is carried out in a temperature interval in which C,, is negligible,

so that
- 3_’3-) s (i"_‘)
Cor (BTar #or)e
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Then from Eq. (8-70), in an isentropic process in which 4§ = 0,

aﬁ) - (a,_u) d
X(BT rde = T /= ol
.and

ary _ dors

#

T
(f) = constant.
T/s

‘The ratio #°/T is therefore constant in the isentropic process in which the magnetic
field is reduced from 3, to zero, Hence since the magnetic moment M is a function
of [T, the magnetic moment is constant also and the term “demagnetization™
is inappropriate.

(8-77)

o =0

T

Fig. 8-5 The unattainability of the
absolute zero of temperature by a
finite series of isothermal magnet-
izations and adiabatic demagnet-
izations,

Suppose that a series of isothermal magnetizations from 3" = 0 to J# = J#,,
represented by the vertical lines in Fig. 8-5, are each followed by adiabatic de-
magnetizations, represented by the horizontal lines. In order to carry out the iso-
thermal magnetizations, in which there is a heat flow out of the crystal, reservoirs
at lower and lower temperatures are required, so that the processes become more
and more difficult experimentally as the temperature decreases. It will be seen that
every adiabatic demagnetization process intersects the curve # = 0 at a tem-
perature above T = 0. This is an example of the unattainability statement of the
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third law. We leave it as a problem to show that if the entropy isnot zeroat T = 0
for # = 0, the absolute zero of temperature could be reached in a finite number
of processes in violation of the unattainability statement of the third law.

8-9 ENGINEERING APPLICATIONS

The prospect of continuously “‘converting heat into work™ has intrigued man since
ancient times. The credit for some of the most significant contributions to the
science of thermodynamics is due to the successful achievement of this conversion,
so important to the evolution of our modern civilization. The power cycle, which
is the instrument for the continuous conversion of heat into work, presents an
illuminating application of the first and second laws that is always exacting and
often can be very subtle. This section is devoted to a thermodynamic analysis of
a power cycle in which the working substance undergoes a change of phase,
Specifically, steam is used as the working substance for the purpose of discussion,
but the general principles are applicable to all other similar substances.

Figure 8-6 is a diagram of the s-P-T surface for the liquid and vapor phase of
water substance. The surface resembles a P-o-T surface. It can be drawn to scale
because the relative entropy change between liquid and vapor phases is much
smaller than the relative volume change. Lines have been constructed on the
surface at constant P, T, and s.

Fig. 8-6 The s-P-T surface for water,
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The numerical values of P, T, and s are given, in Fig. 8-6, in the archaic set of
units still employed by mechanical engineers in the United States. The unit of pressure
is | pound-force per square inch, the unit of energy is 1 Btu, and the unit of mass is 1
pound-mass. On the temperature axis, temperatures are expressed in degrees Fahren-
heit, but the unit of specific entropy is 1 Btu per pound-mass, per rankine. It is little
wonder that engineering students in this country lose sight of the principles of thermo-
dynamics because of the welter of conversion factors involved in numerical cal-

culations.

TS /ENTHRLENY ST U B

Fig. 8-7 The h-s-P surface for water.

Figure 8-7 is a drawing, also to scale, of the thermodynamic surface obtained
by plotting the specific enthalpy vertically and the pressure and specific entropy
horizontally. The heavy line on the surface is the boundary of the liquid-vapor
region and the light lines are lines of constant 4, 5, and P. Isobaric lines on the
surface have a slope at any point equal to the temperature at that point, since

(g_:')r= 5

Hence in the liquid-vapor region, where a reversible isobaric process is also iso-
thermal, the isobaric lines are straight lines having a constant slope equal to T.
The lines slope upward more steeply as the critical temperature is approached.
Figure 8-8 is a projection of a portion of the /-5-P surface on the /-5 plane,
and is called a Mollier* diagram. It covers the range of variables encountered in

* Richard Mollier, German engineer (1863-1935).
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most engineering calculations. The practical utility of the diagram lies in the fact
that in any process at constant pressure, such as the conversion of liquid water
to water vapor in the boiler of a steam engine, the heat flow is equal to the difference
in enthalpy  between the endpoints of the process, and this difference can be read
directly from a Mollier diagram.
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Fig. 8-8 The Mollier diagram for water.

In our earlier discussions of Carnot cycles, it has been tacitly assumed that the
substance carried through the cycle underwent no changes in phase. However, a
Carnot cycle is any reversible cycle bounded by two isothermals and two adiabatics,
and the shaded areas befg in Fig. 8-9 represent a Carnot cycle operated in the
liquid-vapor region. In part (a) of the figure, the cycle is shown on a P-p-T surface,
and projected on the P-p plane. Part (b) shows the same cycle on the s-P-T surface
and projected on the 7-s plane, and in part (c) it is shown on the A-5-P surface and
projected on the -5 plane (a Mollier diagram).
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()

Fig. 8-9 The Carnot cycle befy in the liquid vapor region and the Rankine cycle
abedefih with superheat.
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Starting with saturated liquid at point b, we carry out a reversible isothermal
expansion at the temperature 75 until the liquid is completely vaporized (point ¢).
During this part of the cycle heat g, is withdrawn from a reservoir at temperature
T,. An adiabatic expansion of the vapor lowers the temperature to 7, (point f).
If the material is water-substance, this adiabatic expansion carried us back into the
liquid-vapor region. In other words, some of the saturated vapor condenses.
(Not all substances behave in this way. For some, the slope of the adiabatic line is
less than that of the saturation line and the point corresponding to f lies in the
vapor region.) An isothermal compression is now carried out at the temperature
T, to the state represented by point g, and heat g, is rejected to a reservoir. The
cycle is completed by an adiabatic compression to point b, during which the re-
mainder of the vapor condenses and the temperature increases to 7,. Note that in
the T-s diagram of Fig. 8-9(b), the Carnot cycle projects as a rectangle, bounded
by two isothermals and two adiabatics.

Since areas in a T-s diagram represent heat absorbed or liberated, the area
bejk in Fig. 8-9(b) represents the heat g, absorbed in the reversible expansion at
temperature T, the area gfjk represents the heat g, rejected at temperature 7, and,
from the first law, the area bcfg represents the net work w done in the cycle. The
thermal efficiency of the cycle is therefore

" =W _ area befg

q; area bejk
_(G=TNs=s) _T-T
Ti(ss = 1) L’

as must be the case for any Carnot cycle operated between temperatures T and 7.

In the Mollier diagram of Fig. 8-9(c), reversible adiabatics are represented by
vertical lines, and isotherms and isobars (which are the same in the liquid-vapor
region) by straight lines sloping upward to the right. Since the heat flowing into a
system in any reversible isobaric process is equal to the increase in enﬂ:ﬂlpy of the
system, the heat g, supplied in the isothermal-isobaric expansion from & to ¢ is
equal to /i, — h,. The heat g, given up in the isothermal compression from fto g
is iy = N1, The net work w done in the cycle is equal to the difference between the
magnitudes of g, and g,. The thermal efficiency is therefore

w he=hy = hy 4+ h
p=—=t—22Tt " (8-78
qa hy = h, )

The advantage of the Mollier diagram is that heat, work, and efficiency can
all be determined from the ordinates of points in the cycle, obviously a simpler
procedure than measurements of area which must be made on a T-s diagram.
Of course, the values of / at points b, c, f, and g may be taken from tables instead
of being read from a graph.



238 APPLICATIONS OF THERMODYNAMICS TO SIMPLE SYSTEMS 89

Heat source

Reciprocating
engine or turbine

Fig. 8-10 Schematic diagram of processes in a recip-
rocating steam engine or turbine.

In both the reciprocating steam engine and the turbine, liquid water and water
vapor go through essentially the same sequence of states. The boiler in Fig. 8-10
receives heat from a heat source maintained ata high temperature by the combustion
of fossil fuel, or by a nuclear reactor. In the boiler, saturated liquid is converted
to saturated vapor at a temperature determined by the pressure in this part of the
system. This temperature is very much less than that of the heat source. For
example, if the pressure in the boiler is 1000 Ib in~2 (6.9 x 10° N m~?), the tem-
perature is 544°F (558 K), while the flame temperature in a source in which fuel
is burned may be of the order of 3500°F (2200 K). The saturated steam is led from
the boiler to the superheater, where it receives more heat from the source and its
temperature increases. The superheater is connected directly to the boiler, thus the
pressure of the superheated steam does not rise above boiler pressure. In principle,
the temperature of the superheated steam could be increased to that of the source,
but a limit of about 1000°F (811 K), called the metallurgical limit, is set by the fact
that above this temperature the materials available for piping are not strong
enough to withstand the high pressure.

The superheated steam then flows to the reciprocating engine or turbine, where
it delivers mechanical work and at the same time undergoes a drop in temperature
and pressure. A portion is usually condensed in this part of the cycle also. The
mixture of saturated liquid and vapor then flows to the condenser, where the re-
maining vapor is liquefied and the heat of condensation is given up to a heat sink,
which may be the atmosphere or cooling water from a river or the ocean. The
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pressure in this part of the system is determined by the temperature of the heat
sink. The condensed liquid is then forced into the boiler by the pump, This com-
pletes the cycle.

The reciprocating engine and the turbine differ only in the means by which
internal energy is abstracted from the flowing steam and converted to mechanical
work. In the former, a mass of steam in a cylinder expands against a piston. In
the latter, the steam flows through nozzles, as in Fig. 3-14, acquiring kinetic
energy in the process. The rapidly moving steam then impinges on the buckets in
the turbine rotor and gives up its kinetic energy. The process is approximately
adiabaticin both devices but is not completely reversible and hence is not isentropic.

Note that as far as the steam cycle itself is concerned, the sequence of states
is the same whether the heat source is a furnace in which fuel is burned, or is a
nuclear reactor.

The Rankine cycle is a reversible cycle which corresponds more nearly than does
the Carnot cycle to the sequence of states d by the liquid and vapor in a
reciprocating steam engine or turbine. We consider first a cycle in which the steam
is not superheated. Starting at point b in Fig. 8-9(c), which corresponds to the
boiler in Fig. 8-10, saturated liquid is converted reversibly to saturated vapor at
a temperature T, and pressure P, (point c¢). The vapor then expands reversibly
and adiabatically to the pressure P, and temperature T; (pointf). This stage corre-
sponds to the passage of steam through the engine or turbine. The mixture of
vapor and liquid is then completely liquefied at the temperature T, (point h) corre-
sponding to the process in the condenser of Fig. 8-10. The liquid is then com-
pressed reversibly and adiabatically to boiler pressure P, (point a). This operation
is performed by the pump in Fig. 8-10. As we have seen, the temperature of a
liquid increases only slightly in an adiabatic compression, so that heat must be
supplied to the compressed liquid along the line ab in Fig. 8-9(c) to raise its tem-
perature to T,. In Fig. 8-10, this heating takes place after the liquid has been
pumped into the boiler. If the cycle is to be reversible, however, the heat must be
supplied by a series of heat reservoirs, ranging in temperature from that at point a,
slightly above Ty, to 7, The average temperature at which heat is supplied is
therefore less than Ty, so the Rankine cycle, although reversible, has a lower
thermal efficiency than the Carnot cycle in which heat is taken in only at the tem-
perature T,.

The thermal efficiency of the Rankine cycle can be determined directly from the
Mollier diagram, Fig. 8-9(c), by the same method used for the Carnot cycle. Heat
g, is supplied along the path a-b-c and heat g, is rejected along the path f~h. Al-
though process a-b-c is not isothermal, it is isobaric (see Fig. 8-9a), and the heat
g, supplied is equal to the enthalpy difference h, — h,. The heat g, rejected is
hy = h, and the net work w equals the difference between g, and ¢,. The efficiency
is therefore

o A Tk e 2 (8-79)

L6 h, = h,
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Note that although the expression for the efficiency in terms of enthalpy
differences has the same form as that for the Carnot cycle, Eq. (8-79) does not
reduce to (T, — T,)/T;, as is obvious from a comparison of the graphs of the
Carnot and Rankine cycles. As stated above, the efficiency of the Rankine cycle
is less than that of a Carnot cycle operating between temperatures T
and T;.

It was mentioned in Section 5-8, in connection with the general subject of
entropy and irreversibility, that irreversible processes in a heat engine result in a
decrease in efficiency. We can now see how irreversibility affects the efficiency of a
Rankine cycle. If the expansion of the steam in a reciprocating engine or turbine
is reversible as well as adiabatic, it is also isentropic, and process ¢-fin Fig. 8-9(b)
is a vertical line of constant entropy. If the expansion is irreversible, the entropy
increases and at the end of the expansion the state of the system is represented by
a point to the right of point /. The decrease in enthalpy in the process, from Fig.
8-9(c), is therefore less in the irreversible than in the reversible expansion. Now
apply the energy equation of steady flow to a turbine. The elevations of intake and
exhaust can be assumed the same, the velocities at intake and exhaust can be con-
sidered equal, and the process is very nearly adiabatic, even if it is not isentropic.
The shaft work is therefore equal to the enthalpy difference between intake and
exhaust, and the efficiency of the irreversible cycle is less than that of the
reversible since the turbine delivers less mechanical work for the same heat
input.

PIn practically all steam cycles the vapor is superheated to a temperature 7,
higher than that of the saturated vapor T, before it is expanded adiabatically (see
Fig. 8-10). The corresponding Rankine cycle is then represented by the process
b-c-d-e-h-a-b in Fig. 8-9(c). The superheating stage is represented by the segment
ed in this figure. There are two reasons for superheating. One is that the average
temperature at which heat is supplied is thereby increased above the temperature
of vaporization, with a resulting increase in efficiency. The other, which is actually
of greater importance, can be seen from an examination of Fig. 8-9(c). If the
adiabatic expansion starts from the state of saturated vapor, point ¢, the state of
the steam at the end of the expansion is represented by point f. If the expansion
starts at point d, the state of the steam at the end of the expansion is represented by
point e. The “moisture content” of the steam, that is, the fractional amount in
the liguid phase, is greater at point f than at point e. If the moisture content is too
great, mechanical wear on the turbine buckets becomes excessive. Hence super-
heating must be carried to a sufficiently high temperature to keep the moisture
content down to a safe value.

In Fig. 8-9(c), heat g, is absorbed along the path a-b-c-d, and because this is
isobaric, we have g, = hy — h,. Since g, = h, — h,, the efficiency is

q=_=hd_h¢_ha+hh

: e (8-80)
d a
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PROBLEMS

8-1 A volume V is divided into two parts by a frictionless diathermal partition. There
are n,, moles of an ideal gas A on one side of the partition and 1, moles of an ideal gas B
on the other side. (a) Calculate the change in entropy of the system which occurs when
the partition is removed. (b) As the properties of gas A approach those of gas B, the
entropy of mixing appears to remain unchanged. Yet we know that if gas 4 and gas B
are identical, there can be no change in entropy as the partition is removed. This is Gibb's
paradox. Can you explain it?

8-2 A container of volume ¥ is divided by partitions into three parts containing one
kilomole of helium gas, two kilomoles of neon gas, and three kilomoles of argon gas,
respectively. The temperature of each gas is initially 300 K and the pressure is 2 atm. The
partitions are removed and the gases diffuse into each other. Calculate (a) the mole
fraction and (b) the partial pressure of each gas in the mixture. Calculate the change (c)
of the Gibbs function and (d) of the entropy of the system in the mixing process.

8-3 For a two-component open system dU = TdS — PdV + uydny + pgdny. (a)
Derive a similar expression for G, and (b) derive Maxwell relations for this system from it.
8-4 (a) Show that

—S5dT + VdP = 3 nydp; =0, (8-81)
i

This is known as the Gibbs-Duhem* equation. (b) For a two-component system use the
Gibbs-Duhem equation to show that

g Ay
x(a-)” +( =% (3_;),.,_., - (8-82)

where x = n,/(n, + m). This equation expresses the variation of the chemical potential
with composition. [Hint: Express u in terms of P, T'and x and note that (3u,/2P)p,» =
2, ete.]

8-5 Consider a mixture of alcohol and water in equilibrium with their vapors. (a)
Determine the number of degrees of freedom for the system and state what they are.
(b) Show that for each constituent

du] au
' dT +0%dP + (o) " = —s7dT + 07 dP + (k) ",
i 4 ax .~ ax -

where x” is the mole fraction of one of the constituents in the liquid and x" is the mole
fraction of the same constituent in the vapor phase. (c) Using the equation of part (b)
and Eq. (8-82), show that

(1) () =)+ (= XNy = 8)
T [ x"(yg — o) + (1 — x")yy — v’

where x” is held constant artificially.

* Pierre M. M. Duhem, French physicist (1861-1916).
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8-6 The direction in which a chemical reaction occurs depends upon the value of the
thermodynamic equilibrium constant K, which can be defined as
AGp(reaction) = AG%(reaction) + RT In K,
where AGy is the change in Gibbs function for the reaction and must be equal to zero
at equilibrium; and AG% is the change in Gibbs function for the reaction taking place at
one phere and at temperature. (a) For the reaction of ideal gases
ngd + nyB = ngC + npD,
where n4A is ny moles of A, etc., show that
(e % pif)
(o xp)’
where p, is the partial pressure of A in the mixture, etc. (b) For the reaction
#N; + 3H,; = NH, show that K is 0.0128 if the total pressure is 50 atm and the mole
fraction ofiNHy is 0.151 of the equilibrium mixture. (c) How does K;. change with pressure
and temperature?
8-7 To make baking soda (NaHCOy), a concentrated aqueous solution of Na;CO; is
saturated with CO,. The reaction is given as
2Nat* + COj + H;0 + CO, = 2NaHCO,.
Thus Na* ions, CO7 ions, HyO, CO,, and NaHCO; are present in arbitrary amounts,
except that all the Na* and CO7 are from NayCO;, Find the number of degrees of freedom
of this system.

Kp =

i 1

Liquid solution Cd + Bi

nrc

Q)

Liquid solution
M0 Liquid and solid Cd
solution and

| solid Bi 8> 1d°c

100~ Solid Cd + solid Bi £

| 1 | 1 []
20 40 60 80 100
Weight % Cd

Figure 8-11

8-8 A phase diagram is a temperature-composition diagram for a system of two con-
stituents in various phases. An idealized phase diagram for the cadmium-bismuth system
is shown in Fig, 8-11 for P = | atm. (a) Determine the number of degrees of freedom
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‘or the system at each lettered point and state what they are. (b) Draw a sketch of a tem-
serature versus time curve for cooling the system at 80 weight per cent Cd from 350°C
‘0 room temperature. (c) The freezing point of a solvent is lowered by the addition of
iolute, according to the relation AT, = km where k is the freezing point constant, and m
s the number of kilomoles of the solute per kilogram of the solvent. Calculate the freezing
soint constant of bismuth.

3-9 (a) Show that for a liquid containing a nonvolatile solute in equilibrium with its
vapor at a given temperature T and p I 4 f

g' =W =g"+RTIn(l = x)

where x is the mole fraction of the solute. This assumes that the solute and solvent mix
1s ideal gases. (b) For a pure substance show that at constant pressure

o9 -+)

(c) Use part (b) to show that for a small change in x at constant pressure, part (a) reduces

“*" —Ia")d'(l?) =Rdin(1 - x).

(d) In the limit of small x
g2
N

where Iy, is the latent heat of vaporization. This shows that the boiling temperature is
elevated if a solute is added to a liquid. (e) Show how the result in part (d) can be used to
determine molecular weights of solutes.

8-10 (a) The vapor pressure of water at 20°C, when the total pressure equals the vapor
pressure, is 17.5 Torr, Find the change in vapor pressure when the water is open to the
atmosphere. Neglect any effect of the dissolved air. (b) Find the pressure required to
increase the vapor pressure of water by 1 Torr.

8-11 I the total pressure on a solid in equilibrium with its vapor is increased, show that
the vapor pressure of the solid increases.

8~12 The equation of state for a surface film can be written as o = oy(l — T]T,)"
where n = 1.22 and 0, is a constant, (a) Assume that this equation holds for water and
use the data on Fig. 8-2 to determine o, (b) Determine values for, c and sat 7 = 373 K.
(c) Calculate the temperature change as the area of the film is increased from 0 to
2 x 10~* m* adiabatically.

8-13 Let a soap film be carried through a Carnot cycle isting of an isoth I
increase in area at a temperature T, an infinitesimal adiabatic increase in area in which
the temperature decreases to T — dT, and returning to the initial state by an isothermal
and an infinitesimal adiabatic decrease in area as shown in Fig. 8-12. (a) Calculate the
work done by the film during the cycle. (b) Calculate the heat absorbed by the film in the
cycle. (c) Derive Eq. (8-36) by considering the efficiency of the cycle. (d) Plot the cycle
on a T-S diagram.
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Figure 8-12

8-14 Suppose that below a critical temperature T,, the Helmholtz function of a film is
to be expressed as
T\*
F= AB(I - ﬁ)
where B, T,, and # are constants depending upon the film and A is the area of the film.
(a) What experimental information will determine the values B, T,, and n? (b) Is there
enough information to specify all the properties of the film? (c) Is the specification, as
far as it goes, sensible?
8-15 Consider a rubber band as a one-dimensional system. (a) Derive an expression for
the difference between the specific heat capacity at constant tension ¢ and that at con-
stant length ¢;. (b) Find the ratio cg/c;. (c) A rubber band heated at constant tension
becomes shorrer. Use this fact to show that if the tension in a rubber band is released
adiabatically its temperature drops. (This can be checked experimentally by sensing the
temperature of a rubber band with your lip while it is under tension and just after the
tension is released.)
8-16 Show that the pressure P; inside a bubble of radius r in a liquid which is under an
external pressure P, is given by P, — P, = 20/r.
8-17 The temperature dependence of the emf & of a reversible cell is given by & =
3.2 + 0.007¢ where 1 is the Celsius temperature of the cell. This cell discharges 200 mA
for 30 s when ¢t = 27°C. Calculate (a) the entropy change, (b) the heat absorbed, (c) the
work done, (d) and the internal energy change of the cell during the process.
8-18 Show that when a charge AZ flows reversibly through a voltaic cell of emf & at
constant temperature and pressure, (a) AG = &' AZ, and (b) AH = AZ d(¢/T)d(1/T).
(c) Calculate AG and AH for the cell undergoing the process described in the previous
problem and compare with the answers for parts (b) and (d) of that problem.
8-19 Calculate the total work done to electrolyze acidic water to produce 1 kilomole
of Hyand § kilomole of O, at 1 atm and at 300 K. The emfused is 1.2 V. Assume that the
gases are ideal. ’
8-20 Let the radiant energy in a cylinder be carried through a Carnot cycle, similar to
that shown on Fig, 8-12, consisting of an isothermal expansion at the temperature T, an
infinitesimd] adiabatic expansion in which the temperature drops to T'—dT, and returning
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to the original state by an isothermal compression and an infinitesimal adiabatic compres-
sion. Assume P = u/3 and that u is a function of T alone. (a) Plot the cycle in the P-V
plane. (b) Calculate the work done by the system during the cycle. (c) Calculate the heat
flowing into the system during the cycle. (d) Show that u is proportional to T4 by con-
sidering the efficiency of the cycle.
8-21 Show that the heat added during an isothermal expansion of blackbody radiation
is four times larger than that expected for the heat added during the expansion of an ideal
gas of photons obeying the same equation of state. The factor of four arises because the
number of photons is not conserved but increases proportionally to the volume during an
isothermal expansion.
8-22 The walls of an evacuated insulated enclosure are in equilibrium with the radiant
energy enclosed. The volume of the enclosure is changed suddenly from 100 to 50 cm?®.
If the initial temperature of the walls is 300 K, compute (a) the final temperature of ‘the
walls, (b) the initial and final pressure exerted on the walls by the radiant energy, and (c)
the change of entropy of the radiant energy.
8-23 Show that the internal energy U of an ideal paramagnet is a function of temperature
only.
8-24 In a certain range of temperature T and magnetic intensity »#* the function F* of a
magnetic substance is given by

F* = aT - 22
r’
where a and b are constants. (a) Obtain the equation of state and sketch the magnetiza-
tion as a function of temperature at constant magnetic intensity. (b) If the magnetic
intensity is increased adiabatically, will the temperature of the substance rise or fall?

8-25 The refrigerator for an adiabatic demagnetization experiment is to be made from
40 g of chromium potassium alum [CrK(SO,), - 12H,0] which has the following prop-
erties: the molecular weight is 499.4 g mole™'; the density is 1.83 g em™%; the Curie
constant per gram is 3.73 x 10~* K g™%; and the lattice specific heat capacity is 4.95 x
10~* RT?. (a) Assuming that the salt obeys Curie's law, calculate the heat flow during an
isothermal magnetization at 0.5 K and 10* Oe using a He® refrigerator and a super-
conducting magnet. (b) Calculate the change in E|, E, U, and F* during the process of
part (a). (¢) An adiabatic demagnetization to zero-applied magnetic intensity does not
reach 0 K because of local effective magnetic fields in the material. Calculate the mag-
nitude of these fields if the salt can be demagnetized adiabatically to 0.005 K. (d) Cal-
culate the ratio of C e of the magnetic system to the lattice heat capacity of the salt at 0.5 K.

8-26 Show that if the graph for o# = 0 on Fig. (8-5) intersects the vertical axis at a point
above that for # = 2y, the unattainability statement of the third law would be violated.

8-27 Since the magnetic induction B inside a superconductor is zero, for a long cylin-
drical sample, the magnetization M/ngV is equal to the negative of the applied magnetic
intensity # for o less than some critical intensity o#,. For o greater than o the super-
conductor becomes a normal metal and M = 0. (a) Sketch a graph of the magnetization
as a function of the applied intensity. Show that in the transition from the supercon-
ducting to the normal state (b) the heat of transformation / is given by —Ty,.q,(d-r,,'dn
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and (c) the difference in the specific heat capacities of the sup ductor and the normal
metal is given by
ygTd’(.f‘_)
‘@~ = A
T
T a /\ b
T A T S
e
Figure 8-13

8-28 Figure 8-13, which is similar to Fig. 8-9(b), shows a Carnot cycle in the liquid-
vapor region. The working substance is | kg of water, and T; = 453K, T; = 313 K. '
Steam tables list values of T, P, w, 5, and & at points on the saturation lines and these are
tabulated below, in MKS units, for points a, b, e, and f. We wish to make a complete :
analysis of the cycle. ]

Point | 1°C) | T(K) | PINm™) | wUkg™® | sOUkg?KY) | hTkg™

a 180 453 10 x 105 | 7.60 x 10° 2140 7.82 x 108
b 180 453 10 x 105 [ 258 x 10° 6590 217 x 108
e 40 i 074 x 10° 1.67 x 108 572 1.67 x 10°
f 40 313 074 x 10° | 243 x 10° 8220 256 x 108

(a) Show that in the process a-b,
Gap = hy — by, Way = hy — By — uy + g,
(b) Show that in the process b-c,
Goe =0,  Woo =ty = lig.
(c) Show that in the process c-d,
Qoo =hg —hsy  Weg =hg = he = g + thy.
(d) Show that in the process d-a,

s
Gaa = 0, Wag = lig = U, ]
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(e) Let x; and x, represent the fraction of the mass of the system in the vapor phase at
points ¢ and d, respectively. Show that .

S = 5 Sa = 5
Xy =—, Xy o= —
5y =9 s — 5,

(f) Show that a
ug =ty + Xty = ), he = hy + xo(hy — ko),
ug =g + xy(uy = u),  hg = hy + xy(hy = o).

(g) Compute in joules the “‘expansion work™ in the cycle, along the path a-b-c.

(h) Compute in joules the *‘compression work,"” along the path ¢-d-a, and find the ratio
of expansion work to compression work.

(i) Compute from (g) and (h) the net work done in the cycle.

(j) Compute from (i) and (a) the efficiency of the cycle, and show that it is fqual to
Ty = T)|Ty.

(k) In any real engine there are unavoidable friction losses. To estimate the effect of these,
assume that in the expansion stroke 5% of the work done by the system is lost, and that
in the compression stroke 57, more work must be done than computed in part (h).
Compute the net work delivered per cycle, and the efficiency.

8-29 A steam turbine operates in a reversible Rankine cycle. Superheated steam enters
the turbine at a pressure of 100 Ib in~2 and a temperature of 800°F. The pressure of the
exhaust steam is 151bin~% (a) Find from Fig. 8-8 the work done per pound of steam.
(b) If as a result of irreversible processes the specific entropy of the exhaust steam is
2 Btu Ib™ deg F~! at the exhaust pressure of 151bin~?, how much work is done per

pound of steam?

Figure 8-14

8-30 Figure 8-14 represents a refrigeration cycle in which the adiabatic compression
stage, cd, takes place in the vapor region. The expansion stage from d to a is at constant
pressure and the irreversible expansion from a to b takes place through a throttling valve, -
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(a) Sketch the cycle in an k-5 diagram. (b) Show that the coefficient of performance of the
cycle is given by

hy — By
T
(c) In a typical cycle using Freon-12 as a working subst the specific enthalpies at

points 4, ¢, and a are, respectively, 90.6, 85.0, and 36.2 Btu Ib='. The measured coeffi-
cient of performance of the cycle was 2.4. Compare with the value computed from the
equation above, which assumes that all processes except a-b are reversible.
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9-1 INTRODUCTION

The subjeJt of thermodynamics deals with the conclusions that can be drawn from
certain experimental laws, and with the applications of these conclusions to rela-
tions between properties of materials such as heat capacities, coefficients of ex-
pansion, compressibilities, and so on. It makes no hypotheses about the nature of
matter and is purely an empirical science.

Although thermodynamic principles can predict many relations between the
properties of matter, such as the difference between the specific heat capacities
¢p and c,, or the variation of these quantities with pressure, it is not possible to
derive from thermodynamic considerations alone the absolute magnitudes of the
heat capacities, or the equation of state of a substance.

We can go beyond the limitation of pure thermodynamics only by making
hypotheses regarding the nature of matter, and by far the most fruitful of such
hypotheses, as well as one of the oldest, is that matter is not continuous in structure
but is composed of particles called molecules. In particular, the molecular theory
of gases has been very completely developed, because the problems to be solved
are much simpler than those encountered in dealing with liquids and solids.

The properties of matter in bulk are predicted, starting with a molecular theory
by means of two different lines of attack. The first, called the kinetic or dynamic
theory, applies the laws of mechanics to the individual molecules of a system, and
from these laws derives, for example, expressions for the pressure of a gas, its
internal energy and its specific heat capacity. The method of statistical thermo-
dynamics ignores detailed considerations of molecules as individuals, and applies
considerations of probability to the very large number of molecules that make up
any piece of matter, We shall see that the methods of statistical thermodynamics
provide a further insight into the concept of entropy and the principle of increase
of entropy.

Both kinetic theory and statistical thermodynamics were first developed on the
assumption that the laws of mechanics, deduced from the behavior of matter in
bulk, could be applied without change to particles like molecules and electrons.
As the sciences progressed, it became evident that in some respects this assumption
was not correct; that is, conclusions drawn from it by logical methods were not in
accord with experimental facts, The failure of small-scale systems to obey the
same laws as large-scale systems led to the development of quantum theory and
quantum mechanics, and statistical thermodynamics is best treated today from the
viewpoint of quantum mechanics.

This chapter and the next will be devoted to the kinetic aspects of molecular
theory, and the following chapters to statistical thermodynamics. As we go along,
we shall make many references to concepts and equations that have already been
discussed in the preceding chapters on thermodynamics, and we shall see how a
much deeper insight into many questions can be attained with the help of molecular

theory as a background.
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9-2 BASIC ASSUMPTIONS

In thermodynamics, the equation of state of a system expresses the relation between
its measurable macroscopic properties. The simplest equation of state is that of an
ideal gas; and although kinetic theory is limited neither in concept nor in applica-
tion to ideal gases, we shall begin by showing how the equation of state of an ideal
gas can be derived on the basis of a molecular model with the following as-
sumptions:

1. Any macroscopic volume of a gas contains a very large number of molecules.
This assumption is justified by all experimental evidence. The number of molecules
in a kilomole (Avogadro’s* number N,) is 6.03 x 10%, Experimental methods
for arriving at this number are discussed in later chapters. At standard conditions,
I kilomole of an ideal gas occupies 22.4 m®. Hence at standard conditions there are
approximately 3 x 10% molecules in a cubic meter, 3 x 10" in a cubic centimeter,
and 3 x 10" in a cubic millimeter.

2. The molecules are separated by distances that are large compared with their own
dimensions and are in a state of continuous motion. The diameter of a molecule,
considered as a sphere, is about 2or 3 x 10~ m. If we imagine one molal volume
at standard conditions to be divided into cubical cells with one molecule per cell,
the volume of each cell is 30 x 10~*” m®. The length of one side of suchja cell is
about 3 x 10~® m, which means that the distance between molecules is of this order
of magnitude, about 10 times the molecular diameter.

3. To a first approximation, we assume that molecules exert no forces on one
another except when they collide. Therefore between collisions with other mole-
cules or with the walls of the container, and in the absence of external forces, they
move in straight lines,

4. Collisions of molecules with one another and with the walls are perfectly elastic.
The walls of a container can be considered perfectly smooth, so that there is no
change in tangential velocity in a collision with the walls.

5. In the absence of external forces, the molecules are distributed uniformly,
throughout the container. If N represents the total number of molecules in a
container of volume ¥, the average number of molecules per unit volume, n, is

n = N|V.

The assumption of uniform distribution then implies that in any element of
volume AV, wherever located, the number of molecules AN is

AN = nAV.

Obviously, the equation above its not correct if AV is too small, since the number
of molecules N, although large, is finite, and one can certainly imagine a volume

* Count Amedeo Avogadro, Italian physicist (1776-1856).
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element so small that it contains no molecules, in contradiction to the equation
above. However, it is possible to divide a container into volume elements large
enough so that the number of molecules per unit volume within them does not
differ appreciably from the average, and at the same time small enough compared
with the dimensions of physical apparatus that they can be treated as infinitesimal
in the mathematical sense and the methods of differential and integral calculus
can be applied to them. For example, a cube 1/1000 mm on a side is certainly
small in comparison with the volume of most laboratory apparatus, yet at standard
conditions it contains approximately 30 million molecules.
6. The directions of molecular velocities are assumed to be distributed uniformly.
To put this assumption in analytic form, imagine that there is attached to each
molecule a vector representing the magnitude and direction of its velocity. Let us
transfer all these vectors to a common origin and construct a sphere of arbitrary
radius r with center at the origin. The velocity vectors, prolonged if necessary,
intersect the surface of the sphere in as many points as there are molecules and the
assumption of uniform distribution in direction means that these points are distrib-
uted uniformly over the surface of the sphere. The average number of these
points per unit area is

.. 9

4mr®’
and the number in any element of area AA is

N

AN = —— AA,
4ar

wherever the element is located. As in the preceding paragraph, the area must be
large enough (that is, it must include a large enough range of directions) so that
the surface density of points within it does not differ appreciably from the average.
Because of the large number of molecules, the range of directions can be made
very small and still include a large number of points.

Let us carry this description of velocity directions one step further. Any
arbitrary direction in space can be specified with reference {0 a polar coordinate
system by the angles 6 and ¢, as in Fig. 9-1. The area A4 of a small element on
the surface of a sphere of radius 7 is, very nearly,

AA = (rsin 0 Ab)(r Ag) = r¥sin 6 AO A,

The number of points in this area, or the number of molecules AN, having
velocities in 2 direction between 0 and § + A0, ¢ and ¢ + Ad, is

N 4 N .
ANgy = —= r*sin0A0A$ = — Ad.
= rsin ¢ i sin 0 A0 A
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When both sides of this equation are divided by the volume ¥ occupied by the gas,
we get

Angy = f;ssn 0A0AS, (9-1)

where An,, is the number density of molecules with velocities having directions
between 0§ and 6.4+ Af, and ¢ and ¢ + Ad.

rsin@ rsind Ag

Fig. 9-1 Polar coordinates.

Consider, finally, the magnitudes of the molecular velocities, or the speeds
of the molecules. It is clear that not all molecules have the same speed, although
this simplifying assumption is often made. Even if we could start them off in this
way, intermolecular collisions would very quickly bring about differences in speed.
We shall show in Section 12-2 how to calculate the number that have speeds in
any specified range, but for the present we shall assume that the speed can have
any magnitude from zero to infinity*, and we represent by AN, the number of
molecules with speeds between v and v + Av. Geometrically this number equals
the number of velocity vectors terminating within a thin spherical shell in Fig. 9-1,
between spheres of radii r, = v and r, = v + Av. As a result of collisions, the
speed of any one molecule is continually changing, but we assume that in the equi-
librium state the number of molecules with speeds in any specified range remains

constant.

* It would be better to say, from zero to the speed of light. However, as we shall show, the
number of molecules with speeds exceeding even a small fraction of the speed of light is so
small for ordinary gases that for mathematical simplicity we may as well make the
assumption above,
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9-3 MOLECULAR FLUX

Because of the continuous random motion of the molecules of a gas, molecules are
continually arriving at every portion of the walls of the container, and also at each
side of any imagined surface within the gas. Let AN represent the total number of
molecules arriving from all directions and with all speeds at one side of an element
of surface of area A4 during a time interval Ar. The molecular flux @ at the surface
is defined as the total number of molecules arriving at the surface, per unit area and

per unit time. Thus,  aw
T AAALC

If the surface is an imagined one within the gas, all molecules arriving at the
surface, from either side, will cross it, and if there is no net motion of the gas as a
whole, the molecular fluxes on either side of the surface are equal and are in opposite
directions. Thus at either side of the surface there are two molecular fluxes, one
consisting of molecules arriving at that side and the other consisting of molecules
that have crossed the surface from the other side.

If the surface is at the wall of the container, molecules arriving at the surface
do not cross it but rebound from it. Hence there are also two fluxes at such a
surface, one consisting of molecules arriving at the surface and the other consisting
of molecules rebounding from the surface.

In Fig. 9-2, the shaded area AA represents a small element of surface, either
within the gas or at a wall. Construct the normal to the area, and some reference
plane containing the normal. We first ask, how many molecules arrive at the
surface during a time interval As, travelling in the particular direction 6, $, and
with a specified speed v. (To avoid continued repetition, let it be understood that
this means the number of molecules with directions between  and 8 + A6, ¢ and
¢ + A, and with speeds between v and v + Av.)

Construct the slant cylinder shown in Fig. 9-2, with axis in the direction 6,
¢, and of length » At, equal to the distance covered by a molecule with speed »
in time Ar. Then the number of f¢v-molecules that arrive at the surface during
the time At is equal to the number of 8¢s-molecules in the cylinder, where a G¢p-
molecule means one with speed v, traveling in the 8, ¢ direction.

To show that this is correct, we can see first that all f¢v-molecules in the cy-
linder will reach the surface during the time Ar. (We are ignoring any collisions
with other molecules that may be made on the way to the surface, so that the
molecules are considered as geometrical points. In Section 10-3 we shall see how
to take such collisions into account.) There are, of course, many other types of
molecules in the cylinder. Some of these will reach the surface element during the
time Af and others will not. Those that do nor are either not traveling toward the
element (that is, they are not f¢-molecules) or are not traveling fast enough to
reach the element during the time Ar (that is, their speed is less than v). Those
within the cylinder that do reach the surface during the time At are necessarily
G¢-molecules, but unless they have a speed v they are not fgv-molecules.

(9-2)
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Fig. 9-2 Only the 8gv-molecules in the cylinder will arrive at the
area AA during a time At

Many other molecules, not in the cylinder, will arrive at the element during
the time Ar. Some of these will have a speed v, but they are not f¢-molecules since
they come in from other directions. Therefore all 8¢v-molecules in the ?Iinder.
and only those molecules, will reach the surface during the time A, traveling in the
G¢-direction with speed .

Let An, represent the number density of molecules with speeds between v and
v + Av. Then from Eq. (9-1) the number density of f¢v-molecules is

Anyy, = - An, sin 0 AD A4, ©-3)
4
The volume of the slant cylinder in Fig. 9-2 is
AV = (AA cos O)(v Ar).
The number of f¢r-molecules in the cylinder is therefore
ANy, = 4i" v An, sin 0 cos 6 AO Ad A4 A,

and the flux Ay, of fdv-molecules is

AD,, = %}'ﬁ = 1= vn,sin 003 040 A (9-4)
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The flux Ad,, due to molecules arriving at an angle 6 with speed v, but in-
cluding all angles ¢, is found by replacing A¢ with dé and integrating over all
values of ¢ from 0 to 2». The result is

A®,, = 3 0 8n, sin 6 cos 6 AG. ©-5)

The flux A®, due to molecules arriving at the angle 6, including all angles
¢ and all speeds v, is found by summing the expression for A®,, over all values of
v. Thus

Ady = ; sinfcos 8 A0 3 v An,. (9-6) l

The flux A®, of molecules with speed v, including all angles 6 and ¢, is found
by replacing A6 with df in Eq. (9-5) and integrating over all values of 0 from zero
to =/2. This gives

AD, = i o An,, ©-7)

Finally, the total flux @, including all speeds and all angles, is obtained either
by summing A®, over all values of v, or by replacing A with 46 in Eq. (9-6) and
integrating over 0 from zero to #/2. The result is

D= % SvAn, (9-8)

Let us express this result in terms of the average or arithmetic mean speed 5.
This quantity is found by adding together the speeds of all the molecules, and
dividing by the total number of molecules:

5= 22

N

where the sum is over all molecules. But if there are AN, molecules with speeds v,.

AN, molecules with speeds v,, etc., the sum of the speeds can also be found by

multiplying the speed v, by the number of molecules AN, having that speed,

multiplying v, by the number AN, having speed v,, and so on, and adding these

products. The average speed is then the sum of all such products, divided by the
total number of molecules. That is,

v ANy + 0, ANy 4+ -+ 1
b= '—1—‘;—'— "EZ”AN-v -9
where the sum is now over all speeds. When numerator and denominator are

divided by the volume V¥, we have
1
P==30vA
a Zvhn,

It follows that
3 v An, = in, 9-10)
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and hence from Eq. (9-8) the molecular flux ®, including all molecules arriving
at one side of the element and coming in from all directions and with all speeds, is

1
¢ = i on. 9-11)

As a numerical example, the number of molecules per cubic meter, n, is approxi-
mately 3 x 10* molecules m at standard conditi We shall show later that the
average speed of an oxygen tholecule at 300 K is approximately 450 ms™. The
molecular flux in oxygen at standard conditions is therefore

o -}na-.‘} X 3 % 10% x 450 ~ 3.3 x 10*” molecules m~%s~1,

It is sometimes useful to put Eq. (9-4) in the following form. Consider the
area AA in Fig. 9-2 to be located at the origin in Fig. 9-1 and to lie in the x-y
plane. The molecules arriving at the area in the 6¢-direction are those coming in
within the small cone in Fig. 9-1, whose base is the shaded area A4 on the spherical
surface in that diagram. This area is

AA = rtsin 6 A6 Ad,

and the solid angle of the cone, Aw is
Aw = Ar_: = sin A8 Ag.
Hence from Eq. (9-4) the flux Ad,,, can be written

ADyp, = - 080, c086 80 = AD,.; (9-12)

and the flux per unit solid angle, of molecules with speed v, is

A, _ 1
sl s v An, cos 0. (9-13)

The total flux per unit solid angle, including all speeds, is

AD, 1
et L 6. -
e Un cos (9-14)

If we consider a number of small cones with apexes at A4 in Fig. 9-1, the
greatest number of molecules arrives with direction in the cone centered about the
normal, since cos 6 has its maximum value for this cone, and the number decreases
to zero for cones tangent to A4, where § = 90°,
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If the area AA is a hole in the wall of a thin-walled container, small enough so
that leakage through the hole does not appreciably affect the equilibrium of the
gas, then every molecule coming up to the hole will escape through it. The distri-
bution of directions of the molecules emerging from the hole is also given by Eq.
(9-14). The number emerging per unit solid angle is a maximum in the direction
normal to the plane of the hole and decreases to zero in the tangential direction.

8-4 EQUATION OF STATE OF AN IDEAL GAS

Figure 9-3 shows a B¢v-molecule before and after a collision with the wall of a
vessel containing a gas. From our assumption of perfect elasticity, the magnitude
of the velocity v is the same before and after the collision, and from the assumption
that the wall is perfectly smooth, the tangential component of velocity is also un-
altered by the collision. It follows that the angle of reflection is equal to the angle
of incidence and the normal component of velocity is reversed in the collision,

from v cos 8 to —v cos 6.

Fig. 9-3 Change in velocity in an elastic collision,

A e e e e o
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The force exerted on the wall by any one molecule in a collision is an impulsive
force of short duration. The details of its variation with time are unknown; but it
is not necessary to know them because from Newton’s second law we can set the
average force per unit area exerted on the surface, or the average pressure, equai to
the average rate of change of momentum per unit area.

If m is the mass of a colliding molecule, the change in the normal component
of momentum in a 8gu-collision is

myvcos @ — (—mycos ) = 2mp cos 0. 9-15)

The change in momentum depends on 8 and v, but not on the angle ¢. Hence
we need the number of v-molecules arriving at the surface per unit area, and
per unit time, or the flux A®,, given by Eq. (9-5).

The rate of change of momentum per unit area due to all molecules arriving
at an angle 0 with speed v, or the pressure APy,, equals the product of A®,, and

the change in momentum of a fv-molecule:
APy, = (4v An, sin 0 cos § A6)(2mv cos 6) = mv® An, sin 0 cos? 6 Af.

To find the pressure AP, due to molecules of speed » coming in at all values of 8,
we integrate over 6 from 0 to #/2. This gives

AP, = %mv’ An,,

Finally, summing over all values of », we have for the total pressure P,
P= .7: m3 v*An, (9-16)

The same reasoning as that above can be applied to any imagined surface in
the interior of the gas. The molecular flux A®,,, is the same for all surfaces,
wherever located. Molecules approaching an internal surface from one sjde pass
through it and do not rebound, but the flux across the surface from the (Lpposite
side carries the same momentum away from the surface as do the molecules re-
bounding from a wall of the container. That is, for every O¢v-molecule crossing
the surface from one side, there will be another f¢v-molecule crossing from the
other side, and Fig. 9-3 will apply to any surface within the gas, except that the
black circles in Fig. 9-3 do not represent the same molecule.

Hence the net flux of momentum, at right angles to any surface, is the same as
at the boundary wall; and if we consider the pressure as the flux of momentum,
the pressure has the same value at a/l points, both within the gas and at its surface.

Equation (9-16) is more conveniently expressed as follows. The average value
of the square of the speed of all molecules, or the mean square speed, is found by
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squaring all the speeds, adding these quantities, and dividing by the total number of
molecules:
-— 2
Kp Ly
N
Just as in calculating the average speed, we can obtain Zv* more conveniently
by multiplying v by AN,, v} by AN, etc., and adding these products. That is

1=ZU'AN,' o ;i=2u'An,,-
N n
Then
3 v*An, = no*
and
P == ; nme?, (9-17)

Since the mean kinetic energy of a single molecule is }mv?, the right side of Eq.
9-17) equa}s two-thirds of the total kinetic energy per unit volume or two-thirds
of the kinetic energy density; and Eq. (9-17) thus expresses the pressure in terms of

the kinetic energy density.
It will be shown in Section 12-2 that the average value of the square of the

speed, v*, is always greater than the square of the average speed, ()
Since n represents the number of molecules per unit volume, N/¥, we can

write the preceding equation as
1 —
PV = 3 Nmv?,
This begins to look like the equation of state of an ideal gas,
PV = nRT,

where n represents the number of kilomoles, equal to the total number of mole-
cules divided by the number of molecules per kilomole, or Avogadro’s number N ,.
We can therefore write the equation of state of an ideal gas as

pr=NEr
Na

The quotient R/N, occurs frequently in kinetic theory. Itiscalled the universal
gas constant per molecule, or Boltzmann’s constant, and is represented by k:

k=R, (9-18)

Na
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Since R and N, are universal constants, k is a universal constant also. That is,
its magaitude depends only on the system of units employed. In the MKS system,

k=R B XIC g 1080 molecule™ k4
N, 6022 x 10
In terms of the Boltzmann constant, the equation of state of an ideal gas
becomes
PV = NkKT.
This will agree with the equation derived from kinetic theory, Eq. (9-17), if we set

NKT = 3' Nmi,

or
Pw L (9-19)

m

The theory has thus led us to a goal we did not deliberately set out to seek;

namely, it has given us a molecular interpretation of the concept of absolute

temperature 7, as a quantity proportional to the mean square speed of the
molecules of an ideal gas. It is even more significant to write Eq. (9-19) as

im;‘; - g kT. (9-20)

The product of one-half the mass of a molecule and the mean square speed is the
same as the mean translational kinetic energy, and we see from the preceding
equation that the mean translational kinetic energy of a gas molecule is pro-
portional to the absolute temperature. Furthermore, since the factor 34/2 is the
same for all molecules, the mean kinetic energy depends only on the temperature
and not on the pressure or volume or species of molecule. That is, the mean kinetic
energies of the molecules of H,, He, O, Hg, etc., are all the same at the same tem-
perature, despite the disparities in their masses.

We can compute from Eq. (9-20) what this energy is at any temperature. Let
T = 300 K. Then

2
If the molecules are oxygen, the mass m is 5.31 x 102 kg, and the mean

square speed is

;I«:':"=E x 138 x 102 x 300 = 6.21 x 107® ],

2 x 621 x 107%™
= | 4t 3

= 531 % 10 =234 x 10'm*s~%,
The square root of this quantity, or the root-mean-square speed is

v, =V =482 ms! = 1607 ft st = 1100 mi hrL,
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By way of comparison, the speed of sound in air at standard conditions is about
350 m s~! or 1100 ft s~ and the speed of a .30 cal rifle bullet is about 2700 ft s~

The speed of a compressional wave in a fluid is given by

v=+1/xp
which, for an ideal gas, is equivalent to
v = VykT|m,

where y = cp/c,. Since the root-mean-square speed of a molecule is
Uyma = V3KTIm, (9-21)

we see that the two are nearly equal but that the speed of a sound wave is somewhat

smaller than the rms molecular speed, as would be expected.
When electrons and ions are accelerated by an electric field, it is convenient to
express their energies in electron-volts (abbreviated eV), where by definition

1 electron-volt = 1.602 x 10-*J.

An electron-volt is equal to the energy acquired by a particle of charge e =
1.602 x 101° C accelerated through a potential difference of 1V,
At a temperature of 300 K,

gk?‘ = 621 x 1072 J ~ 0.04 ¢V.

or
kT = 0.026eV ~ eV

Hence at a temperature of 300 K, the mean kinetic energy of a gas molecule is
only a few hundredths of an electron-voit.

9-5 COLLISIONS WITH A MOVING WALL

We now examine the nature of the mechanism by which an expanding gas does
work against a moving piston, and show that if the process is adiabatic, the work
is done at the expense of the kinetic energy of the molecules (that is, the internal
energy of the gas) and the temperature of the gas decreases. Figure 9-4 represents
a gas in a cylinder provided with a piston. Let the piston move up with speed u,
small compared with molecular speeds and small enough so that the gas remains
practically in an equilibrium state. From the thermodynamic viewpoint, then, the
process is reversible.

When a molecule collides elastically with a stationary wall, the magnitude of
the normal component of velocity is unchanged. If the wall is moving, the mag-
nitude of the relative velocity is unchanged.
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a moving wall,

To illustrate by a simple numerical example, if a particle approaches a stationary
wall normally with a speed of 15 ms™, referred to a coordinate system fixed in the
laboratory, it rebounds with a speed of 15 m 51, If the wall is moving away from the
particle with a speed of 5 ms™, and if the particle has a speed of 20 ms™*, both
relative to the laboratory coordinate system, the molecule is again approaching the
wall with a relative velocity of 15 ms™, After the collision the magnitude of the
velocity of the particle relative to the wall will again be 15 m s™, but since the particle
is now moving in a direction opposite to that of the wall, its speed in the laboratory
coordinate system is only 10 ms™,

In general, if the normal component of the velocity before collision is v cos 6,
where 6 is the angle between v and the normal to the wall, the velocity component
after collision, v’ cos ', is equal to v cos @ — 2u. The loss of kinetic energy in the
collision is

1

2
since by hypothesis u < v. The kinetic energy of the molecule can decrease even
if the collision is perfectly elastic, because in the collision the molecule exerts a
force against a moving wall and hence does work on the wall.

The loss of kinetic energy depends on 6 and v but not on ¢. By Eq. (9-5) the
number of fe-collisions with a wall, per unit area and per unit time, is

m(v cos 6)* — ;-m(v cos 0 — 2u)® ~ 2muucos 8,

Ad,y, = % v An, sin @ cos 8 A0,
I

Multiplying this by the loss in kinetic energy in such a collision, we obtain for the

loss in kinetic energy per unit area and per unit time, by molecules making f¢-

collisions,
muv® An, sin 6 cos® 6 Af,
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Finally, after integrating over 0 from 0 to =/2, and summing over all values of v,
we get

; nmoy
for the total loss of molecular kinetic energy, per unit area and per unit time. But
#nmu? equals the pressure P, and if the area of the moving piston is A, the decrease
of molecular kinetic energy per unit time is

PAu = Fu, (9-22)

The product Fu (force times velocity) gives the rate at which mechanical work
is done on the piston or the power developed by the expanding gas, and we see that
this is just equal to the rate of decrease of molecular kinetic energy. If the molecules
do not recgive energy from any other source, their kinetic energy, and hence the
temperature of the gas, decreases. Note that it is not correct to say that the tem-
perature of @ molecule decreases. From the molecular point of view, temperature
is an attribute of the assembly of molecules as a whole, namely, a quantity pro-
portional to the mean kinetic energy. An individual molecule can have more or
less kinetic energy but it does not have a higher or lower temperature.

The derivation above was based on the assumption that the piston velocity, u,
was very much smaller than the molecular velocities, and it does not hold if the
piston is pulled up rapidly. In particular, if the piston velocity is very much greater
than the molecular velocities, no molecules (or at least very few) will be able to
overtake the piston and collide with it. Then there is no loss of kinetic energy and
no decrease in temperature, intermolecular forces being neglected. Such a process
is equivalent to an expansion into a vacuum, as in the Joule experiment, where we
showed on thermodynamic grounds that the work and the change in internal

energy were both zero,

9-6 THE PRINCIPLE OF EQUIPARTITION OF ENERGY

Suppose we have a mixture of gases that do not react chemically with one another,
and that the temperature and density are such that their behavior approximates
that of an ideal gas. It is found experimentally that the total pressure of the
mixture is the sum of the pressures that each gas alone would exert if a mass of
each, equal to the mass of that gas in the mixture, occupied the entire volume of
the mixture. The pressure that would be exerted by each gas if present alone is
called its partial pressure and the experimental law above is Dalton's law of partial
pressures. If the gases are distinguished by subscripts, we can then write

pV = NkT, PV = N,kT, elc,
where py, ps, etc. are the partial pressures of the constituent gases, N,, N,, etc.

|
|
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are the numbers of molecules of each constituent, and ¥ and T are the volume and
temperature, common to all of the gases.

Let my, my, etc. represent the masses of the molecules of the constituents
and vj, v3, etc., the respective mean square speeds. By the methods of Section 9-4,
considering the collisions of each type of molecule with the walls and computing
the pressure produced by each, we would find

V= ;Nl”’xﬁ- PV = :‘1; Nlml”_:v etc.

Equating corresponding expressions for p, V¥, p,V, etc., gives
%m,v}s%k?’, %m,u{-gkﬂ". etc.

The terms on the left side of the preceding equation are the mean translational
kinetic energies of the molecules of the various gases, and we conclude that in a
mixture of gases the mean kinetic energies of the molecules of each gas are the same.
That is, in a mixture of hydrogen and mercury vapor, although the masses of the
molecules are in the ratio of 2 to 200, the mean translational kinetic energy of the
hydrogen molecules equals that of the mercury molecules.

The example above is one illustration of the principle of equipartition of energy.
We know now that this principle is not a universal law of nature but, rather, a
limiting case under certain special conditions, However, it has been a very fruitful
principle in the development of molecular theories.

Let us give another example. The translational kinetic energy associated with
the x-component of the velocity of a molecule of mass m is }mof, with corre-

sponding expressions for the y- and z-components. The mean square value of the
velocities of a group of molecules is

=+ ok
Since the x-, y-, and z-directions are all equivalent, the mean square values of the
components of velocity must be equal, so that
and e
' =30} = 3 = 3. :

The mean kinetic energy per molecule, associated with any one component of
velocity, say v,, is therefore

%m;z = ém:’= %kT.
Since the mean rotal translational kinetic energy per molecule is 3£T}2, it follows
that the translational kinetic energy associated with each component of velocity
is just one-third of the total,
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Each independent quantity that must be specified to determine the energy of a
molecule is called a degree of freedom. Since the translational kinetic energy of a
molecule is determined by the three velocity components of its center of mass,
it has three translational degrees of freedom, We see that the average translational
kineticenergy per molecule is divided equally among them. In other words, we have
equipartition of the energy among the three translational degrees of freedom.

Molecules, however, are not geometrical points but are of finite size. They
have moments of inertia, as well as mass, and can therefore have kinetic energy
of rotation as well as of translation. Furthermore, we would expect them to rotate
because of the random collisions with other molecules and with the walls. Since
the angular velocity vector of a rotating molecule can have a component along all
three coordinate axes, a molecule would be expected to have three rotational
degrees of freedom or, if it is a rigid body, six degrees of freedom in all. However,
molecules are not perfectly rigid structures and can also be expected to oscillate
or vibrate as the result of collisions with other molecules, giving rise to still more
degrees of freedom. (It may be mentioned at this point that rotations and vibrations
of molecules are facts that are as well established as most of our other information
about molecular properties. The best experimental method of studying rotations
and vibrations consists of a spectroscopic analysis of the light emitted or absorbed
by molecules in the infrared.) Without committing ourselves to any specific number,
let us say that in general a molecule has / degrees of freedom, of which 3 only are
translational, however complex the molecule,

We shall show in Section 12-5, on the basis of the Boltzmann statistics, that if
the energy associated with any degree of freedom is a quadratic function of the
variable specifying the degree of freedom, the mean value of the corresponding
energy equals k7/2. For example, the kinetic energy associated with the velocity
component v, is a quadratic function of v,, and, as shown above, its mean value
equals k7/2. Similarly for rotation, where the kinetic energy is Jw?(2, the mean
rotational kinetic energy is k772; and for a harmonic oscillator, where the potential
energy is Kx?(2 (K being the force constant), the mean potential energy is kT2,
Hence all of the degrees of freedom for which the energy is a quadratic function
have associated with them, on the average, equal amounts of energy; and if all
degrees of freedom are of this nature, the total energy is shared equally among
them. This is the general statement of the principle of equipartition of energy.
The mean foral energy of a molecule with f degrees of freedom, assuming the equi-
partition principle holds, is therefore

- g kT, (9-23)
and the total energy of N molecules is
Neé = J‘—; NkT =£ nRT, (9-24)

where n is the number of moles and R the universal gas constant.
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9-7 CLASSICAL THEORY OF SPECIFIC HEAT CAPACITY
In thermodynamics, the change in internal energy U of a system, between two
equilibrium states, is defined by the equation

Ua = UD = Wats

where W,y is the work in any adiabatic process between the states. Only changes
in internal energy are defined.

Starting with a molecular model of a system, we can identify the internal energy
with the sum of the energies of the individual molecules. In the preceding section
we have derived a theoretical expression for the total energy associated with the £
degrees of freedom of each of the N molecules of a gas. We therefore set this equal
to the internal energy U:

U =§ NkT -=£ nRT. (9-25)

The specific internal energy per mole is
u=Y=Lpr (9-26)
n 2

How can we test the validity of the assumptions made in the foregoing deriva-
tion? The most direct way is from measurements of specific heat capacities. The
molal specific heat capacity at constant volume is

= (%)
vtk

Hence, if the hypothesis above is correct, we should have

d
&= (Jz-r RT) = g R. (©-27)
We also know from thermodynamic reasoning that for an ideal gas,
—— tp=c¢,+ R.
cp=-‘£R+R=f—.;—2R. (9-28)
and
f+2

wit? 9-29
i (9-29)

-
I
2lg
[l
(X Inl
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Table 9-1 Molal specific heat capacities of a number
of gases, at temperatures near room temperature.
The quantities measured experimentally are ¢, and y.
The former is determined by use of a continuous
flow calorimeter and the latter is obtained from
measurements of the velocity of sound in the gas.

y — Cy
Gas 7 eplR R o 7
He 166 | 2.50 | 1506 | 991
Ne 164 | 250 | 152 975
A 1.67 2.51 1.507 1.005
Kr 169 | 249 | 148 | 101
Xe 1.67 2.50 1.50 1.00
H, 140 | 347 | 247 | 100
0, 140 | 353 | 252 | 100
N, 140 | 350 | 251 1.00
co | 142 | 350 | 250 | 100
NO | 143 | 350 | 252 | 107
| Cly 1.36 4.07 3.00 1.07
co, | 129 | 447 | 347 | 100
NH; 1.33 4.41 3.32 .10
CH, | 130 | 430 | 330 | 100
Air 140 | 350 | 250 | oo

Fig. 9-5 A dumbbell molecule.

9-7
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Thus while the principles of thermodynamics could give us only dnlexpression
for the difference between the specific heat capacities at constant pressure and
constant volume, molecular theory, together with the equipartition principle,
predicts the actual magnitudes of the specific heat capacities and their ratio y, in
terms of the number of degrees of freedom f and the experimentally determined
universal constant R. Note that, according to the theory, ¢,, cp, and y are all
constants independent of the temperature.

Consider first a gas whose atoms are monatomic and for which the energy is
wholly kinetic energy of translation. Since there are three translational degrees of .
freedom, /= 3, and we would expect

cusgk-gﬂ = L5R,

f+2 5
="——R=">R=25R,
r=T3 2
and

B i BT

€

This is in good agreement with the values of ¢, and y for the monatomic gases listed
in Table 9~1. Furthermore, the specific heat capacities of these gases are found to
be practically independent of temperature, in agreement with the theory.

Consider next a diatomic molecule having the dumbbell structure shown in
Fig. 9-5. Its moment of inertia about the x- and z-axes is very much greater than
that about the y-axis, and if the latter can be neglected, the molecule has two
rotational degrees of freedom, the two quantities specifying the rotational kinetic
energy being the components of angular velocity about the x- and z-axes. Also,
since the atomic bond is not perfectly rigid, the atoms can vibrate along the line
joining them. This introduces two vibrational degrees of freedom, since the vibra-
tional energy is part kinetic and part potential and is specified by the velocity and
the separation of the atoms. We might therefore expect seven degrees of freedom
for a diatomic molecule (3 for translation, 2 for rotation, and 2 for vibration).
For f = 7, the theory predicts

c,=;R=3.5R, y—g=l.29.

These values are not in good agreement with those observed for the diatomic
gases listed in Table 9-1. However, letting f = 5, we find

;R =25R, y= ;n 1.40.

6, =
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These are almost exactly equal to the average values of ¢, and y for the diatomic
molecules in the second part of the table (Cly is an interesting exception). Thus,
near room temperature, these molecules behave as if either the rotational or vibra-
tional degrees of freedom, but not both, shared equally with the translational
degrees of freedom in the total molecular energy.

As the number of atoms in a molecule increases, the number of degrees of
freedom cau be expected to increase; and the theory predicts a decreasing ratio
of specific heat capacities, in general agreement with experiment.

The main features of the theory are fairly well borne out. It predicts that y
is never greater than 1.67 or less than I and this is in fact true. However, if we insert
in Eq. (9-29) the measured values of y and solve for f, the result is in general not
exactly an integer. Now a molecule either has a degree of freedom or it has not.
Degrees of freedom are counted, not weighed. It is meaningless to speak of a
fraction of a degree of freedom, and the simple concept of equipartition is
certainly not the whole story.

When we examine the temperature variation of specific heat capacities, the
divergences between experiment and the simple theory above become even more
apparent. Except for gases whose atoms are monatomic, the specific heat capacities
of all gases increase with increasing temperature and decrease as the temperature
is lowered. In fact, ata temperature of 20 K, the specific heat capacities of hydrogen
(the only diatomic gas that remains a gas at very low temperatures) decreases to
4R, the value predicated by theory for a monatomic gas. Thus at this low tem-
perature neither the rotational nor the vibrational degrees of freedom of the
hydrogen molecule appear to share at all in the change of internal energy associated
with a change in temperature, All of the difficulties mentioned above are removed,
however, when the principles of quantum mechanics and of statistics are taken
into consideration. These are discussed in Section 12-7,

The pressure of a gas depends on its translational kinetic energy, and regardless
of its molecular complexity a molecule has only three translational degrees of
freedom, and its translational kinetic energy equals 3k7/2. Then if U,, represents
this portion of the internal energy,

3
U, = = NkT.
e = 3 NKT.
The pressure P equals NkT]V, so
_2Us _2
=Y amw (9-30)

where uy, is the translational energy per unit volume, or the energy density; and, as
pointed out earlier, the pressure equals two-thirds of the translational energy

density.




9-8 SPECIFIC HEAT CAPACITY OF A SOLID 2n

98-8 SPECIFIC HEAT CAPACITY OF A SOLID

The molecules of a solid, unlike those of a gas, are constrained to oscillate about
fixed points by the relatively large forces exerted on them by other molecules. Let
us imagine that each executes harmonic motion. Each has three degrees of freedom,
considered as a mass point, but the porential energy associated with its motion,
which could be neglected for the widely separated molecules of a gas, is on the
average just equal to the kinetic energy, if the motion is simple harmonic. Hence,
if the equipartition principle is valid for solids, we must assign an energy kT to each
degree of freedom (kT/2 for kinetic energy, kT/2 for potential energy) rather than
Jjust kT2 as for the molecules of a gas. The total energy of N molecules is then

U = 3NKT, (9-31)
and the molal specific heat capacity at constant volume, from the theory, is
€, =3R=13x 831 x 10° =249 x 10° ] kilomole~* K-,  (9-32)

This is in agreement with the empirical law of Dulong and Petit which states
that at temperatures which are not too low, the molal specific heat capacities at
constant volume of all pure substances in the solid state are very nearly equal to
3R. Again we have reasonably good agreement with experiment at high tempera-
tures. At low temperatures the agreement is definitely bad, since, as we have seen,
the specific heat capacities of all substances must approach zero as the temperature
approaches absolute zero. This is another problem to which the classical theory
does not provide the right answer and in which the methods of quantum mechanics
must be used.

One other discrepancy between simple theory and experiment should be pointed
out here. There is good reason to believe that in metals, which are electrical con-
ductors, each atom parts with one or more of its outer electrons and that these
electrons form a sort of electron cloud or electron gas, occupying the volume of the
metal and constrained by electrical forces at the metal surfaces in much the same
way that ordinary gases occupy a containing vessel. This electron gas has trans-
lational degrees of freedom which are quite independent of the metallic ions
forming the crystal lattice, and it should have a molal specific heat capacity equal
to that of any other monatomic gas, namely, 3R/2. That is, as the temperature of
the metal is increased, energy must be supplied to make the electrons move faster as
well as to increase the amplitude of vibrations of the metallic ions. The latter
should have a specific heat capacity of 3R, so the total heat capacity of a metal
should be at least 3R + 3R/2 = 9R/2. Actually, metals obey the Dulong-Petit law
as well as do nonconductors, so apparently the electrons do not share in the thermal
energy. This was a very puzzling thing for many years, but again it has a very
satisfactory explanation when quantum methods are used.
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PROBLEMS

9-1 (a) Compute the number of molecules per unit volume in a gas at 300 K when the
pressure is 107 Torr. (b) How many molecules are there in a cube of I mm on a side
under these conditions ?
9-2 The model used in this chapter assumes that the molecules are uniformly distributed
throughout the container. What must be the size of a cubical element of volume in the
container so that the number of particles in each volume element may vary by 0.1 %, when
the gas is at standard conditions? (From a study of statistics it can be shown that the
probable deviation of the number of particles in each volume element from the average
_ number of particles, N, is given by N'/?).
9-3 (a) In Fig, 9-1, let ¢ = 45°, A¢ = 0.0] radian, 8 = 60°, and A8 = 0.01 radian,
What fraction of the molecules of a gas have velocity vectors within the narrow cone
which intercepts the shaded area AA4? (b) Consider a second cone intercepting the same
area on thelspherical surface, but for which ¢ = 90°, 6 = 0. Sketch this cone and com-
pare the number of velocity vectors included within it with those in the cone of part (a).
9-4 (a) Approximately what fraction of the molecules of a gas have velocities for which
the angle ¢ in Fig. 9-1 lies between 29.5° and 30.5°, while 0 lies between 44.5° and 45.5°?
(b) What fraction have speeds for which ¢ lies between 29:5° and 30.5°, regardless of the
value 82 [Nore: Angles must be expressed in radians.]
9-5 Suppose that the number of molecules in a gas having speeds between vand v + Av
is given by AN, = N Avfvg for v, > v > 0and AN, = 0 for v > v,. (a) Find the frac-
tion of molecules having speeds between 0.50 v, and 0.51 #,. (b) Find the fraction having
the speeds in part (a) in the direction described in part (a) and part (b) of the previous
problem. (c) Find the flux of molecules described in part (b) of this problem arriving at a
surface, if the gas is at standard conditions,
9-6 Calculate 7 and vepmy for the following distributions of six particles: (a) all have speeds
of 20 ms™; (b} three have speeds of 5 ms™ and three have speeds of 20 ms™; (c) four
have speeds of 5 m s~! and two have speeds of 20 m s™; (d) three are at rest and three
have speeds of 20 ms™; (¢) one has a speed of S ms™, two have speeds of 7m s, two
have speeds of 15 m s~ and one has a speed of 20 ms™",
9-7 The speed distribution function of a group of N particles is given by AN, = kv Av
forvy > v > 0and AN, = 0 for v > v, (a) Draw a graph of the distribution function.
(b) Show that the constant k = 2N/e§. (c) Compute the average speed of the particles.
(d) Compute the root-mean-square speed of the particles,
9-8 (a) Derive Eq. (9-7) beginning with Eq. (9-4). (b) For a gas at standard conditions,
find A®, for molecules obeying the speed distribution law of the previous problem and
having speeds between 0.50 vy and 0.51 1,. (c) Determine ® for molecules having the same
speed distribution.
9-9 What form would Eq, (9-17) take if several kinds of molecules were present in a gas ?
Does the answer agree with Dalton's law?
9-10 Derive an expression equivalent to Eq. (9-17) for a two-dimensional gas, ie.,
one whose molecules can move only in a plane. (The concept corresponding to pressure,
or force per unit area, becomes force per unit length.)
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9-11 (a) Compute the rms speed of a gas of helium atoms at 300 K. (b) At what tem-
perature will oxygen molecules have the same rms speed? (c) Through what potential
difference must a singly ionized oxygen molecule be accelerated to have the same speed ?
9-12 (a) How many molecular impacts are made per second on each square centimeter
of a surface exposed to air at a pressure of 1 atm and at 300 K? The mean molecular
weight of air is 29. (b) What would be the length of a cylinder | cm? in cross section con-
taining the number of air molecules at | atm and 300 K which collide witha sTrl'ace lem?
in one second ?
9-13 A cubical box of 0.1 m on a side contains 3 x 10* molecules of O, at 300 K.
(a) On the average, how many collisions does each molecule make with the walls of the
box in one second? (b) What pressure does the oxygen exert on the walls of the box?
9-14 A closed vessel contains liquid water in equilibrium with its vapor at 100°C and
1 atm. One gram of water vapor at this temperature and pressure occupies a volume of
1670cm®, The heat of vaporization at this temperature is 22501 g~'. (a) How many
molecules are there per cm?® of vapor? (b) How many vapor molecules strike each cm?
of liquid surface per second? (c) If each molecule which strikes the surface condenses,
how many evaporate from each cm? per second? (d) Compare the mean kinetic energy
of a vapor molecule with the energy required to transfer one molecule from the Jiquid to
the vapor phase.
9-15 When a liquid and its vapor are in equilibrium, the rates of evaporation of the
liquid and condensation of the vapor are equal. Assume that every molecule of the vapor
striking the liquid surface condenses, and assume that the rate of evaporation is the same
when the vapor is rapidly pumped away from the surface, as when liquid and vapor are
in equilibrium. The vapor pressure of mercury at 0°C is 185 x 10~% Torr and the latent
heat of vaporization is about 340 J g". Compute the rate of evaporation of mercury into
a vacuum, in g cm™25~1, at a temperature of (a) 0°C, (b) 20°C.
9-16 A thin-walled vessel of volume ¥ contains N particles which slowly leak out of a
small hole of area A. No particles enter the volume through the hole. Find the time
required for the number of particles to decrease to N/2. Express your answer in terms of
A, ¥, and 0.
9-17 The pressure in a vacuum system is 10~ Torr. The external pressure is 1 atm and
T = 300 K. There is a pinhole in the walls of the system, of area 10~ cm®. Assume that
every molecule “striking™ the hole passes through it. (a) How many molecules leak into
the system in 1 hour? (b) If the volume of the system is 2 liters, what rise in pressure
would result in the system? (c) Show that the number of molecules that leak out is
negligible.
9-18 A vessel of volume 2V is divided into compartments of equal volume by a thin
partition. The left side contains initially an ideal gas at a pressure Py, and the right side is
initially evacuated. A small hole of area A is punched in the partition. Derive an expression
for the pressure P; on the left side as a function of time. Assume the temperature 10 remain
constant and to be the same on both sides of the partition.
9-19 An insulated chamber containing liquid helium in equilibrium with its vapor is
maintained at 1.2 K. It is separated from a second insulated chamber maintained at
300 K, by a thin insulating partition with a small hole in it. The helium vapor is allowed
to fill both chambers. 1f the vapor pressure of the helium at 1.2 K is Py, show that the
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pressure P in the other chamber is PyV300/1.2. (The ratio of P[Py is called the rthermo-
molecular pressure ratio and is important in vapor pressure thermometry when the pressure
is 5o low that the particles do not collide in 2 distance long compared to linear dimensions
of the apparatus.)

9-20 An ideal monatomic gas is confined to an insulated cylinder fitted with an insulated
piston. (a) By considering collisions of the molecules of the gas with the quasistatically
moving piston, show that P*? = constant. (b) Determine the pressure dependence of
the rms speed of the molecules in an adiabali pression or expansion.

9-21 A molecule consists of four atoms at the corners of a tetrahedron. (a) What is the
number of translational, rotational, and vibrational degrees of freedom for this molecule?
(b) On the basis of the equipartition principle, what are the values of ¢, and y for a gas
composed of these molecules?

9-22 Under the action of suitable radiation a diatomic molecule splits into two atoms,
The ratio of the number of dissociated molecules to the total number of molecules is .
Plot »(= cpc,) as & function of w at a perature where the vibrational modes of the
diatomic molecule are excited,

9-23 Find the total translational kinetic energy and the rms speed of the molecules of 10
liters of helium gas at an equilibrium pressure of 10° N m=,

9-24 (a) Find the specific heat capacity at constant volume for a gas of H, molecules and
H,O molecules. (b) How do the specific heat capacities change if the gas is liquefied or
solidified?




1041

10-2

10-3

104

10-6

10-6

10-7

10

Intermolecular forces.
Transport phenomena
INTERMOLECULAR FORCES

THE VAN DER WAALS EQUATION OF STATE
COLLISION CROSS SECTION. MEAN FREE PATH
COEFFICIENT OF VISCOSITY

THERMAL CONDUCTIVITY

DIFFUSION

SUMMARY



276 INTERMOLECULAR FORCES. TRANSPORT PHENOMENA 10-2

10-1 INTERMOLECULAR FORCES
In the preceding chapter, the molecules of a gas were treated as geometrical points
that exerted no forces on each other. We now wish to take such forces into account.
The force between any pair of molecules is of electrical origin; and because
of the complicated structure of an atom or molecule, it is not expressible by any
simple law. In general, at relatively large separations, the force is one of attraction,
referred to as a van der Waals force, which decreases rapidly with increasing
separation.| When two molecules approach so closely that their electron clouds
overlap, the force becomes one of repulsion that rises very rapidly as the separation
becomes smaller. Thus the intermolecular force must have the general form of the
solid curve in Fig. 10-1.

Fig. 10-1 Intermolecular forces.

The simplest approximation to this law is to treat the molecules as elastic hard
spheres, for which the force of repulsion becomes infinite when the surfaces of the
spheres come into contact. If we include a force of attraction when the molecules
are not in contact, the force law has the form of the dotted curve in Fig. 10-1.

10-2 THE VAN DER WAALS EQUATION OF STATE

We have made extensive use of the van der Waals equation of state in earlier
chapters, not so much because of any great accuracy of this equation in describing
the properties of real gases but because it shows in a general way, through the
factor a, how these properties depend on intermolecular forces of attraction, and
through the factor b how they depend on molecular sizes.
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The latter correction to the equation of state was actually first suggested by
Clausius. He reasoned that in the derivation in Section 9-4 one should use not the
actual volume V of the container, but the volume available to a single molecule,
which will be somewhat less than ¥ because of the volume occupied by the other
molecules. If we represent the “‘unavailable” volume per mole by b, then in a gas
consisting of n moles the unavailable volume is nb and we should write

P(V — nb) = nRT,
or, dividing through by n, P(o — b) = RT. (10-1)

This equation was first written down by Hirn.* (Here, the letter v represents the
molal specific volume, not the molecular speed.)

v
| i
f—a—
Fig.10-2 The radius
of the sphere of exclu-

sion equals the molec-
ular diameter d.

If the molecules are considered as hard spheres of diameter 4, the minimum
distance between the centers of two molecules, as shown in Fig. 10-2, is equal to d.
In effect, the center of each molecule is excluded by the other from a sphere of
radius 4, known as the “‘sphere of exclusion.” The volume of this sphere is 4md?/3,
and to avoid counting each pair twice, we take as the total unavailable volume, for
a system of N molecules, 1 4
5 N x -j wdd,

The number of molecules N is the product of the number of moles » and Avo-
gadro’s number N, so the unavailable volume per mole, or the constant &, is

b= ;N‘mf’. (10-2)
This is four times as great as the actual molecular volume per mole, which is
1
P Nymd®, (10-3)

Van der Waals, in 1873, included a second correction term in the equation of
state to take into account the force of attraction between molecules. Let us assume

* Gustav A. Hirn, French engineer, (1815-1890).
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that these forces decrease so rapidly with distance (for example, as 1/r%) that they
are appreciable only between a molecule and its nearest neighbors. Molecules
within the body of the gas are on the average attracted equally in all directions, but
those in the outermost layers experience a net inward force. A moleculeapproaching
the wall of the container is therefore slowed down and the average force exerted
on the wall, and hence the observed pressure, is somewhat smaller than it would
be in the absence of attractive forces.

The reduction in pressure will be proportional both to the number of molecules
per unit volume in the outer layer, n = N/V, and to the number per unit volume
in the next layer beneath them, which is doing the attracting. Hence the pressure
will be reduced by an amount proportional to n?, or equal to an?®, where x is a
factor dependent on the strength of the attractive force, Since the number of
molecules N equals nN,, where n is the number of moles, then

: E)'_ an' _aNy_a
ot = o) = M= = 50 -
where the product N} has been replaced by a. Thus the pressure P given by the
Hirn equation,

P= RT ,
v—1>b
should be reduced by a/v*; and
RT a
3 v—b o'
or
(P + :—,)(u —b) =RT, (10-5)

which is the van der Waals equation of state.
Since the molal specific critical volume of a van der Waals gas, v,, is equal to

3b, it follows from Eq. (10-2) that
v = 3b = 2N, nd°, (10-6)

which is 12 times the total molecular volume. The value of b for a van der Waals
gas therefore provides a means of estimating molecular diameters, since

b 1/3
4= (o) - a0

Thus for helium, for which b = 23.4 x 10~* m® kilomole~?, we have

do (_—_3 X B4x 107 ) 56 % 10*m = 26 x 10~cm.

2 x 3.14 x 6.02 x 10%
Other methods of estimating molecular diameters will be described in Section
10-4. Values of a and b for several gases are given in Table 2-1.
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10-3 COLLISION CROSS SECTION. MEAN FREE PATH

In deriving the expression for the pressure exerted by a gas, the molecules were
treated as geometrical points which could fly freely from one wall of a container
to the other without colliding with other molecules. One of the objections raised in
the early development of kinetic theory was that if molecules acted in this way, a
small amount of gas released in a large room would spread throughout the room
practically instantaneously, whereas we know that when the stopper is removed
from a bottle of perfume, a considerable time elapses before the odor can be
detected even at a point only a few feet away, in the absence of air currents. It
was soon realized that this relatively slow diffusion of one gas in another resulted
from molecular collisions such as that shown in Fig. 10-3, which cause a molecule
to move in an irregular, zigzag path.

29
Fig. 10-3 Molecular free paths.

We again assume that a molecule is a hard sphere. Let us refer to one of the
colliding molecules as the “target” molecule and to the other as the *“bullet”
molecule. Then a collision occurs whenever the distance between the centers of
the molecules becomes equal to the molecular diameter d, as in Fig. 10-2.

Since it is only the center-to-center distance that determines a collision, it does
not matter whether the target is large and the bullet small, or vice versa. We may
therefore consider the bullet molecule to shrink to a point at its center, and the
target molecule to occupy the entire sphere of exclusion, of radius 4.

Now consider a thin layer of gas of dimensions L, L, and Ax, as in Fig. 10-4.
The layer contains (equivalent) target molecules, represented by the shaded circles.
We then imagine that a very large number N of bullet molecules, represented by the
black dots, is projected toward the face of the layer—like pellets from a shotgun—
in such a way that they are distributed at random over the face of the layer. If the
thickness of the layer is so small that no target molecule can hide behind another,
the layer presents to the bullet molecules the appearance of Fig. 10-4.
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| .%:C

]
N
Fig. 10-4 A thin layer of gas of

“target” molecules being bombarded
by *“bullet™ molecules.

Most of the bullet molecules will pass through the layer, but some will collide
with target molecules, The ratio of the number of collisions, AN, to the total
number of bullet molecules, N, is equal to the ratio of the area presented by the
target molecules to the total area presented by the layer:

AN  target area
N = total area
The target area o of a single (equivalent) molecule is the area of a circle of
radius d, the exclusion radius:
¢ = nd. (10-8)

This area is called the microscopic collision cross section of one (equivalent) mole-
cule. The total target area is the product of this and the number of target molecules
in the layer. If there are n target molecules per unit volume, this number is nL? Ax,
so the total target area is

nol? Ax.

The total area of the layer is L?, so

2
%e—r - _nall."Ax = no Ax, (10-9)
The quantity no is called the macroscopic collision cross section of the
(equivalent) molecules. Since the number density n, in the MKS system, is the
number of molecules per cubic meter and the collision cross section ¢ is the number
of square meters per molecule, the unit of the product ne is | square meter per cubic
meter (1 m*m~* = 1 m~!). More generally, in any system, the unit of macro-
scopic collision cross section is a reciprocal length, not an area.
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Each of the AN collisions diverts a molecule from its original path or scatrers
it out of the beam, and decreases the number remaining in the beam. Let us,
therefore, interpret AN not as a “number of collisions,” but as the decrease in the
number N, and write

AN = —Nno Ax,
or

AN = —noAx.

N

In reality, N decreases in stepwise fashion as individual molecules make
collisions, but if N is very large we can consider it a continuous function of x and
write

dN
— = —nodx.
N
Then
In N = —nox -+ constant;

and if N = N,, whenx =0,

N = N, exp(—nox). (10-10)
This is known as the survival equation. 1t represents the number of molécules N,
out of an initial number N,, that has not yet made a collision after traveling a

distance x,
Inserting the expression for N in Eq. (10-9), we obtain

AN = Ngno exp(—nox) Ax. (10-11)
In this equation, N is the number of molecules making their first collision after
having traveled a distance between x and x + Ax.

Let us calculate the average distance traveled by a group of N, molecules
before they make their first collision. This average distance is known as the mean
free path, I, To calculate it, we multiply x by the number of particles AN that
travels the distance x before colliding, sum over all values of x, and divide by the
total number N,. Replacing the sum by an integral, we have

¥ xAN
o

The definite integral equals 1/n%*, so

1=1 (10-12)

B

ng
and the mean free path is inversely proportional to the macroscopic collision cross
section. Since the unit of macroscopic collision cross section is the reciprocal of the
unit of length, the unit of mean free path is the unit of length. Note that the mean
free path does not depend on the molecular speed.

| =

= MJ‘ x exp(—nox) dx.
L
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The concept of mean free path may be visualized by thinking of a man shooting
bullets aimlessly into a thick forest. All of the bullets will eventually hit trees, but
some will travel farther than others. It is easy to see that the average distance
traveled will depend inversely on both the denseness of the woods (n) and on the
size of the trees (o).

A common experimental technique is to project into a gas a beam of particles
(either neutral or having an electric charge) and to measure the quantity N, and
the number N remaining in the beam after a distance x. The exponential decrease
predicted by Eq. (10-10) is found to be well obeyed, and we may now reverse the
reasoning by which this equation was derived. That is, since N, N, and x are all
measurable experimentally, Eq. (10-10) can be solved for no or /, and we can
consider these quantities to be defined by Eq. (10-10), quite independently of any
theory of molecular collisions.

Although we derived the equations above by considering a beam of molecules
projected into a gas, the mean free path is the same if the group is considered to
consist of the molecules of a gas moving at random among the other molecules
and making collisions with them. The motion of a single molecule is then a zigzag
path as suggested in Fig. 10-3, and we can understand why it is that although
the average molecular speed is very large, a molecule wanders away from a given
position only relatively slowly.

As an example, suppose the molecular diameter o equals 2 x 10~ m. At
standard conditions, there are about 3 x 10* molecules m~in a gas. The macro-

scopic collision cross section is then
no =nrd®a 3 X 10% X 314 x 4 X 1002 ~ 40 x 10°m?,,

and the mean free path is
1= n25x 107 m,
no

which is smaller than the wavelength of visible light. The average intermolecular
separation at standard conditions is about 3 x 10=* m, so the mean free path is
much largef than the average intermolecular separation, and Fig. 10-3 is there-
fore misleading.

Since the number of molecules per unit volume, n, is inversely proportional
to the pressure, the mean free path increases as the pressure is decreased. A moder-
ately good “vacuum™ system will reduce the pressure to 10=* Torr, which is about
107 atm, The mean free path is then a million times that at atmospheric pressure,
or of the order of 25 cm.

More complete theories of the mean free path take into account the relative
motion of all the molecules of a gas, that is, they consider the “target” molecules,
as well as the “*bullet” molecules, to be in motion. The only change in the end
result is to introduce a small correction factor in Eq. (10-12). The inverse depen-
dence on the number of molecules per unit volume and on the collision cross

o e B T e,
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section remains unaltered. On the assumption that all molecules have the same
speed, Clausius obtained the result

dng  no
If the molecules have a Maxwellian velocity distribution (see Section 12-2),
1 1 0.707

=——
J2ne  no
However, we shall continue to use the simpler result of Eq. (10-12).

In the preceding discussion, the target molecules and bullet molecules were
considered identical hard spheres, each of diameter 4. One often wishes to know
the mean free path of an electron, moving among the neutral or ionized molecules
of a gas in a plasma, or among the fixed metallic ions in a metallic conductor. The
“diameter” of an electron is so much smaller than that of a molecule that the elec-
tron can be considered a geometrical point, and the center-to-center distance in a
collision (see Fig. 10-2) becomes d/2 rather than d, where d is the molecular
diameter. Furthermore, the velocities of the electrons are so much greater than
those of the molecules that the latter can be assumed at rest, and the correction
for relative velocities need not be made. From the considerations above, the

electronic mean free path I, is
=41, (10-13)

where n is the number density of molecules and no is the macroscopic collision cross

section of electrons with molecules or ions.
In terms of the mean free path, the survival equation can be written

N = Nyexp(—nox) = Nyexp (=x/I). (10-14)

Figure 10-5 is a graph of this equation, in which the dimensionless ratio N[N, is
plotted as a function of x/I. The ordinate of the curve is the fractional number of
molecules with free paths longer than any fraction of the mean free path. Note that
the fraction with free paths longer than the mean is exp (—1) or 37, while the
number with free paths shorter than the mean is 63%,.

An interesting aspect of the theory of distribution of free paths is that the N,
molecules considered originally are not necessarily just starting out on their free
paths after having made a collision. We merely make a random selection of a
large number of molecules at any instant and inquire into their fiture without
asking questions about their past. Sometimes, however, it is the past rather than
the future that is of interest. That is, we may fix our attention on a group of
molecules at some instant and instead of asking, as we did above, how far each
will travel on the average before it makes its next collision, ask how far each has
traveled on the average since making its /ast previous collision. The same reasoning
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as that above shows that this average distance is also the free path /, and that the

distribution of *past™ free paths is the same as the distribution of “future” free .

paths. Hence when we consider a large number of molecules in a gas at any instant,
the average distance they have yet to travel before their next collision is equal to
the average distance they have already traveled since their last collisions, and both
distances are equal to the mean free path /. We shall make use of this fact in the next

section, in calculating the average distance above or below a plane at which mole-'

cules make their last collision before crossing the plane.

NNy

[ X7 S

x/1

|
|
+
1

Fig. 10-5 Graph of the survival
equation.

This result raised the following interesting question. If the average distance
traveled by the group before we consider it is /, and the average distance after we
consider it is also /, why is the mean free path not equal to 2/ rather than /?

Another important concept is that of collision frequency z, the average number
of collisions per unit time made by a molecule with other molecules. In a time
interval Az, a molecule travels an average distance v Ar along its zigzag path. The
average number of collisions it makes in this time is ¥ A¢//, and hence the collision

frequency is

z = - = bno. (10-15)

-l

From the values of #, n, and o for oxygen molecules at room temperature, we find

z & 5.5 x 10° collisions 5™,

The mean free time 7, or the average time between collisions, is the reciprocal

of the collision frequency z and hence
(10-16)

-l

ing

T =—-=

N |-
= -

Le B
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For oxygen molecules at room temperature,
ST, S
5.5 x 10

The preceding results form the basis of the theory of metallic conduction de-
veloped by Drude* in 1900. We assume that the free electrons in a metallic con-
ductor can be considered an ideal gas and that their average random speed v s the
same as that of gas molecules of the same mass, at the same temperature. (We shall
show in Chapter 13 that this is not a very good assumption). If the electric field
intensity in the conductor is E, the force F on each electron, of (negative) charge
e,is F= eE. Asa result of this force, the electrons have an acceleration a opposite
to the direction of the field and of magnitude

F _ eE
a===—.
m m

The electrons do not accelerate indefinitely, however, because of collisions with
the fixed metallic ions. We assume that at each such collision an electron is brought
to rest and makes a fresh start losing all memory of its previous velocity. In the
mean free time = between collisions, an electron acquires a velocity opposite to the
field equal to ar, and its average velocity between collisions, or the drift velocity

u, is
1 l(eE)f.,
u=-ar==—|=,
2 2\m/%

a 1.8 x 107",

This drift velocity is superposed on the random “thermal’ velocity , 7 but in an
actual conductor it is very small compared with the random velocity. Note that
in the expression for the mean free path /,, we should use Eq. (10-13).

The current density J in the metal (the current per unit of cross-sectional area)
is the product of the number density n, of electrons, their charge e, and the drift

velocity u:
n.etl,
J = neu = (‘—)E
2mo
The resistivity p of the metal is defined as the ratio of the electric intensity E
to the current density J: p = EJJ. Hence
2mo
= § 10-17
P (10-17)

In a given metal at a given temperature, all quantities on the right side of the
preceding equation are constants so that the Drude theory predicts that under these
conditions the resistivity of a metallic conductor is a constant independent of E.

* Paul K. L. Drude, German physicist (1863-1906).
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In other words, the current density J is directly proportional to the electric intensity
E, and the metal, in agreement with experiment, obeys Ohm’s law.

A more familiar statement of Ohm's law is that at a given temperature, the
potential difference V between two points of a conducting wire is directly proportional
to the current I in the wire, or that ¥ = IR, where R is a constant independent of I.
The total current 7 in a conductor of constant cross-sectional area A is I = JA. If
the length of the conductor is L, the potential difference J betweenitsendsis ¥ = EL,
50 the equation pj = E can be written

"4
P =T

i~

or,
_PL
V= A! IR,

where the resistance R = pL[A.

‘We shall show in Chapter 12 that the average random velocity 7 in a gas is
proportional to T%/%, so the theory predicts that the resistivity p should increase
with the square root of the temperature. However, experimentally the resistance
of metallic conductors increases linearly with increasing temperature, so the Drude
theory is far from complete.

10-4 COEfFIClENT OF VISCOSITY

In the next three sections, we give an elementary treatment of three properties of a

“gas described by the general term of transport phenomena. These are its viscosity,
thermal conductivity, and coefficient of diffusion, and they can be explained in
terms of the transport across some imagined surface within the gas of momentum,
energy, and mass, respectively. Consider first the coefficient of viscosity.

Fig. 10-6 Viscous flow between a stationary
lower plate and a moving upper plate.
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It appears contradictory at first sight that a gas consisting of widely separated
molecules making perfectly elastic collisions with one another should exhibit any
viscosity or internal friction. Every real gas, however, is viscous; and we now show
that this property is another necessary consequence of our simple model and does
not require the assignment of any new properties to the molecules.

Figure 10-6 represents a portion of two large plates separated by a layer of
gas of thickness L. Because of the viscosity of the gas, a force F must be exerted
on the upper plate to drag it to the right at constant velocity relative to the lower,
stationary plate. (An equal and opposite force must be exerted on the lower
plate to keep it at rest.) The molecules in the layer of gas have a forward velocity
component u which increases uniformly with the distance y above the lower plate.
The coefficient of viscosity of the gas, 7, is defined by the equation

_J-—-' 0-18

where A is the area of either plate and du/dy is the velocity gradient at right angles
to the plates.

In the MKS system, the unit of F/A is | newton per square meter and the unit
of the velocity gradient du/dy is | meter per second, per meter. The unit of the
coefficient of viscosity # is therefore | newton per square meter, per meter per
second per meter, which reduces to I Nsm™. The corresponding cgs unit is
I dyne s cm=?and is called | poise in honor of Poiseuille.* (I poise = 10 N s m~2.)

The forward velocity u of the molecules is superposed on their large random
velocities, so that the gas is not in thermodynamic equilibrium. However, in most
practical problems the random velocities are so much larger than any forward
velocity that we cah use the results previously derived for an equilibrium state.

The dotted line S-S in Fig. 10-6 represents an imagined surface within the gas
at an arbitrary height y above the lower plate. Because of their random motions,
there is a molecular flux @ across the dotted surface, both from above and from
below. We shall assume that at its last collision before crossing the surface, each
molecule acquires a flow velocity toward the right, corresponding to the particular
height at which the collision was made. Since the flow velocity above the dotted
surface is greater than that below the surface, molecules crossing from above
transport a greater momentum (toward the right) across the surface than do the
molecules crossing from below. There results a net rate of transport of momentum
across the surface, and from Newton's second law we can equate the net rate of
transport of momentum, per unit area, to the viscous force per unit area.

Thus the viscosity of a gas arises not from any “frictional’” forces between its
molecules, but from the fact that they carry momentum across a surface as a result

* Jean-Louis M. Poiseuille, French physician (1799-1869),
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of their random motion. The process is analogous to that of two freight trains of
open-top coal cars moving in the same direction on parallel tracks at slightly
different speeds, with a gang of laborers in each car, each laborer shoveling coal
from his car into the opposite car on the other track. The cars in the slower train
are continually being struck by pieces of coal traveling slightly faster than the cars,
with the result that there is a net forward force on that train. Conversely, thereisa
net backward force on the faster train, and the effect is the same as if the sides of the
cars were rubbing together and exerting forces on one another through the
mechanism of sliding friction.

Fig. 10-7 The last mean free path
before the molecule crosses the surface
started a distance y = /cos 0 from the
surface.

Let us compute the average height 7 above (or below) the surface at which a
molecule made its last collision before crossing. In Section 9-3, we assumed that
the molecules were geometrical points and that all 8¢v-molecules in the slant cylinder
of Fig. 9-2 would arrive at the area A4 without having made a collision. This
cannot be correct, because on the average each molecule travels only a distance /
without colliding with another molecule. These molecular collisions will not affect
the rotal flux of Ggv-molecules arriving at the surface, because for every collision
that scatters a fgv-molecule out of the number originally in the cylinder, there
will be another collision that results in an identical fgo-molecule at essentially the
same point. However, as explained in the preceding section, molecules arriving at
the surface will on the average have started their last free paths before reaching the
surface at a distance /away from the surface. The perpendicular distance y from the
surface, for any 6-molecule (see Fig. 10-7) is y = /cos 6. The average value of y,
or j, is found by multiplying / cos 0 by the flux A®,, summing over all values of 6,

-
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and dividing by the total flux ®. From Egq. (9-6), replacing Zvn, with n,
AD, = %Ewsinﬁcosﬂdﬂ;

and from Eq. (9-11),
1
¢ = zm.

Therefore, replacing A9 with 40 and integrating over @ from zero to =2,

é 5alf2" sin 8 cos*6 do
e . = 10-19
. 3 (10-19)
=
4
Hence on the average, a molecule crossing the surface makes its last collision
before crossing at a distance equal to two-thirds of 2 mean free path above (or

below) the surface,
Let u, represent the forward velocity of the gas at the plane S-S. At a distance

2l/3 above the surface, the forward velocity is
2, du
L
3 dy
since the forward velocity gradient du/dy can be considered constant over a distance
of the order of a free path. The forward momentum of a molecule with this velocity

j=

u =t +

2,du
mu = mlug + =1 —)
( ¥ 3 dy
Hence the net momentum & in the direction of flow, carried across the surface
per unit time and per unit area by the molecules crossing from above, is the product

of the momentum mu and the roral flux ®:
| I 2,du ’
G| = =nm ( = I—).
At L R
Similarly, the momentum carried across the surface by the molecules crossing

from below is
Gt = inﬁm(v. - 51:—;)
The net rate of transport of momentum per unit area is the difference between
these quantities, or
1. . du
G = - nmil —, 10-20,
3 > ( )_
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Fig. 10-8 The viscosity of helium, argon, and
neon is almost a linear function of ﬁ

Table 10-1 Values of the mean free path and molecular diameter of
some gases determined from viscosity measurements. The values of
I and d in this table were calculated using Eq. (10-13) for /.

7(15°C) 1(15°C, 1 atm) d
Gas (Nsm™) (m) (m)
He 194 x 10°° 18.6 x 10°® 2.18 x 10710
Ne 31.0 13.2 2.60
A 220 6.66 3.04
H, 8.71 1.8 2.74
N, 17.3 6.28 3.76
0, 20.0 6.79 3.60
Co, 14.5 4.19 4.60
NH, 9.7 4.51 4.44
CHy 10.8 5.16 4.14

O M M e Ve e e

(]



10-4 COEFFICIENT OF VISCOSITY 291

and from Newton's second law this equals the viscous force per unit area. Hence,
by comparison with the definition of the coefficient of viscosity in Eq. (Iq—ls). we
have

n = inmi! - %’%5 (10-21)

An unexpected conclusion from this equation is that the viscosity of a gas is
independent of the pressure or density, and is a function of temperature alone
through the dependence of i on 7. Experiment bears this out, however, except at
very low pressures where the mean free path becomes of the order of the dimen-
sions of the apparatus. The theory above would not be expected to hold under these
conditions, where a molecule could go bouncing from one wall to the other without
making a large number of collisions on the way. ’

We shall show in Section 12-2 that the mean speed © is given by

. kT
B
“’"’ J_er. (10-22)

Thus for molecules of a given species, the theory predicts that # is proportional
tol/T. and that for different species at a given temperature it is proportional to
N mfa.

Figure 10-8 shows some experimental values of the viscosities of helium, neon,
and argon, plotted as functions of JT. The graphs are very nearly straight lines,
but they curve upward slightly, indicating that the viscosity increases with tem-
perature at a somewhat greater rate than predicted by the “hard-sphere’ theory.
This can be explained by realizing that the molecules are not truly rigid spheres and
that a “collision" is more like that between two soft tennis balls than between two
billiard balls. The higher the temperature, the greater the average molecular kinetic
energy and the more the molecules become “squashed™ in a collision. Thus the
center-to-center distance in a collision, and the corresponding collision cross
section o, will be slightly smaller, the higher the temperature, with a corresponding
increase in 7.

As for the dependence of viscosity on the cross section o, Eq. (10-22) is as a
matter of fact one of the relations used to **measure™ collision cross sections and the
corresponding hard-sphere diameters 4. Some values of  computed from viscosity
measurements, are given in Table 10-1.

so that
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10-5 THERMAL CONDUCTIVITY

The thermal conductivity of a gas is treated in the same way as its viscosity. Let
the upper and lower plates in Fig. 10-6 be at rest but at different temperatures, so
that there is a temperature gradient rather than a velocity gradient in the gas. (It
is difficult to prevent conductive heat flow in a gas from being masked by convection
currents. The gas layer must be thin, and the upper plate must be at a higher tem-
perature than the lower.) If d7/dy is the temperature gradient normal to a surface
within the gas, the thermal conductivity 2 is defined by the equation

L (10-23)

where H is the heat flow or heat current per unit area and per unit time across the
surface. The negative sign is included because if dT/dy is positive the heat current
is downward and is negative.

In the MKS system, the unit of / is | joule per square meter per second and
the unit of the temperature gradient d7/dy is 1 kelvin per meter. The unit of
thermal conductivity 4 is therefore 1 joule per square meter per second, per kelvin
per meter, which reduces to 1J m~? s~ K%

From the molecular viewpoint, we consider the thermal conductivity of a gas
to result from the net flux of molecular kinetic energy across a surface. The toral
kinetic energy per mole of the molecules of an ideal gas is simply its internal
energy u, which in turn equals ¢, 7. The average kinetic energy of a single molecule
is therefore ¢, T divided by Avogadro’s number, N,, and if we define a “molecular
heat capacity” ¢ as ¢ = ¢,/ Ny, the average molecular kinetic energy is ¢} T.

We assume as before that each molecule crossing the surface made its last
collision at a distance 2//3 above or below the surface, and that its kinetic energy
corresponds to the temperature at that distance. If T, is the temperature at the
surface S-S, the kinetic energy of a molecule at a distance 2//3 below the surface is

ar= c:(Tn - glg).
3 dy

The energy transported in an upward direction, per unit area and per unit
time, is the product of this quantity and the molecular flux @:

nﬁc,"(]'}, — Zld—T).

Ht =
! 3 dy

1
4
In the same way, the energy transported by molecules crossing from above is

2. .dT
H]l = ‘IIDC,,'(T = ——)
4 °+3‘dy
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The net rate of transport per unit area, which we identify with the heat current H,
is

1 oydl
H = ——noc}l—, 10-24,
e (10-24)
and by comparison with Eq. (10-23) we see that the thermal conductivity 4 is
Te*
amlpgaralis (10-25)
3 o

Thus the thermal conductivity, like the viscosity, should be independent of
density. This is also in good agreement with experiments down to pressures so low
that the mean free path becomes of the same order of magnitude as the dimen-
sions of the container.

The ratio of thermal conductivity to viscosity is

A & [
—_tE—_=m—=
m m mNy M
and
My (10-26)
%

where M is the molecular weight of the gas. Therefore the theory predicts that for
all gases this combination of experimental properties should equal unity. Some
figures are given in Table 10-2 for comparison. The ratio does have the right order
of magnitude, but we see again that the hard-sphere model for molecules is in-

adequate,

Table 10-2 Values of the thermal conductivity 2, molecular weight M, viscosity 7, and
specific heat capacity ¢, of a number of gases

A(0°C) M n{(0°C) cy M
Gas | (Jm 157 K™Y | (kg kilomole™) |  (Nsm™) | (J kilomole™ K1) | 7c,
He 0.141 4,003 18.6 x 10°¢ 125 x 10° 243
Ne 0464 20.18 28.7 127 248
A 163 39.95 21.3 125 245
H, 168 2016 8.41 201 2.06
N, 241 28.02 16.6 20.9 J 1.95
0, 245 32.00 19.2 21.0 1.94
Cco, 145 44,01 13.7 28.8 1.62
NH, 218 17.03 9.2 216 1.46
CH, .305 16.03 10.3 274 1.73
Air 241 29. 17.2 20.9 1.94
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10-6 DIFFUSION

The vessel in Fig. 10-9 is initially divided by a partition, on opposite sides of which
are two different gases 4 and B at the same temperature and pressure, so that the
number of molecules per unit volume is the same on both sides. If the partition
is removed, there is no large scale motion of the gas in either direction, but after a
sufficiently long time has elapsed, one finds that both gases are uniformly distrib-
uted throughout the entire volume. This phenomenon, as a result of which each
gas gradually permeates the other, is called diffusion. It is not restricted to gases
but oceurs in liquid and solids as well. Diffusion is a consequence of random
molecular motion and occurs whenever there is a concentration gradient of any
molecular species, that is, when the number of particles of one kind per unit
volume on one side of a surface differs from that on the other side. The phe-
nomenon gan be described as a transport of matter, (that is, of molecules) across

a surface.

’////7////////17/1?%’{//4?’///

Fig. 10-9 A vessel con-
taining two  different
gases separated by a par-
tition,

The phenomenon of diffusion may be complicated by the fact that when more
than one type of molecule is present the rates of diffusion of one into the other
are not the same. We can simplify the problem and still bring out the essential
ideas by considering the diffusion of molecules of a single species into others of the
same species, known as self-diffusion.

If all of the molecules of a system were exactly alike, any calculation of self-
diffusion among them would be of academic interest only, since there would be no
experimental method by which the diffusing molecules could be distinguished
from the others. However, molecules that are isotopes of the same element, or
molecules whose nuclei have been made radioactive, differ only in their nuclear
structure and are essentially identical as far as collision cross sections are concerned.
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(Their mean kinetic energies will differ slightly because of differences in mass.)
It is thus possible to “tag™ certain molecules so that they can be distinguished
from others, and yet treat the problem as if the molecules were all alike.

Consider an imagined horizontal surface S-S within the vessel of Fig. 10-9,
at some stage of the diffusion process. The vessel contains a mixture of tagged and
untagged molecules, the total number of molecules per unit volume being the same
at all points so that the pressure is uniform. We assume the temperature to be
uniform also. Let n* represent the number of tagged molecules per unit yolume
at any point. We shall assume that n* is a function of y only, where lheystis is
normal to the surface S-S. If dn*/dy is positive, the downward flux of tagged
molecules across the surface is then greater than the upward flux. If I' represents
the net flux of tagged molecules across the surface, per unit time and per unit area,
the coefficient of self-diffusion D is defined by the equation

*
Pa-pii (10-27)

The negative sign is included since if dn*/dy is positive, the net flux I' is down-
ward and is negative.

In the MKS system, the unit of I"is | molecule per square meter per second and
the unit of the concentration gradient dn*/dy is | molecule per cubic meter, per
meter. The unit of the diffusion coefficient Dis therefore | molecule per square meter
per second, per molecule per cubic meter, per meter, which reduces to | m?s-l,

We assume as before that each molecule makes its last collision before crossing
at a perpendicular distance 2//3 away from the surface. 1f ng is the number of
tagged molecules per unit volume at the surface 5-S, the number per unit volume at

adistance 2//3 below the surface is . 2. do*
n*=nf —=1l—.
3 dy

In the expression previouslyderived for the flux @, we must replace n by n*, and
the upward flux I'f is then .
Pt =3 - 204%).
4 3 dy
In the same way, the downward flux is

-
1) ii(n}‘ 4 3:‘1'-'—).

3 dy
The net flux I is the difference between these, so
Fa=infi, (10-28)
3 dy
Comparison with Eq. (10-24) shows that
P
D=.il=-= 10-29
3" T 300 Hie29)

where n is the toral number of molecules per unit volume,
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The phenomenon of diffusion through fine capillary pores in a ceramic material
is one of the methods used to separate the isotopes U* and U™ Naturally
occurring uranium is converted to the hexafluoride UF,, a gas, and the mixture
of isotopes flows by diffusion through a porous barrier, The phenomenon is more
complicated than the simple case described above because the free path is no
longer small compared with the dimensions of the capillaries, and collisions with
the walls become an important factor. However, we can see qualitatively that
because of the slightly smaller mass of U** compared with U®#, the mean speed o
of the hexafluoride molecules containing U® will be slightly greater than for the
others, The diffusion coefficient is slightly greater also, so that this component is
slightly enriched in the gas that has diffused through the pores.

The operation of a nuclear reactor is also dependent on the phenomenon
of diffusion. The neutrons in a reactor behave like a gas that is continuously being
generated throughout the reactor by fission processes and which diffuses through
the reactor and eventually escapes from the surface. In order that the reactor may
operate successfully, conditions must be such that the rate of generation of neu-
trons is at least as great as the loss by diffusion, plus the losses due to collisions
in which the neutrons are absorbed.

10-7 SUMMARY
Let us compare the three results obtained in the preceding sections, We can write

Egs. (10-20), (10-24), and (10-28) as
1 _\ d(mu)
G (3 nal) _a‘y X

-
H= —(l-ni'.'f) deT) i
3 dy
*
= —(1 nm) gain);
3 dy
The last equation is obtained by multiplying numerator and denominator of
Eq. (10-26) by n.

The product (mu) in the first equation is the flow momentum of a gas molecule,
the product (cy7) in the second is the kinetic energy of a molecule, and the ratio
(n*/n) in the third is the concentration of tagged molecules.

The corresponding expressions for the coefficients of viscosity, of thermal
conductivity, and of self-diffusion, are

- _lbom
n=-nmul =-—,
o
e
ie= !nc,ﬁf Iu—cl.
@
p=la=12
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PROBLEMS

10-1 How are the assumptions of kinetic theory given in Section 9-2 changed in the
development of the Hirn and the van der Waals equations of state?

10-2 The critical temperature of CO, is 31.1°C and the critical pressure is 73 atm.
Assume that CO, obeys the van der Waals equation. (a) Show that the critical density
of CO, is 0.34 g cm™, (b) Show that the diameter of a CO, molecule is 3.2 x 1079 m.

10-3 Using the data of the previous problem, (a) find the microscopic collision cross
section for a CO, molecule. (b) If one kilomole of CO, occupies 10 m?, find the mean
free path of the CO, molecules. (c) If the mean speed of the CO, molecules is 500 ms=1,
compute the average number of collisions made per molecule in one second.

10-4 Find the pressure dependence at constant temperature of the mean free path and
the collision frequency.

10-5 A beam of molecules of radius 2 x 1071® m strikes a gas composed of molecules
whose radii are 3 x 107" m. There are 10™ gas molecules per m®. Determine (a) the
exclusion radius, (b) the microscopic collision cross section, (c) the macroscopic collision
cross section, (d) the fraction of the beam scattered per unit distance it travels in the gas,
(e) the fraction of molecules left in the beam after it travels 10~ m in the gas, (f) the
distance the beam travels in the gas before half of the molecules are scattered out, (g)
the mean free path of the beam in the gas.

10-6 A group of oxygen molecules start their free paths at the same instant. The pressure
is such that the mean free path is 3 cm. After how long a time will half of the group still
remain unscattered, Assume all particles have a speed equal to the rms speed. The tem-
perature is 300 K.

10-7 Bowling pins with an effective diameter of 10 cm are placed randomly on a bowling
green with an average density of 10 pins per square meter. A large number of 10-cm
diameter bowling balls are bowled at the pins. (a) What is the ratio of the mean free path
of the bowling ball to the average distance between pins? (b) What fraction of the bowling
balls will travel at least 3 meters without striking a pin?

10-8 The mean free path in a certain gas is § cm. Consider 10,000 mean free paths. How
many are longer than (a) Scm? (b) 10ecm? () 20cm? (d) How many are longer than
3 cm but shorter than Scm? (e) How many are between 4.5 and 5.5 cm long? (f) How
many are between 4.9 and 5.1 cm long? (g) How many are exactly 5 cm long?

10-9 A large number of throws are made with a single die. (a) What is the average
number of throws between the appearances of a six? At any stage of the process, what is
the average number of throws (b) before the next appearance of a six, (c) since the last
appearance of a six? (d) How do you answer the question raised in Section 10-3; that is,
why is the mean free path / and not 2/?

10-10 The mean free path of a helium atom in helium gas at standard conditions is
20 x 107 m, What is the radius of a helium atom?

10-11 A beam of electrons is projected from an electron gun into a gas at a pressure P,
and the number remaining in the beam at a distance x from the gun is determined by
allowing the beam to strike a collecting plate and measuring the current to the plate. The
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electron current emitted by the gun is 100 44, and the current to the collector when x =
10cm and P = 100 N m™2 (about 1 Torr) is 37 #A4. (a) What is the electron mean free
path? (b) What current would be collected if the pressure were reduced to 50 N m~2?
10-12 A singly charged oxygen molecule starts a free path in a direction at right angies
to an electric field of intensity 10' V m™. The pressure is one atmosphere and the tem-
P 300 K. (a) Compute the di moved in the direction of the field in a time
equal to that required to traverse one mean free path. (b) What is the ratio of the mean
free path td this distance? (c) What is the average speed in the direction of the field? (d)
What is the ratio of the rms speed to this speed? (e) What is the ratio of the energy of
thermal agitation to the energy gained from the ficld in one mean free path?

10-13 The resistance of 2 m of 0.01 cm diameter copper wire is measured to be 3 Q. The
density of copper is 8.9 x 10° kg m™ and its atomic weight is 64. (a) Determine the mean
free time = between collisions of the electrons with the copper ion cores. (b) Determine
the mean free path of the electrons assuming that & for an electron is given by (8k Tf=m)/2,
How many atomic distances is this, assuming copper is cubic? (c) Determine the ratio
of the diameter of the copper ion cores to the atomic distance. [Parts (b) and (c) do not
give correct answers because electron speeds are approximately 10? times as large as those
given by (8kT/=m)"/%, Section 13-6.] (d) Determine the average length of time it takes an
electron to move the length of the wire when the current through the wire is 0.333 A,
10-14 Satellites travel in a region where the mean free path of the particles in the atmos-
phere is much greater than the characteristic size of the body. Show that the force per
unit area on the satellite due to this rarefied gas is 4nmv®(3, where n is the number density
of particles in the atmosphere, m is their mass, and v is the speed of the satellite. [Hins:
Since the satellite speed is much greater than the speed of sound, assume that the satellite
is moving through a stationary cloud of particles.]

10-15 Calculate the coefficient of friction of a disc gliding on an air table with a speed
of 1 ms™, The diameter of the disc is 0.1 m and its mass is 0.3 kg. Assume that it glides
10~ m above the table. The diameter of a nitrogen molecule is about 4 x 107°m,

10-16 The viscosity of carbon dioxide over a range of temperatures is given in the table

below. (a) Compute the ratio VT at each temperature and (b) determine the diameter
of the CO, molecule. (c) Compare that diameter with the diameter of A and Ne taken

from Fig. 10-8.

°C =21 0 100 182 302

n(10° N s m™?) 12.9 14.0 18.6 222 26.8

10-17 (a) Derive an expression for the temperature dependence of the thermal con-
ductivity of an ideal gas. (b) Calculate the thermal conductivity of helium (considered as
an ideal gas) at 300 K.

10-18 (a) From the data in Table 10-2 determine the self-diffusion coefficient of helium
at standard conditions in two ways. (b) How does the sell-diffusion coefficient depend upon
pressure at constant temperature, upon temperature at constant pressure, and upon the
mass of the diffusing particle.
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10-19 A tube 2 m long and 10~* m* in cross section contains CO, at atmospheric pressure
and at a temperature of 300 K, The carbon atoms in one-hall of the CO, molecules are
the radioactive isotope C¥. Attime r = 0, all of the molecules at the extreme left end of
the tube contain radioactive carbon, and the number of such molecules per unit volume
decreases uniformly to zero at the other end of the tube. (a) What is the initial concentra-
tion gradient of radi ive molecules? (b) Initially, how many radioactive molecules
per second cross a cross section at the midpoint of the tube from left to right? (c) How
many cross from right to left? (d) What is the initial net rate of diffusion of radioactive
molecules across the cross section, in molecules per second and micrograms per second ?

1020 Given that the density of airis 1.20 kgm™3,7 = 460 ms~!,and/ = 6.4 x 107*m
at standard conditions, determine the coefficients of viscosity, (b) diffusion, and (c) thermal
conductivity, Assume that air is a diatomic ideal gas.

10-21 There is a small uniform pressure gradient in an ideal gas at constant temperature
s0 that there is a mass flow in the direction of the gradient. Using the mean free path
approach show that the rate of flow of mass in the direction of the pressure trndienl per
unit area and per unit pressure gradient is mol[3kT.
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111 IN'?IODUCTION

The methods of statistical thermodynamics were first developed during the latter
part of the last century, largely by Boltzmann in Germany and Gibbs in the United
States. With the advent of the quantum theory in the early years of the present
century, Bose* and Einsteint, and Fermi} and Dirac§ introduced certain modifica-
tions of Boltzmann’s original ideas and succeeded in clearing up some of the
unsatisfactory features of the Boltzmann statistics.

The statistical approach has a close connection with both thermodynamics
and kinetic theory. For those systems of particles in which the energy of the
particles can be determined, one can derive by statistical means the equation of
state of a substance and its energy equation. Statistical thermodynamics provides
an additional interpretation of the concept of entropy.

Statistical thermodynamics (also called statistical mechanics), unlike kinetic
theory, does not concern itself with detailed considerations of such things as
collisions of molecules with one another or with a surface. Instead, it takes ad-
vantage of the fact that molecules are very numerous and average properties of a
large number of molecules can be calculated even in the absence of any information
about specific molecules. Thus an actuary for an insurance company can predict
with high precision the average life expectancy of all persons born in the United
States in a given year, without knowing the state of health of any one of them.

Statistical methods can be applied not only to molecules but to photons, to
elastic waves in a solid, and to the more abstract entities of quantum mechanics
called wave functions. We shall use the neutral term “particle” to designate any

of these.

11-2 ENERGY STATES AND ENERGY LEVELS

The principles of classical mechanics, or Newtonian mechanics, describe correctly
the behavior of matter in bulk, or of macrescopic systems. On a molecular or
microscopic scale, classical mechanics does not apply and must be replaced by
quantum mechanics. The principles of quantum mechanics lead to the result that
the energy of a particle, not acted on by some conservative force field such as a
gravitational, electric, or magnetic field, cannot take on any arbitrary value, or
cannot change in a continvous manner. Rather, the particle can exist only in some
one of a number of states having specified energies. The energy is said to be
quantized.

A knowledge of quantum mechanics will not be assumed in this book. We
shall try to make plausible some of its predictions; others will simply be stated and

* Satyendranath Bose, Indian physicist (1894-1974),
t Albert Einstein, German physicist, (1879-1955).

1 Enrico Fermi, Italian physicist (1901-1954).

§ Paul A. M. Dirac, English physicist (1902- )
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Fig. 11-1 Three of the possible station-
ary waves in a stretched string fixed at
both ends.

the reader will have to take them on faith or refer to texts devoted to this subject.
In any event, as far as the methods of statistics are concerned, it is enL»ugh to
know that quantized energy states exisf.

In quantum mechanics, also known as wave mechanics, the general method
of attacking a problem is to set up and (hopefully) solve an equation known as
Schrodinger's* equation. In many problems, this equation is exactly analogous
to the wave equation describing the propagation of transverse waves in a stretched
string, fixed at both ends. As is well known, the string can vibrate in a steady state
in any one of a number of stationary waves, three of which are shown in Fig. 11-1.
That is, there may be a node N at each end and an antinode A at the center, or
there may be a node at the center as well as at the ends, with antinodes midway
between the nodes, and so on, The important result is that there is always an
integral number of antinodes in the steady-state modes of vibration; one antinode
in the upper diagram, two in the next, and so on. The distance between nodes (or
antinodes) is one-half a wavelength, so if L is the length of the string, the wave-
lengths A of the possible stationary waves are

1 1
A, =2L, ==2L, Ay ==2L, etc.;
' A 3 =2

or in general

-]
ny

* Erwin Schridinger, Austrian physicist (1887-1961).
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where n, is an integer equal to the number of antinodes and can have some one of

the values
w2300

A stationary wave is equivalent to two traveling waves propagating in opposite
directions, the waves being reflected and re-reflected at the ends of the string,
This is analogous to the motion of a particle moving freely back and forth along
 straight line and making elastic collisions at two points separated by the distance
L. According to quantum mechanics, a stationary Schrédinger wave is in fact
completely equivalent to such a particle, and the wavelength 4 of the stationary
wave is related to the momentum p of the particle through the relation

h
=, 11-1
p=7 (11-1)
where h is a universal constant called Planck’s constant. In the MKS system,

h = 6.6262 x 107" ] s.
The momentum of the particle is therefore permitted to have only some one of
the set of values
h
—-_— 11-2
Py=nsor (11-2)

If a particle is free to move in any direction within a cubical box of side length
L whose sides are parallel to the x, y, z axes of a rectangular coordinate system,
the x, y, and z components of its momentum are permitted to have only the values

h h .

P:""-E- .p'="rizl- Ps '='".2_L.v
where n,, n,, and n, are integers called quantum numbers, each of which can have
some one Ef the values 1, 2, 3, etc. Each set of quantum numbers therefore corre-

sponds to @ certain direction of the momentum. Then if p; is the resultant momen-
tum corresponding to some set of quantum numbers n,, n,, n
hl
Pi=pt A+ pi= (4 n+ ) o
or, if we let (n; + n} + n3) = nj,
"I
P, L
b=
The kinetic energy € of a particle of mass m, speed v, and momentum p = mv
is
]
e O
2 2m
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The energy ¢, corresponding to the momentum p, is therefore

__pig 4 hI ]
? TN

The values of n,, n,, and n,_ are said to define the srate of a particle, and the
energies corresponding to the different possible values of ] are the possible energy
levels. The energy levels depend only on the values of nj and not on the individual
values of n,, n,, and n,. In other words, the energy depends only on the magnitude
of the momentum p; and not on its direction, just as in classical mechanics. In
general, a number of different states (corresponding to different directions of the
momentum) will have the same energy. The energy level is then said to be de-
generate, and we shall use the symbol g; to designate the degeneracy of level j,
that is, the number of states having the same energy «;.

The volume ¥ of a cubical box of side length L equals L%, so L* = F*?; and
Eq. (11-3) can be written, for a free particle in a cubical box,

(11-3)

%
€= nfg;; s, (11-4)

The same result applies to a container of any shape whose dimensions are large
compared with the wavelength of the Schridinger waves. The energy of the jth
level therefore depends on the quantum number n, and on the volume V. If the
volume is decreased, the value of a given ¢; increases.
As an example, consider a 1-liter volume of helium gas. When numerical values
of h, m, and V¥ are inserted in Eq. (11-4), we find that

ht

— V¥ 8 x 107 =5 x 1072 ¢eV.

8m
We have shown that at room temperature the mean kinetic energy of a gas molecule
is about [/40 eV or 2.5 x 10~2eV, Hence for a molecule with this kinetic energy,

~2.5 x 1072
R
ny =22 x 10°,
Thus for the vast majority of the molecules of a gas at ordinary temperatures, the
quantum numbers n; are very large indeed.
The lowest energy level (j = 1) is that for which n, = n, = n, = 1. Then
ni = 3and

nt =5 x 10,

There is only one state (one set of quantum numbers n,, n,, n.) having this energy.
The lowest level is therefore nondegenerate and g, = 1. The x, y, and z components
of the corresponding momentum p, are all equal, and each equals A/2L.
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In the next level (j = 2) we might have any one of the following states:

n, | n, n,
2 1 1
1 2 I
1 1 2

Thus in the first of these states, for example, the components of momentum are

R S
Paz oL’ Py oL’ 2 oL
In each state, nf = (n2 + nf 4 nZ) = 6, and in this level,
6h*
L)
a 8m

Since three different states have the same energy, the degeneracy g, = 3.

The preceding discussion of the energy levels and degeneracies of a free particle
in a box is only one example of energy quantization, Other constraints also leading
to energy quantization will be discussed later.

Figure 11-2 represents in a schematic way the concepts of energy states, energy
levels, and the degeneracy of a level. The energy levels can be thought of as a set
of shelves at different elevations, while the energy srares correspond to a-set of
boxes on each shelf. The degeneracy g, of level j is the number of boxes on the
corresponding shelf. I a number of marbles are distributed among the various
boxes, the number in any one box is the number in a particular srare. Those marbles

n &] &) (4) (5)

L L Lo [ [o]smsm=2
L L L L m=an=3
‘I._fi_-_!i_u. = 1 {Nondegenerate), N, = 5

L

Fig. 11-2 A schematic representation of a set of
energy levels e, their degeneracies g; and their occupa-
tion numbers N,
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in the boxes on any one shelf are in different states, but all have the same energy.
The total number of marbles in the boxes at any level j is called the occupation
number N, of that level.
Evidently, the sum of the occupation numbers N, over all levels equals the
total number of particles N:
2N;=N. (11-5)
]

Also, since the particles in those states included in any level j all have the same
energy ¢, the total energy of the particles in level j is ¢,¥,, and the total energy E
of the system is

2 €N, =E. (11-6)
F]

IF the system is in an external conservative force field such as a gravitational,
electric, or magnetic field, the total energy £ will consist in part of the potential
energy E, of the system. If the potential energy is zero, the total energy E is then
the internal energy U and

2N, =U. (11-7)
El

11-3 MACROSTATES AND MICROSTATES

A number N of identical entities is called an assembly. The entities may be single
particles, or they may themselves be identical assemblies of particles, in which case
one has an assembly of assemblies, or an ensemble. We shall for the most part
consider only assemblies of single particles, and shall refer to them as an assembly
or simply as a system.

If the distribution of the particles of the system among its energy states is
known, the macroscopic properties of the system can be determined. Thus a
central problem of statistical mechanics is to determine the possible distributions of
particles among energy levels and energy states.

The description of a single-particle assembly depends on whether the particles
of which it consists are distinguishable or indistinguishable. Suppose the assembly
is a sample of gas and the individual molecules are the particles. Since there is no
way in which the molecules can be labeled, the particles are indistinguishable.
On the other hand, if the assembly is a crystal, the molecules can be labeled in
accord with the positions they occupy in the crystal lattice and can be considered
distinguishable.

Whether the particles are distinguishable or not, a specification of the number
of particles N; in each energy level is said to define a macrostate of the
assembly. For example, the macrostate of the assembly in Fig. 11-2 is specified by
the set of occupation numbers Ny = 5, Ny = 4, Ny = 3, N, = 2.

If the particles are indistinguishable, a specification of the total number of
particles in each energy state is said to define a microstate of the assembly. Thus if
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the energy states in each level in Fig. 11-2 are numbered (1), (2), (3), etc., up to the
number of states g, in the level; and if the particles are indistinguishable, the micro-
state of the assembly is specified by saying that in level 4 there is one particle in
each of the states (3) and (5), and there are no particles in states (1), (2), and (4);
in level 3 there is one particle’in states (1), (3), and (4), and no particle in state (2);
in level 2 there are two particles in state (1) and one particle in each of states (2)
and (3); and in level | there are five particles in the only state in this level.

If one or both of the particles in level 4 were in states other than (3) and (5),
the microstate would be different, but the macrostate would be unchanged since
we would still have Ny = 2. Evidently, many different microstates will correspond
to the same macrostate.

If the particles are distinguishable, a specification of the energy state of each
particle is said to define a microstate of the assembly. That is, we must specify not
only how many particles are in each state, but which particles they are. Thus suppose
that the particles in Fig. 11-2 are distinguishable and are lettered a, b, ¢, etc., and
that in level 4 particle a is in state (3) and particle b is in state (5); in level 3,
particle cisin state (1) and particles d'and e are in states (3) and (4) respectively, and
so on. The preceding specification, including all levels, describes the microstate
of the assembly. In contrast to an assembly of indistinguishable particles, in which
the microstate would be the same no matter which particles occupied states (3)
and (5) in level 4, the microstate is now considered different if particles a and &
are interchanged between these states. Also, the microstate would be different if,
say, particles ¢ and d in level 3 were interchanged with @ and b in level 4. In each
such interghange we have a different specification of the energy states of the par-
ticles and hence a different microstate; although the macrostate does not change
because the occupation numbers of the levels are the same.

If there is more than one particle in a given energy state, an interchange of the
order in which the letters designating the particles is written is not considered to
change the microstate. Thus suppose the two particles in state (1) of level 2 are
lettered p and 4. The microstate is considered the same if the letters are written
in the order pg or gp.

The number of microstates that are considered different, for a given set of
occupation numbers, is evidently much greater if the particles are distinguishable
than if they are indistinguishable.

The possible macrostates and microstates of an assembly of particles is analogous
10 a table of ages of groups of individuals. As an example let us take the number of
children in each grade of an elementary school having a total enrollment of 368
children.

Grade K 1 2 3 4 5
Children 60 70 62 —I 6l 62 53
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The grades correspond to the energy levels of the system and the specification of the
number of children in each grade defines the macrostate of the system. A different
macrostate with the same total number of children would be

Grade K 1 2 3 4 5

Children 52 57 .60 73 62 64

The change in distribution may have several macroscopic consequences: needs for
different numbers of teachers, different equipment, different numbers of textbooks,
etc.

The grades could be further subdivided into classes, that is, in the first macro-
state described there may be 3 first grade classes and 2 second grade classes. These
classes would correspond to the degenerate energy states of each level. There would
be 3 degenerate states in level 1, cte.

If the children were considered as indistinguishable particles (a bad pedagogic
practice), then a microstate of the system would be

Class K I1(a) 1(b) 1(c) 2(a) 2(b)
o , ete,
Children 60 22 25 23 30 32
A different microstate of the same macrostate of the system would be
Class K 1(a) 1(b) 1(c) 2(a) 2(b)
» elc.
Children 60 20 25 25 30 32

Although the number of children in each class was changed, the number of children
in each grade remained constant.
However, the distribution

Class K I(a) 1(b) 1(e) 2(a) 2(b)

, etc,
Children | 60 2 27 2 30 0 |

would correspond to a different macrostate since the number of children in each
grade was changed, even though the total number of children in the school remained
constant.

When the children are considered distinguishable particles, the microstate is
different, if Evelyn is in 1(a) and Mildred is in 1(b), or vice versa, or if both are in 1(b),
However, in the last case the microstate is the same if Mildred's name appears on the
class list before Evelyn's or after it.
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11-4 THERMODYNAMIC PROBABILITY

In the preceding section, no restriction was imposed on the possible ways in which
the particles of an assembly might be distributed among the energy states. In an
isolated, closed system, however, the energy E and the total number of particles
N are both constant. Hence the only possible microstates of such a system are
those that satisfy these conditions.

As time goes on, interactions between the particles of an isolated, closed
system will result in changes in the numbers of particles occupying the energy
states, and, if the particles are distinguishable, will result in changes in the energy
state of each particle. These interactions might be collisions of the molecules of a
gas between themselves or with the walls of the container, or an energy inter-
change between the oscillating molecules of a crystal. Every such interchange
results in a change in the microstate of the assembly, but every possible microstate
must satisfy the conditions of constant N and E.

The fundamental postulate of statistical thermodynamics is that all possible
microstates of an isolated assembly are equally probable. The postulate can be
interpreted in two different ways. Consider a time interval ¢ that is long enough so
that each possible microstate of an isolated, closed system occurs a large number
of times. Let Az be the total time during which the system is in some one of its
possible microstates. The postulate then asserts that tie time interval At is the same
JSor all microstates.

Alternatively; one can consider a very large number 4" of replicas of a given
assembly (an ensemble). At any instant, let AA#” be the number of replicas which
are in some one of the possible microstates. The postulate then asserts that rhe
number AA” is the same for all microstates. The postulate does not seem to be
derivable from any more fundamental principle, and of course it cannot be verified
by experiment. Its justification lies in the correctness of the conclusions drawn

from it.

In terms of the example of the previous section, if all microstates were equally
probable and the population of the school were limited to exactly 368 children, over
many, many years each distribution of children among classes would occur as often
asany other. Alternatively, if in a given year one looked at many elementary schools
having a population of 368 children, each distribution of children among classes
would occur with the same frequency. In each case, the examples given in the previous
section would occur the same number of times,

The number of equally probable microstates that correspond to a given
macrostate k is called the thermodynamic probability %', of the macrostate. (The
symbol %" comes from the German word for probability, Wahrscheinlichkeit.
Other symbols are often used, and the quantity is also known as the statistical
count.) For most macrostates of an assembly of a large number of particles, the
thermodynamic probability is a very large number. The total number £ of possible
microstates of an assembly, or the thermodynamic probability of the assembly,
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equals the sum over all macrostates of the thermodynamic probability of each

macrostate:
Q=3 ¥,
k

The principles of quantum mechanics lead to expressions for the possible
different ways in which the particles may be distributed among the energy states of
a single assembly at one instant of time. In other words, quantum mechanics
determines the microstate at each instant for a single assembly or of each of the
large number of replicas of an assembly at one instant, The calculation of #7, for
three different cases is carried out in Sections 11-5, 11-6, and 11-7.

The observable properties of a macroscopic system depend on the time
average values of its microscopic properties. Thus the pressure of a gas depends
on the time average value of the rate of transport of momentum across an area.
By the fundamental postulate, the observable properties of 2 macroscopic system
will also depend upon the average value of the microscopic properties of a large
number of replicas of an assembly taken at one instant.

Thus the primary goal of a statistical theory is to derive an expression for the
average number of particles N, in each of the permitted energy levels j of the
assembly. The expression to be derived is called the average occupation number of
the level j.

Let N, be the occupation number of level j in macrostate k. The group
average value of the occupation number of level j, N}, is found by multiplying N,,
by the number of replicas in macrostate k, summing over all macrostates and
dividing by the total number of replicas, A4”. The total number of replicas of a given
assembly that are in macrostate k equals the product of the number of replicas
AV that are in some microstate and the number of microstates %", included in

the macrostate, Therefore
1
N,’ = J_V.g N,,'V.M.

However,
N =3 W, AN,
0

and since A.4" is the same for all macrostates, we can cancel it from the numerator
and denominator. The group average is

; Nu¥',

1
N=f——=—SN,¥, 11-8
=3, "a g 2 ¥ p (11-8)
k
Similarly, we can calculate the time average of the occupation number of level
Jj. Ni. As explained above, the postulate that all microstates are equally probable
means that over a sufficiently long period of time ¢, each microstate exists for the

same time interval Ar. The total time the assembly is found in macrostate k is
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then the product of the time interval Ar and the number %, of microstates in
macrostate k. The sum of these products over all macrostates equals the total

time r:
) t=3 %, At
k

The time average value of the occupation number of level j, N, is found by
multiplying the occupation number Ny, of level j in macrostate k by the time
W, At that the assembly spends in macrostate k, summing these products over all
macrostates, and dividing by the total time r. The time average is therefore

. gN,,,W',,Al
N, = ‘-;va}ﬁt = _——ZW.A! .
0

Since At is the same for all microstates, we can cancel it from numerator and
denominator, giving

; ; Na#y
| Fi=Egm = I N (11-9)
k

Comparison of Egs. (11-8) and (11-9) shows that if all microstates are equally
probable, the time average value of an occupation number is equal to the group
average, and we can represent either by N,

The values of the average occupation numbers of the energy levels are cal-
culated for different cases in the next three sections. The general expressions for
the N,, the distribution functions for these cases, are derived in Sections 11-9 to

11-12.

11-5 THE BOSE-EINSTEIN STATISTICS

The thermodynamic probability %7, of a macrostate of an assembly depends on
the particular statistics obeyed by the assembly. We consider first the statistics
developed by Bose and Einstein, which for brevity we shall refer to as the B-E
statistics. In the B-E statistics, the particles are considered indistinguishable, and
there is no restriction on the number of particles that can occupy any energy state.
The energy states, however, are distinguishable. Let the particles be lettered a, b, ¢,
etc. (Although the particles are indistinguishable, we assign letters to them tem-
porarily as an aid in explaining how the thermodynamic probability is computed.)
In some one arrangement of the particles in an arbitrary level j, we might have
particles @ and b in state (1) of that level, particle ¢ in state (2), no particles in
state (3), particles d, e, f, in state (4), and so on. This distribution of particles
among states can be represented by the following mixed sequence of numbers and

letters:
[(1)ab] [(2)c] [(3)] [(4)def] - - - (11-10)

LI -
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where in each bracketed group the letters following a number designate the particles
in the state corresponding to the number.

1f the numbers and letters are arranged in all possible sequences, each sequence
will represent a possible distribution of particles among states, provided the se-
quence begins with a number. There are therefore g, ways in which the sequences
can begin, one for each of the g, states, and in each of these sequences the remaining
(g, + N, — 1) numbers and letters can be arranged in any order.

The number of different sequences in which N distinguishable objects can be
arranged is N! (N factorial). There are N choices for the first term in a sequence.
For each of these there are (N — I) choices for the second, (N — 2) choices for the
third, and so on down to the last term, for which only one choice remains. The
total number of possible sequences is therefore

NN =DIN=2)"1=N!
As an example, the three letters a, b, and ¢ can be arranged in the following

sequences:
abe, ach, bea, bac, cha, cab.

We see that there are six possible sequences, equal to 31

Using the example of the previous section, the number # of different sequences
in which the 70 children of the first grade can be lined up is 70!. It is shown in Appendix
C that Stirling's* approximation for the natural logarithm of the factorial of a large

number x is
Inx!=xlnx —x.

Hence
In70! = 70In70 = 70 = 245

logy, 70! = 245/2.303 = 106
70! = 108,

The number of different possible sequences of the (g; + N, — 1) numbers
and letters is therefore (g; + N, — 1)! and the total number of possible sequences
of g; numbers and N, letters is
gllg, + N, — Nl (11-11)

Although each of these sequences represents a possible distribution of particles
among the energy states, many of them represent the same distribution. For
example, one of the possible sequences will be the following:

[(3)] [(Dab] [(4)def] [(2)e] "+
This is the same distribution as (11-10), since the same states contain the same
particles, and it differs from (11-10) only in that the bracketed groups appear in a
different sequence. There are g; groups in the sequence, one for each state, so
the number of different sequences of groups is g;! and we must divide (11-11) by
2,! to avoid counting the same distribution more than once.

* James Stirling, Scottish mathematician (1696-1770).
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Also, since the particles are actually indistinguishable, a different sequence of

I
S Ih [()eal [2)e] ()] (@)od ]+
also represents the same distribution as (11-10) because any given state contains
the same number of particles. The N, letters can be arranged in sequence in N,!
different ways, so (11-11) must also be divided by N;!. Hence the number of
different distributions for the jth level is
w, = gl(g, + N, — 1]
! 2! N,

which may be more conveniently written as

(g, + N,= 1!
Oy T e (11-12)
= DNy
g! = g,(g, — DL

As a simple example, suppose that an energy level j includes 3 states (g, = 3)
and 2 particles (N; = 2). The possible distributions of the particles among the states
are shown in Fig. 11-3 in which, since the particles are indistinguishable, they are
represented by dots instead of letters. The number of possible distributions, from Eq.

(11-12), is G+r-n1_ a4
G -nRt 2@

wy =

in agreement with Fig. 11-3.

Sae (1) (2 (3

.

Fig. 11-3 The pos-
sible distributions of
two  indistinguish-
able particles among
three energy states,
with no restriction
on the number of
particles in each
state,

R . . T
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If a level is nondegenerate, that is, if there is only one state in the level and
£; = |, then there is only one possible way in which the particles in the level can
be arranged, and hence «, = 1. Butif g, = 1, Eq. (11-12) becomes

|
)= —— =
0IN,!
It follows that we must set 0! = 1, which may be considered as a convention that
is necessary in order to get the right answer. A further discussion can be found in

Appendix C.
Also, if a level f is unoccupied and N; = 0,
iy (g, — 1! i
(g, = DO

and «; = 1 for that level. o I 4
For each of the possible distributions in any level, we may have any one of the
possible distributions in each of the other levels, so the tofal number of possible
distributions, or the thermodynamic probability ¥ 5 g of a macrostate in the
B-E statistics is the product over all levels of the values of ., for each level, or,
- 1)
(8 + N, — 1)! (11-13)

V_ =V = = "
sx= W= Il IAI(g,—l)!N,!

where the symbol T, means that one is to form the product of all terms following
it, for all values of the subscript j. It corresponds to the symbol 3 for the sum
of a series of terms.

If an assembly includes two levels p and ¢, with g, = 3and N, = 2, asin the
preceding example, and with g, = 2, N, = 1, the thermodynamic probability of the
macrostate N, = 2, N, = 1, is

4 21
rl!-! =mmﬁﬁ x2 =12

and there are 12 different ways in which three indistinguishable particles can be

distributed among the energy states of the assembly.

We next calculate the thermodynamic probabilities of those macrostates that
are accessible to a given system and the average occupation numbers of the per-
mitted energy levels. Although all microstates of an isolated, closed system are
equally probable, the only possible microstates are those in which the total number
of particles equals the number N of particles in the system, and in which the total
energy of the particles equals the energy U of the system. As an example, suppose
that we have a system of just six particles, that the permitted energy levels are
equally spaced, and that there are three energy states in each level so that g, = 3.
We shall take the reference level of energy as that of the lowest level, o that
& =0, ¢ = ¢, 6 = 2¢, etc. We also assume that the total energy U of the system
equals 6e.

If the particles are indistinguishable and the system obeys the B-E statistics,
the only possible macrostates consistent with the conditions N = 6, U = 6e, are
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Fig. 11-4 The eleven possible macrostates of an assembly of 6 particles obeying
Bose-Einstein statistics. The energy levels are equally spaced and have a
degeneracy g; = 3 ineach level. The total energy of the system is U = 6¢. The
thermodynamic probability of each macrostate is given at the bottom and the

age 0CC { ber of each level is printed on the right of the diagram.

Ly

shown in the columns of Fig. 11-4. Each horizontal row corresponds to an energy
level (the three states in each level are not shown in the figure). The dots represent
the number of particles in each level. The columns could represent either the macro-
states of a single system at different times, or the macrostates of a number of replicas
of the system at a given instant. If we consider the figure to represent these replicas,
then out of a large number A" of replicas there would be a number A" in each
macrostate, but since all of these numbers A¥" would be equal, we can consider
that each macrostate occurs just once.

The diagram can be constructed as follows. The macrostate represented by
the first column is obtained by first placing one particle in level 6, with energy 6e.
The remaining five particles must then be placed in the lowest level with energy
zero, so that the total energy of the system is 6e. Evidently, there can be no particles
in levels higher than the sixth. In the second column, we place one particle in
level 5, one particle in level I, and the remaining four particles in the lowest level,
and so on.

The thermodynamic probability. %7, of each macrostate, calculated from Eq.
(L1-13), is given under the corresponding column. Thus for macrostate k = 1,
since g; = 3 in all levels and all occupation numbers are zero except in level 6,
where Ny = 1, and in level 0, where N, = 5,

_ B+ 3+5-1
EIET 215!
That is, the single particle in level 6 could be in any one of three states, and in the

=3 x 2l =63.

¥y
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lowest level the remaining five particles could be distributed in 21 different ways
among the three states, making a total of 63 different possible arrangements,
The total number of possible microstates of the system, or the thermodynamic
probability of the system, is
Q=3 W, =153
k

The average occupation numbers of each level, calculated from Eq. (11-8),
are given at the right of the corresponding level. In level 2, for example, we see
that macrostate 3 includes 135 microstates, in each of which there is one particle
in level 2. Macrostate 6 includes 270 microstates in each of which there is also
one particle in level 2, and so on. The average occupation number of level 2 is
therefore 12712

1
Ny= =3 Nu¥, = == =083,
. ng il T

In any macrostate k in which level 2 is unoccupied, the corresponding value
of N, is zero and the product N, %", for that level is zero. Note that although the
actual occupation number of any level in any macrostate must be an integer or
zero, the average occupation number is not necessarily an integer.

The most probable macrostate in Fig. 11-4, that is, the one with the largest
number of microstates (270), is the sixth. The occupation number of each level
for this macrostate is roughly the same as the average occupation number for the
assembly. It can be shown (Appendix D) that when the number of particles in an
assembly is very large, the occupation numbers in the most probable state are very
nearly the same as the average occupation numbers.

11-6 THE FERMI-DIRAC STATISTICS

The statistics developed by Fermi and Dirac, which for brevity we call the F-D
statistics, applies to indistinguishable particles that obey the Pauli* exclusion
principle, according to which there can be no more than one particle in each
permitted energy state. (Itis as if every particle were aware of the occupancy of all
states, and could only take a state unoccupied by any other particle.) Thus the
arrangements in the upper three rows of Fig. 11-3, in which there are two particles
in each state, would not be permitted in the F-D statistics. Evidently, the number
of particles N, in any level cannot exceed the number of states g, in that level.

To calculate the thermodynamic probability of a macrostate, we again tem-
porarily assign numbers to energy states of a level and letters to the particles, and
we rep! t a possible arrang t of the particles in a level by a mixed sequence
of numbers and letters. A possible arrangement might be the following:

[(1Dal [)e] ()] [(A)e] [(5)] -~ (11-14)

meaning that states (1), (2), (4), ... are occupied with their quota of one particle
each while states (3), (5),... are empty. For a given sequence of numbers, we

* Wolfgang Pauli, Austrian physicist (1900-1958).
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first select some arbitrary sequence of letters. There are g; possible locations for
the first letter, following any one of the g, numbers. This leaves only (g, — 1)
possible locations for the second letter, (g, — 2) locations for the third, down to
[g; — (N; = )] or (g; — N, + 1) locations for the last letter. Since for any one
location of any one letter we may have any one of the possible locations of each
of the others, the total number of ways in which a given sequence of N, letters can
be assigned to the g, states is Py
s
' 8gs = 1Ng; —2) (g, — N, + 1) G =N’ (11-15)
since
gl = glg; — (g, — )+ (g, — Ny + D)(g; = N
Because the particles are indistinguishable, a state is occupied regardless of the
particular letter that follows the number representing the state, and since there
are JV;! different sequences in which the N, letters can be written, we must divide
Eq. (11-15) by N;!. Again, although the states are distinguishable, a different
sequence of states does not change the distribution. Therefore we do not need to
consider other sequences of letters and for level j,
2!
PR T . 11-
(g, — N)IN,! esn
If a level j includes 3 states (g; = 3) and two particles (V; = 2), then
3! 3!
“=G-pm 1w >

The possible arrangements are shown in Fig. 11-5, which corresponds to the
lower three rows of Fig. 11-3, the upper three being excluded.

Finally, since for every arrangement in any one level we may have any one of
the possible arrangements in the other levels, the thermodynamic probability

@y =

swe (1) ) ()

. . |

. -

Fig. 11-5 The pos-
sible  distributions
of two indistinguish-
able particles among
three energy states,
with no more than
one particle in each
state.
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Fig. 11-6 The five possible macrostates of an
assembly of 6 particles obeying Fermi-Dirac
statistics. The energy levels are equally spaced
and have a degeneracy of g; = 3 each. The
total energy of the system is U = 6e. The
thermodynamic probability of each macrostate
is given at the bottom, and the average occupa-
tion number of each level is printed on the
right of the diagram,

W g.p of a macrostate in the F-D statistics is
!

Wrp=W,= ];Iw, - ]_:I(g‘ NN i (11-17)
Figure 11-6 shows the possible macrostates of a system of six particles obeying
the F-D statistics in which, as in Fig. 11-4, the energy levels are equally spaced
and the degeneracy of each level is g; = 3. In comparison with Fig. 11-4, macro-
states 1, 2, 3, 5, 10, and I1 of that figure are excluded because there can be no
more than three particles in each level. Thus there are only five possible macrostates,
each with energy 6e. The thermodynamic probability of each macrostate, calculated
from Eq. (11-17), is written under the corresponding column. Thus in macrostate |,

¥, = 3t . 3! . 3!
@@=t =221 (3-3)131
That is, there are three possible locations of the single particle in level 4 (in
any one of the three states), three ways in which the two particles in level I can be
distributed among the three states (asin Fig. 1 1-5)and only one wayin which the three
particles in level zero can be distributed among the three states (one in each state).
The total number of possible macrostates is
Q=3¥%,=7.
The average occupation numbers of each level, calculated from Eq. (11-8)
are given at the right of the corresponding level. These may be compared with the
occupation numbers in Fig. 11-4.

=3x3x1=09,
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Fig. 11-T The pos-

sible arrangements
of two distinguish-
able particlesaand b
among three energy
states, with no re-
striction on the
number of particles
per state.

11-7 THE MAXWELL-BOLTZMANN STATISTICS

In the Maxwell-Boltzmann statistics, which for brevity we call M-B statistics, the
particles of an assembly are considered distinguishable, but as in the B-E statistics
there is no restriction on the number of particles that can occupy the same energy
state. We consider an assembly of V particles and a macrostate specified by the
occupation numbers Ny, Ny, ..., N, .... The degeneracies of the levels are
respectively g1, £2.... 485 .... Since the particles are distinguishable, two
arrangements are considered different if a level contains different particles, even
though the occupation number of the level may be the same. That is, an arrange-
ment in which the particles in a level are @, b, and ¢ is different from one in which
the particles are a, b, and d or p, g, and r. Consider first any level j, including g,
states and some specified set of N, particles. The first particle may be placed in

any one of the g, states. But since there is no restriction on the number of particles

per state, the second particle can also be placed in any one of the g, states, making

a total of g} possible locations for the first two particles. Since there are ¥,

particles in the level, the total number of possible distributions in this level is

w =g (11-18)
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For example, if level / includes three states (g; = 3) and the two particles a and b
(N; = 2), the possible arrangements of the particles are shown in Fig. 11-7, and we
see that there are nine. An interchange of the letters @ and b between different srares,
as in arrangements IV and V, VI and VII, VIII and IX, is considered to give rise to a
different microstate since the particles @ and b are in different states. On the other
hand, a change in the order of the letters wirhin a given state does not change the
microstate since it leaves the same particles in the same state. That is, in arrange-
ments I, II, and IIT we could equally well have designated the particles as ba instead
of ab. Note that if the particles are indistinguishable and are represented by dots
instead of letters, arrang; s IV and V correspond to the same microstates, as do
arrangements VI and VII, and VIII and IX, leaving only six different arrangements as
in Fig. 11-3. From Eq. (11-18), the number of different arrangements is

. B . gM =3 =9,
in agreement with Fig. 11-7, !

Since for any distribution of particles in one level we may have any one of the
possible distributions in each of the other levels, the total number of distributions

including all levels, with a specified set of particles in each level, is |
IT <, =TI &" (11-19)

But H,w, is not equal to %", : as in lhelother statistics since an interchange of
particles between levels (as well as an interchange between states in the same level)
will also give rise to a different microstate, (If the particles are indistinguishable,
an interchange between levels does not result in a different microstate.) Thus for
example, if-particle b in Fig. 11-7 were interchanged with particle ¢ from some
other level so that the two particles in level j were a and ¢ instead of @ and b, we
would have another nine different arrangements of particles in this level. The
question then is, out of a total of N particles, in how many different ways can the
particles be distributed among the energy levels, with given numbers of particles
Ny, Na, N,, etc., in the various levels?

Imagine that the N letters representing the particles are written down in all
possible sequences. We have shown that there are N! such sequences. Let the
first N, letters in each sequence represent the particles in level 1, the next N,
letters those in level 2, and so on. Out of the N! possible sequences, there will be
a number in which the same letters appear in the first N, places, but in a different
order. Whatever the order in which the letters appear, the same particles are
assigned to level 1, so we must divide N! by the number of different sequences in
which the same letters appear in the first ¥, places, which is ¥,!. In the same way,
we must also divide by N,!, N,!, etc., so that the total number of ways in which N
particles can be distributed among the levels, with N, particles in level 1, N,
particlesin level 2, and so on, is
_L = L (11-20)

NyINgteoo TIN
i

The total number of different distributions, or the thermodynamic probability

W s of a macrostate in the M-B statistics, is therefore the product of (11-19)
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Fig. 11-8 The eleven possible macrostates of an assembly of 6 particles obeying
Maxwell-Boltzmann statistics. The energy levels are equally spaced and have a
degeneracy of g; = 3 each. The total energy of the system is U = 6e. The thermo-
dynamic probability of each macrostate is given at the bottom, and the average
occupation number of each level is printed on the right of the diagram.

and (11-20): N &
- M= NITT 2L =
Wn HN,!I:‘[S’ N'I,IN,!' (Le-21)
i
Figure 11-8 shows the possible macrostates of an assembly of 6 particles
obeying the M-B statistics. As in Figs. 11-4 and 11-6, the energy levels are pre-
sumed to be equally spaced and the degeneracy of each level is g, = 3. Although
each particle could be designated by a letter, the dots represent only the occupation
numbers N, of the respective levels. The figure is identical with Fig. 11-4 for the
B-E statistics, but it rep a much g number of microstates because of
the possible interchanges of particles between the states in any level, and between
various levels. The thermodynamic probability of each macrostate, calculated
from Eq. (11-21), is given under the corresponding column. The values of %7,
have been divided by 3%, Thus for macrostate k = I, in which only levels zero and
six are occupied,

»y
Wy =6l—— =18 x 3,
| st
W,[3 = 18.
The total number of possible microstates is
Q=3 %, =1386 x 3* =337 x 10°
&

The average occupation number of each level is given at the right of the corre-
sponding row.
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11-8 THE STATISTICAL INTERPRETATION OF ENTROPY

In the three preceding sections, the average occupation numbers of the energy
levels of a system were calculated for particles obeying the Bose-Einstein, Fermi-
Dirac, and Maxwell-Boltzmann statistics. It was stated in Section 11-4 that the
thermodynamic variables of a system were related to the average occupation
numbers of its energy levels. In this section we derive the connection and begin
by asking what property of a statistical model of a system can be associated with
its entropy.

For two equilibrium states of an open PVT system in which the temperature,
pressure, and chemical potential are the same but in which the energy, volume,
and number of particles are different, the principles of thermodynamics lead to the
result that the entropy difference between the states is given by

TAS = AU + PAV — p AN. (11-22)

From the statistical point of view, changes in the energy of an assembly, in its
volume, and in the number of particles result in changes in the total number of
possible microstates in which the system can exist. For example, if the energy U
of the system in Fig. 11-4 is increased from 6e to 7e¢, the number of possible
microstates increases from 1532 to 2340 and the average occupation numbers of
each level change. (See Problem 11-9.)

However, entropy is an extensive property and the total entropy S of two
independent systems is the sum of the entropies S and S, of the individual systems:

S=5 +S.

On the other hand, if ), and Q, are the thermodynamic probabilities of the systems,
and since for every microstate of either system the other may be in any one of its
possible microstates, the number ( of possible microstates of the two systems is
the product of Q, and Q,:

0 =00, (11-23)
It follows that the entropy cannot be simply proportional to the thermodynamic
probability; and to find the form of the functional relationship between S and Q
such that the conditions above are satisfied, we assume that S is some unknown
function of Q, say S = J(Q). Thensince § = §, + S;, and Q = Q,0,,

J(Q) + HQy) = J(ELQ,).
Now take the partial derivatives of both sides of this equation, first with respect

to Q, with Q, constant, and then with respect to £, with £}, constant. Since J(£,)
is a function of £, only, its partial derivative with respect to €, is equal to its

total derivative:
: Q) _ dI)

29, do,
The partial derivative of J(X,) with respect to Q, is zero, since Q, is constant,
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On the right side, the partial derivative of J(©,(),), with respect to Q,, equals
the total derivative of J(,Q;) with respect to its argument (£2,(,), multiplied
by the partial derivative of its argament with respect to Q,, which is simply the
constant Q,. Then if we represent by J'(Q,),) the derivative of J(2,0;) with
respect to its argument, we have

dJ(Q,) )
a0 QU (2,42).
In the same way,
dJ ,
_d%:ﬂ = 0,J(0,0,).
It follows from these equations that
g _ o ddd)
T dQ &g, dfl, .

and since Q; and €, are independcnt, the equation can be satisfied only if each
side equals the same constant kg, Then for any arbitrary system,

Q—=k
a0 By

dQ
= kg
dJ(Q) = ks ="

J(Q) = kgln Q;
and hence

S=kylnQ. (11-24)
Thus the only function of £ which satisfies the condition that entropies are additive
while thermodynamic probabilities are multiplicative is the logarithm.

This equation provides the connecting link between statistical and classical
thermodynamics. The numerical value of the proportionality constant kj, must
be chosen so that the classical and statistical values of the entropy will agree. We
shall show in Section 11-15 that ky turns out to be none other than the Boltzmann
constant k = R[N,.

From a statistical point of view the entropy of a system consisting of a very
large number of particles is proportional to the natural logarithm of the total
number of microstates available to the system. If we could prepare an assembly
so that energetically only one microstate is available to it, Q = I, InQ = 0, and
the entropy would be zero. This system is perfectly ordered since the state of each
particle can be uniquely specified. If more energy states become available to the
system, £ becomes greater than 1 and the entropy is larger than zero. In this case
it is not possible to specify uniquely the state of each particle since the state of a
particle may be different when the system is in different microstates. Thus the
system becomes more disordered as more microstates become available to it.
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The entropy of the system may be thought of as a measure of the disorder of the
system.
This statistical interpretation of entropy allows additional insight into the
meaning of the absolute zero of temperature. According to the Planck statement
of the third law (Section 7-7) the entropy of a system in internal equilibrium
approaches zero as the temperature approaches zero. Therefore systems in internal
equilibrium must be perfectly ordered at absolute zero.

Does the quantity k), In £ have the other properties of entropy? We give some
qualitative answers.

1. If there is a reversible flow of heat d'Q, into a system at a temperature T, the
entropy of the system increases by @S = d'Q,/T. If the system is at constant volume
so that the work in the process is zero, the increase dU in internal energy of the
system equals d'Q,. But for an assembly of noninteracting particles, the values of
the energy levels depend upon the volume; and if the volume is constant, these
values do not change. If the energy of an assembly increases, more of the higher
energy levels become available to the particles of the assembly, with a corre-
sponding increase in the number of available microstates or the thermodynamic
probability Q. Hence both S and In Q increase when the energy of the system is
increased.

2. The entropy of an ideal gas increases in an jrreversible free expansion from a
volume ¥, to a volume V,. There is no change in internal energy in the process,
and no work is done, but the permitted energy levels become more closely spaced
because of the increase in volume. For a constant total energy, more microstates
become available as the spacing of the energy levels decreases, and again both §
and In Q increase in the irreversible free expansion.

3. In a reversible adiabatic expansion of an ideal gas, the entropy § remains
constant. There is no heat flow into the gas, and the work in the expansion is done
at the expense of the internal energy, which decreases in the process. If the spacing
of the energy levels did not change, a reduction in internal energy would [csull in
a smaller number of available microstates with a corresponding decrease in In Q,
but because of the increase in volume the energy levels become more closely
spuced, and the resulting increase in In £ just compensates for the decrease arising
from a decrease in internal energy. The result is that In Q, like S, remains constant.

Many other examples could be cited, and it turns out in fact that complete
agreement between thermodynamics and statistics results from the assumption
that the entropy S, whose change S is defined in thermodynamics by the relation

s =49
T

has its statistical counterpart in the logarithm of the thermodynamic probability
€} of an assembly of a very large number of particles, or in the logarithm of the
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total number of microstates available to the assembly. Thus if § = ky In Q, the
entropy difference between two neighboring states of an assembly is dS =
ky, d(In Q).

Additional insight into the connection between statistical and classical thermo-
dynamics can be gained by considering two neighboring states of a closed system, in
which the values of the internal energy U, the energy levels ¢;, and the average
occupation numbers N, are slightly different. Since the energy U is given by ¥, N,
the energy difference between the states is then

du -;e,dN, +gﬁ;dsf; (11-25)

that is, the difference in energy results in part from the differences dW in the average
occupation numbers, and in part from the differences de; in the energy levels.
If the values of the energy levels are functions of some extensive parameter X,
such as the volume ¥, then
de
dey = 2 dX, (11-26)
and
dey

;N, dey = [2 N’dx] dx.

Let us define a quantity ¥ as

d.
Y= -;N,d—"‘i. (11-27)
Then
3 Nydey = —YaXx. (11-28)
’

If, for example, the parameter X is the volume ¥, the quantity Y is the pressure Pand

YdX = Pav.
The energy difference dU is then

dU =3 ¢;dN; — YdX.
T
For two states in which the value of the parameter X is the same, dX = 0, and

duy = F} « dN;.

The principles of thermodynamics lead to the result that when X is constant,
dUyx = Tds,

-and hence
Y dN; = Tds. (11-29)
F ;

Thus the equation
du = ; « dN; +§N;dq
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is the statistical form of the combined first and second law of thermodynamics for a
closed system:
dU = TdS — YdX.
If the system is taken from one staté to the other by a reversible process, then
TdS =d'Q,, and YdX =dW,

Hence in such a process,
du =d'0, —d'w,
and
; g dN; =d'Q,, ;N, de; = —d'W,. (11-30)

It is sometimes assumed that the sum ¥, ¢, dN, is always equal to the heat flow

d'Q into the system and sum 3, N, de, is always equal to the negative of the work
—d"W. We see that this is the case for a reversible process only, and only for such a
process can we identify the sums in Eq. (11-25) with the heat flow and the work.

11-9 THE BOSE-EINSTEIN DISTRIBUTION FUNCTION

If a system consists of only a relatively small number of particles, as in Fig. 11-4,
the average values of the occupation numbers of the energy levels can be calculated
without much difficulty, when the total number of particles and the total energy
are fixed. When the number is very large, as in the statistical model of a macro-
scopic system, direct calculations are impossible. We now show how to derive
a general expression for the average occupation numbers when the total number off
particles is very large. Such an expression is called a distribution function. The
procedure is first to derive a general relation for the relative values of In Q for
two systems having the same set of energy levels, but in the second system the
number of particles is less than that in the first by some small number n, where
n & N, and in which the energy is less than in the first by ne,, where ¢, is the energy
of some arbitrary level r. Thus if unprimed symbols refer to the first system and
primed symbols to the second system,

N=N—n U=U~-—ne. (11-31)

These conditions can always be met, since we can control independently the
number of particles in the system, and its energy. The difference in the values of
kp In Q is then equated to the entropy difference between the systems, using Eq.
(11-24).

The only way in which Egs. (11-31) can be satisfied is that in every macro-
state of the primed system the occupation numbers of all levels, with the exception
of level r, are the same in both systems, while the occupation number of level r
in the primed system is less than that in the unprimed system by the number n.
That is, to satisfy Eqs. (11-31) we must have in every macrostate k,

Nj=N,(jr), N =N —n (11-32)
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Fig. 11-9 (a) The possible macrostates of an assembly of 6 particles obeying
B-E statistics when U = 6e¢. (b) The possible macrostates when one particle
is removed from level 2 of the assembly of part (a). The thermodynamic
probability of each macrostate is given at the bottom and the average occupa-

tion number of each level is printed on the right of the diagram.

The result is equivalent to the removal of n particles from level r in the unprimed
system, withuut changing the occupation numbers of the otheflevels,

We consider first a system obeying the Bose-Einstein statistics, and illustrate
the relation between corresponding macrostates by taking as an example of the
unprimed system that of Fig. 11-4, shown again in part (a) of Fig. 11-9. The
number of particles is N = 6, the energy U = 6¢, and we let n have its smallest
possible value, n = 1. The number of particles in the primed system is N' =
N — 1 = §, and level 2 has been selected as the arbitrary level r so that the energy
of the primed system is U’ = U — 2e = 4e.
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The only possible macrostates of the primed system are shown in part (b) of
Fig. 11-9. There can evidently be no macrostates of the primed system corre-
sponding to a macrostate of the unprimed system in which level 2 is unoccupied.
Thus there are only five possible macrostates, and it will be seen that in each of
these the occupation number of level 2 is one less than in the corresponding
macrostate of the unprimed system, the occupation numbers of all other levels
being the same in both systems.

The thermodynamic probability %7, of macrostate k in the unprimed system is

(g + Ny — D!
. - =, 11-33
= D, (-3
In the primed system,
. (g; + Nji = I)!
¥op=T—"—"7""7"7. 11-34
rk ; (Sl — l)! N}&! i ( )

The double subscript rk means that #7, is the thermodynamic probability of
macrostate k in the primed system, and that level r has been selected as the arbitrary
level from which one particle has been removed. The double subscript jk means
that N, and Nj; are, respectively, the occupation numbers of level j in macrostate
k, in the unprimed and primed systems. )

The fact that there are no macrostates in the primed system corresponding to
states in the unprimed system in which level  is unoccupied is equivalent to stating
that for such macrostates the thermodynamic probability %7, is zero. But if
N, = 0, then N;; = 0 — | = —1, and the rth term in the product in Eq. (11-34)
becomes

(g, — 2)! 1
= .
(g, = D=1 (g = D(=D!
Hence in order that %7, shall be zero, and provided that g, > I, we must adopt

the convention that (=1)! = oo, For a more general discussion, see Appendix C.
The ratio of thermodynamic probabilities is

Woe _ 8+ Nip = DINg!

Wy (et Ny = DN
In all levels except level r, Nj; = N, so that all terms in the product above will
cancel between numerator and denominator, with the exception of level 7 in which
Njy = N, — |. Therefore, since

No! = NNy = D) = NNy

and
(8 + N = DU = (g, + Np)! = (8, + NuXg, + Ny = 1D,
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it fonomlthal.
y:'! = N rk
Wy &+ Ny
or

Ny = (g + N Wi
and summing over all macrostates,

g NyW'y = ng Yot .; Ny e

The term on the left, from Eq. (11-8), equals ¥,Q. On the right, the term
& 3% Wi equals g,02; and the last term equals N;Q;. Therefore

NQ = (g + N,
and
R _o
=, 11-35,
&+8 Q =
In a macroscopic system in which the occupation numbers are very large, the
removal of one particle from a level will make only a relatively small change in the
average occupation number of the level, and to a good approximation we can set
N; = N,sothat -
Nr m

g + Nr N Er Qe

Taking the natural logarithms of both sides, we have
R, (44

= [n—.
g + N, Q

ln%' ilnQ, —In Q;

In
But

and since by Eq. (11-24), S = kgIn Q,
N = §&—-8§8 AS

= o—
&+ K, kn kg

From the principles of thermodynamics, the entropy difference AS between
two states of a nonisolated open system in which the volume (or the appropriate
extensive variable) is constant is related to the energy difference AU, the difference
AN in the number of particles, and the temperature T, by Eq. (8-11):

TAS = AU — uAN,

(11-37)
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where u is now the chemical potential per particle. For the two states we are con-
sidering,
AU = —¢,, AN= -1,
and hence
AS =B "%
T
Then from Eq. (11-37), since level r was arbitrarily chosen and could be any
level j, -
A e,

In
g+ N, kgT
and
s+ N g &§— U
— == 41 =ex 5
. N, "W, P T
which can be written as
N 1
d— (11-38)

85 G—H ’
exp (—-—-——) -1
kgT
[

This equation is the Bose-Einstein distribution function. It expresses the average
occupation number per state in any level j, N/g,, in terms of the energy e, of the
state, the chemical potential g, the universal constant kg, and the temperature
T. Of course, to apply the equation to a particular system we must know the ex-
pression for the energies ¢; of the permitted energy levels, and for the chemical
potential x. Another derivation of Eq. (11-38) is found in Appendix D.

11-10 THE FERMI-DIRAC DISTRIBUTION FUNCTION

To derive the distribution function in the F-D statistics, we again consider two
assemblies in which the numbers of particles are respectively Nand N' = N — 1.
In any pair of corresponding macrostates, N, = Ny, in all levels except an arbitrary
level r; and in level r, Ny = N, — 1. The corresponding energies are U and
U'=U-~=—g¢,. s

Part (a) of Fig. 11-10 is the same as Fig. 11-6 and shows the possible macro-
states of an assembly of ¥ = 6 particles and U = 6e, for an assembly obeying
the F-D statistics and in which the energy levels are equally spaced and g, = 3
in each level. Part (b) is the corresponding diagram for an assembly of N' = 5§
particles and one in which level 2 has been chosen as the arbitrary level r so that
U’ = U — 2¢ = 4e. Again it will be seen that in every pair of corresponding
macrostates the occupation numbers are the same in all levels except level 2, and
that in this level N3 = No — 1.
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Fig. 11-10 (a) The possible macrostates of an assembly of 6 particles obeyi 5
statistics when U = 6e. (b) The possible macrostates when one particle is removed from
level 2 of the assembly of part (a). The thermodynamic probability of each macrostate is
given at the bottom and the average occupation number of each level is printed on the

right of the diagram.

The thermodynamic probabilities of corresponding macrostates in the un-
primed and primed assemblies are

8!
W= —2—,
¥ I:[(s,—N,.)!N,.!

’ g!

Vo= L N
Then
'#";} ]-1- = Nn)' Nﬁ
Vr& i (81 - Nu)'Nn
which nftcf cancellation reduces to
Fo_ _Na
i g — N,

or
NpW'y = (8, — Np)W .

Summing over all values of k, we have
g NpW', = 89? Wi~ z: N o

and

, Q
-y (11-39)
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Here we can let N} = N, since if the states are degenerate enough, N, and N, can
be much larger than one. By the same reasoning as in the B-E statistics

L 1 ; (11-40)
& exp (f; = ﬂ) +1
ksT

which is the Fermi-Dirac distribution function. It differs from the B-E distribution
in that we have + 1 in the denominator instead of —1.

11-11 THE CLASSICAL DISTRIBUTION FUNCTION

In many systems of indistinguishable particles, the average number of particles
N, in a level is very much less than the number of states g; in the level, so that the
average number of particles per state, Nfg,, is very small. The denominator in
Egs. (11-38) and (11-40) must then be very large; we can neglect the 1; and both
the B-E and F-D distribution functions reduce to

7 -
el (11-41)
£} kyT

which is the classical distribution function.

11-12 COMPARISON OF DISTRIBUTION FUNCTIONS FOR
INDISTINGUISHABLE PARTICLES

The distribution functions for indistinguishable particles can all be represented by
the single equation,

A 1
—= 5 (11-42)
 T— (f; = #) i a
kyT
where @ = —1 in the B-E statistics, a = +1 in the F-D statistics, and @ = 0 in

the classical statistics.

The curves in Fig. 11-11 are graphs of the average number of particles per state,
N,/g,, at a given temperature, for the B-E and F-D statistics, plotted as functions
of the dimensionless quantity (e; — u)/kyT. (The energy therefore increases toward
the right.) The ordinates of the curves have a meaning, of course, only at those
abscissas at which the energy €, has some one of its permitted values. When
N,Jg, is very small, the B-E and F-D distributions very nearly coincide, and both
reduce to the classical distribution.

Note that when ¢; = p, the value of N,/g, in the B-E statistics becomes in-
finite, and for levels in which ¢, is less than u, it is negative and hence meaningless.
That is, in this statistics, the chemical potential must be less than the energy of
the lowest permitted energy level. The particles like to concentrate in levels for
which ¢, is only slightly greater than .
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Fig. 11-11 Graphs of the Bose-Einstein, Fermi-
Dirac, and classical distribution functions,

In the F-D statistics, on the other hand, all levels are populated down to the
lowest and as ¢, decreases, N,/g, approaches 1. That is, the low-energy levels are
very nearly uniformly populated with one particle per state.

The curve for classical statistics has no meaning except when (e, — p)/kT" is
large. It is drawn on Fig. 1111 for comparison only. If the ordinate of Fig. 11-11
is taken as W,[Ng, instead of N,/g,, this curve is the distribution function for
M-B statistics which is developed in the next section.

11-13 THE MAXWELL-BOLTZMANN DISTRIBUTION FUNCTION

The distribution function in the M-B statistics is derived in the same way as in the
B-E and F-D statistics. Part (a) of Fig. 11-12 is the same as Fig. 11-8, in which
the dots represent the occupation numbers of an assembly of N = 6 particles and
of energy U = 6e. Part (b) shows the possible macrostates of an assembly of
N'= N — | =5 particles, and in this assembly level 2 has been chosen for the
arbitrary level r so that U’ = U — 2e = 4e. . The only possible macrostates of
the primed assembly are those in which level 2 is occupied in the unprimed
assembly. In any pair of corresponding macrostates, the occupation numbers are
the same in all levels except level 2; and in level 2, Nz = Ny — 1.

The thermodynamic probabilities of corresponding macrostates in the un-
primed and primed assemblies are

gl
#, =N T,
’ l:IN,!

o N,,Hgi";
U N
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Fig. 11-12 (a) The possible macrostates of an assembly of 6 particles obeying M-B
statistics when U = 6e. (b) The possible macrostates when one particle is removed
from level 2 of the assembly of part (a). The thermodynamic probability of each
macrostate is given at the bottom and the average occupation number of each level
is printed on the right of the diagram,

Then
N Tt
which simplifies to B ML
Vi _Na
Y% Ng,
or
NyWy = Ng, W}y
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Summing over all macrostates, we have

F_9
—_— = 11-43
e ( )
and by the same procedure as before,
M - “p’i_:.'.{‘ (11-44)
2 knT

which is the Maxwell-Boltzmann distribution function. 1t differs from the classical
distribution function, which is sometimes referred to as the “corrected™ Boltzmann
function, in that the numerator on the left is the average fractional number of
particles in level f, N,/N, so that the left side is the fractional number of particles

per state in any level.

11-14 THE PARTITION FUNCTION
The distribution function in the Maxwell-Boltzmann statistics can be written
—¢,
N = N( -f-) exp—=.
] exp kT & pk,,'l‘
Since 3; N; = N, and the chemical potential x4 does not depend on j, it follows
that

=2

| ; = N=N expk"T ;g,cxpk"T

The sum in the last term is called the partition function or sum ever states and
will be represented by Z. (German Zustandssumme) Other letters are often used.
-«
Z=3gexp—2=, 11-45
Z gexp T (11-45)
The partition function depends only on the temperature T and on the param-
eters that determine the energy levels. It follows from the two preceding equations

that in the M-B statistics, 4
"
eCxXp—r =, 11-46
Pl ~ Z V)
and hence the M-B distribution function can be written
N, N -,
— =—exp——. (11-47)
g Z knT

Thus in a given system, the average number of particles per state in any level
decreases exponentially with the energy ¢, of the level: and the lower the tem-
perature T, the more rapid is the rate of decrease.
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The classical distribution function can be written
—e,
R, = (exp = T)z: P
and summing over all values of j, we have
Ny=N= (ex —)
Z = P 2 g ex k T

Then if the partition function Z is defined in the same way as in the M-B

statistics, we have
I N
exXp —— = — (11-48)
keT 2°
and the classical distribution function can be written
N, N -
2 —ap—t, (11-49)
g Z kyT’

which has the same form as the M-B distribution,

Because of the form of the B-E and F-D distribution functions, these cannot
be expressed in terms of a single-particle partition function, and we shall discuss
them later.

11-15 THERMODYNAMIC PROPERTIES OF A -SYSTEM

THe importance of the partition function Z is that in Maxwell-Boltzmann and
classical statistics, all the thermodynamic properties of a system can be expressed
in terms of InZ and its partial derivatives. Thus the first step in applying the
methods of statistics to such a system is to evaluate the partition function of the
system.

Tt will be recalled that all thermodynamic properties of a system are also com-
pletely determined by its characteristic equation; that is, the Helmholtz function
expressed in terms of X and T or the Gibbs function expressed in terms of ¥ and
7. Here X and Y stand for some related pair of variables such as the volume V'

and the pressure P.
Thus we begin by deriving expressions for the Helmholtz and Gibbs functions
in terms of InZ. As shown in Section 8-1, these functions are related to the

chemical potential u by the equation

9 EF)
=[|— = — ) 1-5
¥ (aN (34 (BN T.X A%

For a system obeying M-B statistics, the chemical potential of the system is related
to the partition function by Eq. (11-46):

#=—=kyTInZ. (11-51)
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In classical statistics, the chemical potential is given by Eq. (11-48):

u=—=kyT(InZ = In N). (11-52)
The partition function, Z = Zg, exp (—¢,/kyT), is a function of the temperature
of the system and of the parameters that determine the energy levels of the system
(such as the volume ¥ or the magnetic intensity 2#°). Thus Egs. (11-51) and (11-52)
express u in terms of X or Y.

Consider first a system of indistinguishable particles obeying the classical
statistics and one in which the energy levels are functions of an extensive parameter
X. Then the partition function is a function of X and T, and as these are the
“natural” variables of the Helmholtz function F, we have from Egs. (11-50) and
(11-52),

aF
('aﬁ)r.x'—' —kyT(In Z — In N). (11-53)

The right side of this equation is constant when X and T are constant. Integrating
at constant X and T yields

F = —=NkpT(InZ —InN + 1), (11-54)

since [NInNdN = Nin N — N. Equation (11-53) would be satisfied if any
function (T, X) were added to the right side of Eq. (11-54), but since F must be
zero when N = 0, it follows that f(T, X) = 0. Equation (11-54) is an expression
for Fin terms of N, T, and X, therefore all the thermodynamic properties of the
system can be determined by the methods of Section 7-2.

The entropy S is given by § = —(2F/dT)yx, x so that

s= Nk,,T(alnz) + Nky(InZ — In N + 1). (11-55)
T /x
Since U = F + T, the internal energy is
dInZ
U=NkT'(-—-). 11-56
¢ oT /x i
The expression for the entropy can now be rewritten as
S=¥+Nku(EnZ—InN 4+ 1) (11-57)

The intensive variable ¥ associated with the extensive variable X is given by
Y = —(8F/aX)y,r, so that
Y= Nkur(a In Z)
ax
which is the equation of state of the system, expressing Y as a function of N, T,
and X. Thus all thermodynamic properties of this system can be determined if Z
is known as a function of X and T

(11-58)
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For a one-component system, the Gibbs function G = uN, so that from Eq.

(11-52)
G = —NkyT(InZ — In N). (11-59)

But in general for the variables X and Y,
G=U~-TS-YX=F+ YX,
and
. G- F=1YX
From Egs. (11-54) and (11-59),
G — F = Nk,T,

so that for any system obeying the classical statistics and in which the energy levels
are functions of a single extensive parameter X,

YX = NkpT. (11-60)

In the special case in which the parameter X is the volume ¥ and Y is the

pressure P,
PV = NkpT.

This is the equation of state of an ideal gas as derived from kinetic theory, pro-
vided that the universal constant ky, which was introduced earlier only as the
proportionality constant in the equation § = ky Jn (2, is equal to the Boltzmann
constant k = R/N,. Since ky, is a universal constant, which in this special case is
equal to R/N,, it must equal R[N, regardless of the nature of an assembly. In
the future we shall, for simplicity, drop the subscript Band writesimply S = & In Q.

It is at first surprising that we obtain only the ideal gas equation of state.
However, the partition function can only be given by the sum over single particle
states when the particles do not interact. This is the same condition needed to
derive the ideal gas law from kinetic theory.

In terms of this notation, the expressions for the thermodynamic properties
of a system obeying classical statistics and a system in which the energy levels are
determined by the extensive parameter X are given by |

F= —NkT(InZ —InN + 1), (11-61)
dinZ

U= NkT’(-—-—-) , 11-62

oT /x E )

s=¥+~k(lnz—lnfv+ n, (11-63)

and

Y= NkT'(aalez)T. (11-64)
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It is left as an exercise (Problem 11-30) to show that for a system of dis-
tinguishable particles obeying M-B statistics and in which the energy levels are
determined by an extensive parameter X, the expressions for U and Y are un-
changed, but the expressions for F and S are

F=—NkTInZ (11-65)
and

S=¥+Nkln2. (11-66)

These expressions differ from those for indistinguishable particles by a term pro-
portional to Nln N — N, (See Problem 11-31).

As a second example, consider a system of distinguishable particles obeying
the M-B statistics and for which the energy levels are functions of an intensive
parameter Y. Then Z is a function of ¥ and 7 and since these are the “natural™
variables of the Gibbs function, we have, from Eqs. (11-50) and (11-51),

36)
= = —kTInZ. 11-67
(BN T.¥ ! GL-oh

The right side of this equation is constant when T and Y are constant. Integrating
at constant T and Y yields

G = —NkTIn Z. (11-68)
The arbitrary function g(7, ¥) which should be added to the right side of Eq.
(11-68) is again zero since G = 0 when N = 0. This equation appears at first to
contradict Eq. (11-65) since F 3 G. However, Eq. (11-65) is derived for a system
in which the energy levels are functions of an extensive parameter X, whereas

Eq. (11-68) applies to a system in which the energy levels depend upon an intensive
parameter Y,

The entropy is now given by § = —(8G/8T)y,y, and hence

dln Z)
§ = NkT|—— Nkln Z.

( ar y+ n ;11—69)

The enthalpy H equals G + T, so

éinZ
n = nir(2F) | 3
ar Iy (11-70)
and Eq. (11-69) can be writter

§S= % + Nkln 2, (11-71)

The equation of state is given by

X= ('aa'g)m" -m:r("—;l'y—z)r. (11-72)
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If the parameter ¥ is the intensity of a conservative field of force, the only
energy of the particle is its potential energy (gravitational, magnetic, or electric).
The internal energy of the system is then zero, and its total energy E is its potential
energy E, only. If X represents the extensive variable associated with the intensive
variable Y, the potential energy E,, = YX. Then since the enthalpy H is defined
as H = U+ YX, and U = 0, it follows that

E=E,=H,

and Egs. (11-70) and (11-71) can be written

dln Z'
F=mr(3nF) 1173
aT Jy ( )
and
E

S = ] + Nkin Z. (11-74)

It has been assumed thus far in this section that the energy levels were functions
either of a single extensive variable X or a single intensive variable ¥. We now
consider the more general case of a multivariable system in which the energy levels
are functions of more than one independent variable. We restrict the discussion to
systems whose energy levels are functions of rwo variables only, one of which is
an extensive variable X while the other is an intensive variable Y,, which we

ider to be the i ity of a conservative field of force.

If the system is described by either the Maxwell-Boltzmann or classical
statistics, we can still define the partition function as

-—
Z= —’)
S (32

The only difference is that the €,'s are now functions of both X, and Y;, and the
partition function is a function of T, X,, and Y,. Since the system has both an
internal energy U and a potential energy E, = Y,X,, its total energy E is

E=U+Ey=U + 1X,,
and we therefore make use of the generalized Helmholtz function F*, defined by
Eq. (7-34) as

FPP=E—TS=U~—TS + Y.X,

The chemical potential is now

we(Z
aN Jr.x.vs

If the system obeys the classical statistics,
p=—kT(InZ — In N),
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and, integrating at constant T, X, Y,,
F* = —NkT(InZ —InN + 1), (11-75)

setting the arbitrary function of X;, Y, and T equal to zero as before.
The variables ¥, and X, associated with the variables X, and Y,, are given by

BF') (Bln Z)
hi=—=— = NkT W 11-76
: (BX, NT.¥, 0X, /r.y, ( )

aF‘) (Bln Z)
Xeg=|— = —NkT|—— 5 11-77
: (BY, NILX, oY, /r.x, ( )

The system thus has vo equations of state, expressing Y, and X, in terms of ¥,
T, X, and Y,.
The entropy S is

oF* dInZ
S= —(—-) = NkT(—) Nk(InZ —InN +1). (11-78
aT /y.x,¥, T x,.r,+ i ShE )
The total energy E equals F* + TS, so
E= NkT’(M) ; (11-79)
oT /x,v,
and hence E
S=Z+NinZ—InN +1). (11-80)
If the system obeys the Maxwell-Boltzmann statistics,
i p=—=kTInZ;
and by similar reasoning,
F*= —NkTIn Z (11-81)
The variables ¥, and X, are again given by Eqs. (11-75) and (11-76). The entropy
is
§= NRT(BELZ) + Nkln Z, (11-82)
aT" Jx,
The total energy is S
E= NkT’(L) ; 11-83
oT /x,¥ ( )
50 one can also write E
§= T + Nkln Z, (11-84)

In either statistics, the potential energy E,, = Y,X; and the internal energy U is
U=E—E,=E— YX,. (11-85)

Specific examples of the general relations derived in this section will be dis-
cussed in the next two chapters.
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PROBLEMS

11-1 Using quantum mechanics, show that the energy levels of a one-dimensional
infinite square well of width L are also given by Eq. (11-3).

11-2 (a) Tabulate the values of the quantum numbers n,, n,, n, for the twelve lowest
energy levels of a free particle in a container of volume V. (b) What is the degeneracy g
of each level? (c) Find the energy of each level in units of #*[8m V23, (d) Are the energy
levels equally spaced?

11-3 Calculate the value of ny in which an oxygen atom confined to a cubical box I cm
on a side will have the same energy as the lowest energy available to a helium atom con-
fined to a cubical box 2 x 107m on a side.

114 Five indistinguishable particles are to be distributed among the four equally spaced
energy levels shown in Fig. 11-2 with no restriction on the number of particles in each
energy state. I the total energy is to be 12¢,, (a) specury the occupation number of each
level for each macrostate, and (b) find the b for each X
given the energy states represented in Fig. 11-2.

11-5 (a) Find the number of macrostates for an assembly of four particles distributed
among two energy levels one of which is two-fold degenerate. (b) Find the thermody-
namic probability of each macrostate if there is no restriction on the number of particles
in each energy state and the particles are indistinguishable, (c) distinguishable. (d) Cal-
culate the thermodynamic probability of the assembly for parts (b) and (c).

11-6 In the poker game seven-card stud, seven cards are dealt to each player. He makes
the best hand out of five of those cards. The cards are well shuffled between each deal,
(a) How many different seven-card hands can be made in a deck of 52 cards? (b) If there
are four players, how many different ways can the cards be dealt if the players are dis-
tinguishable? (c) How many different five-card hands can be mude from a seven-card
hand?

11-7 For the example illustrated in Fig. 11-4, find (a) the thermodynamic probability
#'y of each macrostate, (b) the total number of microstates of the assembly Q, (c) the
average occupation number of each level, and (d) the sum of the average occupation
numbers,

11-8 Do Problem 11-7 for a system of seven indistinguishable particles obeying B-E
statistics and having a total energy U = 6e.

11-9 (a) Construct & diagram similar to Fig. 11-6, but having eight energy levels. Show
the possible macrostates of the system if the energy U = 7e for six indistinguishable
particles, oheymg B-E statistics. (b) Calculate the thermodynamic probability of each
macrostate, and (c) show that the total ber of possibly Q is 2340. (d)
Find the ion ber of each level.

11-10 (a) Suppose that in the F-D statistics, level j includes three states (1), (2).‘(3). and
two particles @ and b. 1If the particular sequence of numbers (1), (2), and (3), is selected,
write down the possible different sequences of letters and numbers, and show that this
agrees with Eq. (11-15). (b) How many different sequences of numbers are possible?
(c) What is the total number of different possible sequences of letters and numbers?
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11-11 Show that in the Fermi-Dirac statistics, if level j is fully occupied with one particle
per state, ", = | and there is only one way of distributing the particles among the energy
states of that level,

11-12 Do Problem 11-9 for six indistinguishable particles obeying F-D statistics. In
this case = 162,

11-13 Do Problem 11-9 for six distinguishable particles obeying M-B statistics. In
this case Q = 5.77 x 10"

11-14 There are 30 distinguishable particles distributed among three nondegenerate
energy levels labeled 1, 2, 3, such that N; = N, = Ny = 10. The energies of the levels
are ¢, = 2¢eV, € = 4eV, ¢, = 6eV. (a) If the change in the occupation number of
level 2, ANy = =2, find 4N, and 4N, such that 0E = 0. (b) Find the thermodynamic
probability of the macrostate before and after the change.

11-15 Six distinguishable particles are distributed over three nondegenerate energy
levels. Level 1 is at zero energy; level 2 has an energy ; and level 3 has an energy 2e.
(a) Calculate the total number of microstates for the system. (b) Calculate the number of
microstates such that there are three particles in level 1, two in level 2, and one in level 3.
(c) Find the energy of the distribution for which ¥y is largest. (d) Calculate the total
number of microstates if the total energy of the six particles is Se.

11-16 Five particles are distributed among the states of the four equally spaced energy
Jevels shown on Fig, 11-2 such that the total energy is 12¢;. Calculate the thermodynamic
probability of each macrostate and the average occupation number of each level if the
particles obey (a) B-E, (b} F-D, (c) M-B statistics.

11-17 Calculate the change in the entropy of each of the systems illustrated in Figs.
11-4, 11-6, and 11-8 when an additional energy level is available to the particles and the
total energy is increased to 7e. [See Problems [1-9, 11-12, and 11-13.]

11-18 The internal energy of the six indistinguishable particles of Fig. 11-4 is increased
reversibly from 6e to 7e without work being done, but only the levels up through level 6
can be occupied. (a) Show explicitly that d'Q, = ¥, ¢, dN; and (b) find the increase in
the entropy of the system.

11-19 (a) Construct a diagram similar to part (b) of Fig. 11-9, but in which level 3 is
selected as the arbitrary level r so that U’ = 6¢ — 3¢ = 3Je. Note that every possible
macrostate of the primed system corresponds to a macrostate of the unprimed system
and that with the exception of level 3 the occupation numbers of all levels are the same
in each pair of corresponding macrostates. (b) How many possible macrostates are there
for the primed system? (c) How many microstates? (d) Calculate the average occupation
number of the levels of the primed system. (e) Use Eq. (11-35) to calculate the average
occupation number of level 3 of the primed system. (f) Calculate the change in the
entropy of the unprimed system upon removing one particle from level 3.

11-20 Fill in the steps of the derivation of (a) Eq. (11-39) and (b) Eq. (11-40).

11-21 (a) Construct a diagram similar to part (b) of Fig. 11-10 but in which level 3 is
selected as the arbitrary level r so that U’ = 3e. (b) Calculate the number of microstates
available to the primed system. (c) Calculate the average occupation number of the levels
of the primed system. (d) Use Eq. (11-39) to calculate the average occupation number of
level 3 of the primed system. (e) Calculate the change in the entropy of the unprimed
system upon removing one particle from level 3.




PROBLEMS 345

11-22 Show that Eq. (11-13) for ¥}, . and Eq. (11-17) for # |, both reduce to
¥,
¥, - 1'[%5-; (11-86)
El i

in the limit that g, » N,. This is the thermodynamic probability of a system obeying
classical statistics.
11-23 By a method similar to that in Section 11-9, show that Eq. (11-86) of the pre-
vious problem leads to the distribution function of Eq. (11-41).
1124 Show that Eq. (11-13) for 7.5, Eq. (11-17) for #",.,, and Eq. (11-86) (Problem
11-22) for classical statistics can all be represented by

v = HFJ‘E/ =gy = 2a): 2 [g; =~ (N; = l)ﬂ].

i Nyt

where a has the values given in Section 11-12.
11-25 Fill in the steps of the derivation of the Maxwell-Boltzmann distribution function
done in Section 11-13,
11-26 Derive the Maxwell-Boltzmann distribution function by the method of Section
11-13 but assume that # particles are removed from the level r of the unprimed system,
where n € M.
11-27 (a) Construct a diagram similar to part (b) of Fig. 11-12 but one in which level 3
is selected as the arbitrary level r so that U’ = 3e. (b) Calculate the number of micro-
slates available to the primed system. (c) Calculate the average occupation number of the
levels of the primed system, (d) Calculate the change in the entropy of the unprimed
system upon removing one particle rom level 3.
11-28 Substitute the Maxwell-Boltzmann distribution function into Eq. (11-29), the
expression for the entropy change of a system in a reversible process, to obtain

N;
S=—k¥N,In—.
; “nSﬁ

11-29 Seven distinguishable particles are distributed over two energy levels. The upper
level is nondegenerate and has an energy 10~ eV higher than the lower level which is
two-fold degenerate. (a) Calculate the internal energy and entropy of the system if it is
prepared to have two particles in the upper level. (b} If there is no change in the system
when it is brought into contact with a reservoir at a temperature T, calculate the tem-
perature of the reservoir. (c) Write the partition function for this system. (d) Repeat
parts (a), (b), and (c) for the case that the degenerate level has an energy 10~2 eV higher
than the nondegenerate level,

11-30 (a) Derive Eqs. (11-65) and (11-66) for a system obeying M-B statistics and in
which the energy levels are determined by an extensive parameler X. (b) Show that the
expressions for the internal energy U and the intensive parameter Y for this system are
still given by Eqs. (11-62) and (11-64).

11-31 (a) Using Egs. (11-21) and (11-86) (Problem 11-22) for the thermodynamic
probability of a macrostate of a system of N particles obeying M-B and classical stalistics
respectively, show that ., = N!{). (b) Use the result of part (a) to show that the
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entropies of the two systems are related by Sy.p = S, + Nkp(In N — 1) and that the
Helmholtz functions are related by Fy..p = F, + NkyT(In N = 1).

11-32 Show that for a system of N particles obeying M-B or classical statistics the average
number of particles in the level f is given by

_ ?InZ
N, = =Nkg ( a:’ l_ , (11-87)

11-33 (a) Derive an expression for the enthalpy of a system if the partition function
depends on X and T. (b) Derive an expression for the internal energy of a system if the
partition function depends on ¥ and T.

11-34 Consider a system of N distinguishable particles distributed in two nondegenerate
levels separated by an energy € and in equilibrium with a reservoir at a temperature T.
Calculate (a) the partition function, (b) the fraction Ny/N and N[N of particles in each
state, (c) the internal energy U of the system, (d) the entropy S of the system, (¢) the
specific heat capacity ¢, of the system. (f) Make sketches of Ny/N, N,/N, U, S, and ¢, as
a function of T.

11-35 Consider a system of N distinguishable particles each having a magnetic moment
#, distributed over two nondegenerate levels having energies ua#,/2 and —p#y[2, when
the magnetic intensity is o#,. The particles in the upper level have their magnetic moments
antiparallel to the field and those in the lower level are aligned parallel to the field. The
system is prepared to have one-third of all the particles in the upper level and is isolated.
(a) Find the energy and the net magnetic moment of the system. (b) Calculate the change
of the energy and the change ol' the net mugneuc moment of the isolated system when
the mag| bly reduced 1o 2#,/2. .(c) Calculate the change in the net
magnetic moment of 1h= system when the magnetic intensity is reversibly reduced to
#,/2 but the energy of the system remains constant.

11-36 The system of the previous problem is in thermal equilibrium with a reservoir ata
temperature T. (a) Show that the partition function is given by
uAy

-Zcosh——-
HT

(b) Derive expressions for U, E, S, F*, and M for this system and sketch curves of these
Pproperties as a function of T for a fixed value of . (c) Use Eq. (11-87) (Problem 11-32)
to find how the number of particles in each level varies with s and T,

11-37 The M-B statistics and the F-D statistics can be developed by calculating collision
probabilities for elastic collisions between two particies. If two particles-obeying M-B
statistics initially have energics €, and ¢, and after the collision €, and ¢, then

6+ e =(¢ =0 + (e + 0.

The number of collisions per unit time F is proportional to the probability f(e,) that each
initial state is occupied:
Fia = of () ().

Similarly, Fyjq = ¢f(&)f(e,). In equilibrium, Fy 3 = Fy,. (a) Show that f{e,) = e~*/*T
solves this eiuation. (b) Use similar reasoning to derive the F-D statistics. Here, how-
ever, the initial states must be filled and the final states must be empty. Therefore the



PROBLEMS

number of collisions per unit time is
Fis = ¢fle)f(ell = fle]l — flep).
Show that the equation Fy , = Fy 4 can be solved by

1 =fl6) _ _apr .

Sled
which yields an equation of the form of Eq. (11-40).

347

11-38 Another way to derive the distribution functions is to define a grand partition

Sfunction ¥

H n(p — €)
b -ﬂg":xp [ kT ]'
and calculate values of A:

1.8 nlp — €)
A= @ngll" exp kT

(a) Show that
d

— |
d(s — "
kT

.

(b) Show that H = 1 gives the Fermi-Dirac distribution function. (c) Show that H = co

gives the Bose-Einstein distribution function.
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12-1 THE MONATOMIC IDEAL GAS

We next apply the general relations derived in the preceding chapter to the special
case of a monatomic ideal gas consisting of N identical molecules each of mass m.
The molecules are indistinguishable, and as we shall show later, the average number
of molecules in each of the possible energy states, except at extremely low tem-
peratures where all real gases have liquefied, is extremely small. The proper
statistics is therefore the classical statistics (Section 11-11).

The first step is to calculate the partition function,

Z= 23; exp — kT
This requires a knowledge of the energy ¢, and the degeneracy g, of each level.
We assume that the molecules do not interact except at the instant of a collision,
so that each is essentially an independent particle and has the same set of energy
levels as does a single particle in a box. It was shown earlier that the principles of
quantum mechanics lead to the result that the energy levels of such a particle are

given by Eq. (11-4).
nhPy-oe

8m
where n} = n} + n} + n}, and n,, n,, n, are integers each of which can equal
122, 3, 000, 680,

The degeneracy g, of a level, or the number of energy states in the level, can
readily be calculated when the quantum numbers are small, as in the example in
Section 11-2. In many instances, however, the energy levels of an assembly are
very closely spaced relative to the value of the energy itself. We can then subdivide
the energy levels into groups of width Ae,, including those levels with energies
between ¢; and ¢, + A¢,. We refer to each of these groups as a macrolevel. Let
&, represent the total number of possible states in all energy levels up to and
including the energy ¢;, The number of possible states A, wirhin the macrolevel
is equal to the number of states in all levels included in the macrolevel. That is,
A, is the degeneracy of the macrolevel, but it arises in part from the grouping
together of a large number of levels, while the numbers g, are fixed by the nature
of the assembly.

Imagine that the quantum numbers n,, n,, n, are marked off on three mutually
perpendicular axes, as suggested in the two-dimensional diagram of Fig. 12-1.
Every triad of integral values of n,, n,, n, determines a point in what can be called
“‘n-space,” and each such point corresponds to a possible state, provided the
quantum numbers are positive. We can think of each point as located at the center
of a cubical cell, each of whose sides is of unit length and whose volume is there-
fore unity.

The quantum number J corrcsponds to a vector in n-space from the origin
to any point, since nj = n; + n} + ;. In a system of given volume, the energy

- (12-1)
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Fig. 12-1 Quantum states in n-space.

depends only on ny, so that all states of equal energy lie on a spherical surface
of radius n; with center at the origin. Since n_, n,, and n, are all positive, and
since there is one point per unit volume of r-space, the total number ¥, of
possible states, in all levels up to and including the energy «,, is equal to the volume
of one octant of a sphere of radius n;, That is,
1_4 -
g‘ = -s- x iﬂﬂ: = g ll:. (12-2)

The spherical surface will of course cut through some of the unit cells and it is
not certain whether a point representing an energy state lies inside or outside the
surface. However, when n, is a large number, as is the case for the vast majority
of molecules of a gas at ordinary temperatures, the uncertainty becomes negligibly
small.

The number of states in the macrolevel between ¢; and ¢, + Ae;, or the
degeneracy A%, of the macrolevel, is

A%, = g X 3ntAn, = ZL.;A",. (12-3)

Geometrically, this corresponds to the number of points in a thin spherical shell
of radius n, and thickness An;. The degeneracy therefore increases with the square
of the quantum number ny, for equal values of An,.

The partition function Z for this system is written

—r
Z=3A%,ep 7,
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and on ilrsening the expressions for A%, and ¢;, we have

hly—ﬂ!
Z=§§n§up(-m—n;)m,. (12-4)

This sum can be interpreted graphically as follows. Let the values of n; be marked
off on a horizontal axis, and for brevity represent the coefficient of An, in Eq. (12-4)
by f(n,). Ateach value of n,, we construct a vertical line of length f(n,), as in Fig.
12-2. Each product f(n,) An, then corresponds to the area of a rectangle such as
that shown shaded in Fig. 12-2, and the value of Z corresponds to the sum of all
such areas over values of n, from j = 1 to j = oo, since there is no upper limit to
the permissible values of n,. To a sufficiently good approximation, this sum is
equal to the area under a continuous curve through the tops of the vertical lines,
between the limits of 0 and 0, so

=% ny-2s
Z= EJ; n}exp (-— g u}) dn,, (12-5)
The value of the definite integral can be found from Table 12-1, and finally,
2amk T\
z= v(ﬂh_) : (12-6)

The partition function therefore depends both on the temperature T and the
volume ¥, which corresponds to the general extensive variable X in Section 11-15.
The Helmholtz function F is given by Eq. (11-63) as

F=—=NkT(InZ —InN + 1),

Sim) fln)

B My /

Fig. 12-2 The partition function Z is
equal to the total area under the step

function, and is very nearly equal to the
area under the continuous curve.
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w
Table 12-1 f(n) =f x"ee= dx.
0

n S(n) n [
1 [=» 1
0 i\/.,: O
1 [= 1
e zﬁ T
3 [= 1
4 5\/; 1l @
15 [= k]
Slya | 7| &
+@
If n is even, f xne~o%* dx = 2f(n).
-0

+o
If n is odd, J‘ xe' dy = 0.
-

and the pressure P, which corresponds to the intensive variable Y, is

2ln Z)
P = NkT|——} . 12-7
( ov It (12-7)
Since by Eq. (12-6),
InZ=InV+ gln (3’1':_:‘1') (12-8)
it follows that
dln Z) 1
8 =, 12-9
( ov iz V ( )
Consequently
P NKT _ ART (12-10)
|4 |4

which is just the equation of state of an ideal gas as derived from kinetic theory.
The internal energy U is
dInZ 3 3
U= NkT’(—) = = NkT = =nRT, 12-11
aT /i 2 2 ( )
which also agrees with the results of kinetic theory for a monatomic gas having
three degrees of freedom.
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The heat capacity at constant volume is

vy _3 3
Cy = |=) ==Nk =ZnR, 12-12
3 (aT)v 2 2" (212
and the molal specific heat capacity is
i S 2 (12-13)
n 2

The entropy is
s-%-r- Nk(InZ —Ia N + 1,

and after inserting the expressions for In Z and U, we have
3/
S= NkE +1n &’ﬁtll-'] (12-14)

The principles of thermodynamics define only differences in entropy;
the expression for the entropy itself contains an undetermined constant. There
are no undetermined constants in Eq. (12-14) and the methods of statistics there-
fore lead to an expression for the entropy itself.

Using Eq. (12-13), the molal specific entropy can be written

kP §
(2mm ’)"' - _].

Nk 2
This agrees with the thermodynamic expression for s in its dependence on ¥ and

T, and contains no undetermined constants. Equation (12-15) is known as the
Sackur*-Tetrodet equation for the absolute entropy of a monatomic ideal gas.

s=¢InT + R!nV+R[ln (12-15)

12-2 THE DISTRIBUTION OF MOLECULAR VELOCITIES

In the chapters describing the kinetic theory of gases, a number of results were
obtained wtich involved the average or root-mean-square speed of the molecules,
but at that time we could say nothing as to how the molecular speeds were distri-
buted around these average values. (We use the term “speed” to mean the mag-
nitude of the velocity.) The methods of statistics, however, lead directly to the
expression for the occupation numbers of the energy levels and hence to the speed
distribution. An expression for the distribution was first worked out by Maxwell,
before the development of statistical methods, and later by Boltzmann and is
referred to as the Maxwell-Boltzmann distribution.

As in the previous section, we express the distribution in terms of the average
occupation number of a macrolevel, including an energy interval between ¢, and

* Otto Sackur, German chemist (1880-1914).
t Hugo M. Tetrode, Duich physicist (1895-1931),
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€ + A¢,. Let A" represent the total number of molecules with energies up to and
including the energy ;. The average number of molecules included in the macro-
level, or the average occupation number of the macrolevel, is then AA4";. The
quantities A4", and A%, then correspond to the occupation number &, and de-
generacy g, of a single energy level and both the M-B and classical distribution

functions can be written
N —e
=Nrg _’) A
N y=3 ,exp(kr (12-16)
Because we are interested in the distribution in speed rather than in energy,

we express the degeneracy A%, in terms of the speed v, instead of the quantum
number n;. We have from Egs. (12-1) and (12-3),

AL g W
& = _E__ = "mvy.
m 2
AY, = f n?An,.
It follows from these equations that
3
A, =4V ap, (12-17)

hI

For simplicity, we have dropped the subscript j from v, and written A%, to
indicate that the degeneracy is expressed in terms of v. Finally, taking the expres-
sion for Z from Eq. (12-6), we have

a2 2

AN, = 4—“_'(1) o exp ( - ’"—") As, (12-18)
m\2KT. 2kT,

The quantity 4", represents the average total number of molecules with all speeds

up to and including v, and AA", is the average number with speeds between v

and v + Ao,

It is helpful to visualize the distribution in terms of “‘velocity space.” Imagine
that at some instant a vector v is attached to each molecule representing its velocity
in magnitude and direction, and that these vectors are then transferred to a common
origin, resulting in a sort of spiny sea urchin. The velocity of each molecule is
represented by the point at the tip of the corresponding velocity vector. Figure
12-3 shows one octant of this velocity space. Geometrically speaking, the quantity
A", represents the average total number of representative points within a sphere
of radius v, and AA", the number within a spherical shell of radius v and thick-
ness Ap.

The coefficient of Av in Eq. (12-18), equal to the ratio AA4",/Av, depends only
on the magnitude of v, or on the speed. It is called the Maxwell-Boltzmann speed
distribution function and is plotted as a function of v on Fig. 12-4. The number of
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Fig. 12-3 Diagram of velocity space.

Ap—lle—

Fig. 12-4 Graph of Maxwell-Boltzmann
speed distribution function.
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velocity vectors A¥", terminating between » and v + Av is represented in this
graph by the area of a narrow vertical strip such as the shaded one shown, since
the height of the strip is A4, [Av and its width is Ap. (Note carefully that the
ordinate of the speed distribution function does not represent A.47,.) The distri-
bution function is zero when v = 0, since then v* = 0 and the exponential term
equals I. This means that no molecules (or very few molecules) are at rest. The
function rises to a maximum and then decreases because the exponential term
decreases more rapidly than »® increases.

If velocity space is subdivided into spherical shells of equal thickness, the
speed v, at which the distribution function is a maximum is the radius of that
spherical shell which includes the largest number of representative points. The
speed vy, is called the most probable speed. To find its value, we take the first
derivative of the distribution function with respect to v and set it equal to zero.
Neglecting the constant terms in Eq. (12-18), this procedure yields:

o (5] -
du[” P\ 2T .
It is left as a problem to show that
v, = J2KTTm. (r2-19)

The distribution function can now be expressed more compactly in terms of

it
e = ("‘) (12-20)
—=——v exp{—]. -

Av N 8
The distribution function depends on the temperature of the gas through the
quantity v,,, which appears both in the exponential function and its coefficient.
Figure 12-5 is a graph of the distribution function at three different temperatures.

T

T

n

£

Fig. 12-5 Graph of M-B speed distribution
function at three different temperatures,
Ty>T>Th
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The most probable speed decreases as the temperature decreases and the “spread™
of the speeds becomes smaller. The areas under all three curves are equal, since
the area corresponds to the total number of molecules.

As explained in Section 9-3, the average or arithmetic mean speed is

1
D= — AN,
N2
Using Eq. (12-20) and approximaling the sum by an integral, we have

.J—u’ vcxp( )du

The definite integral, from Table 12-1, is v,,/2, so

Bs%rv,=./%’-‘f. (12-21)

The root-mean-square speed is
1w i 4 e g 1/
vrm.=ﬁ=(K,ZDA¢V..) =[\7;—u££uexp(—u?)dv] .

The definite integral equals ST” v®, 50

3 [ kT
| s = 50w =3 (12-22)

which agrees with Eq. (9-19) obtained from kinetic theory. The method used here
is far more general than that used to derive Eq. (9-19). The method is applicable
to systems more complicated than an ideal gas by changing the dependence of
€, and g; on the velocity of the particles.

In summary, we have

U = 35L,

m
v=,f§k—T= 2.55kT,

m™m

Urms = Bk—T:.

m

The three speeds are shown in Fig. 12-6. The relative magnitudes of the three, ata
given temperature, are
V0 0me = 1:1.128:1.224.
The quantity A4”, represents the number of velocity vectors terminating in a
spherical shell in velocity space, of *“volume” 4mv® Av, between v and v + Ap.
The number of representative points per unit “volume” within the shell, or the
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Ay

ol b e

Fig. 12-6 Most probable (v,,), arithmetic
mean (7), and root-mean-square (V)

speeds.

“density™ p, in velocity space, is

AN, ( 1y (—u')
=—" = N[— —]. =
Ll s % \[;v.) - v (12-23)
The quantity p, is called the Maxwell-Boltzmann velocity distribution function. It
is a maximum at the origin, where v = 0, and decreases exponentially with v* as
shown in Fig. 12-7.

Note that although the density is a maximum at the origin, the spherical shell
containing the largest number of representative points is that of radius v,,. The
reason for this apparent discrepancy is that as we proceed outward from the origin,
the volumes of successive spherical shells of equal thickness Av continually in-
crease, while the number of representative points per unit volume continually
decreases. The volume of the innermost shell (which is actually a small sphere of
radius Av) is essentially zero, so that although the density is 2 maximum for this
shell, the number of points within it is practically zero because its volume is so
small. In other words, practically none of the molecules is at rest. Beyond the

Fig. 12-7 Graph of Maxwell-
Boltzmann veloeiry distribution
function.
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sphere of radius v,,, the density decreases more rapidly than the shell volume in-
creases and the number of points in a shell decreases.

The number of molecules A", v, having specified values of all three
velocity components corresponds, in 'I"-'Lg 12-3, to the number of representative
points within a small rectangular volume element in velocity space having sides
of length Av,, Av,, and Av,, and located at the point v,, v,, v,. The volume of the
element is Av, Av, Av, and the number of representative points within it is the
product of its volume and the density p,. Thus

ANy oyn, = po B0z Av, Av,
1 3
= N( )exp[ o + )]An Av, Av,,

NS
since v* = o} + v} + v5.

The number of molecules having an x-, y-, or z-component of velocity in some
specified interval, regardless of the values of the other components, is represented
in Fig. 12-3 by the number of representative points in the thin slices perpendicular
to the velocity axes. (The diagram shows only the intersections of these slices
with planes perpendicular to the axes.) Thus to find the number of molecules
AA", with velocity components between o, and v, + Av,, we sum A4, , , over
all values of v, and v,. When the sum is replaced with an integral, we have

o= Ao (22) o (22 ] ()

AN,

Each of the integrals, from Table 12-1, equals J;u_, and therefore

A e M (“"3 12-24
a ~N e ). (12-24)

with similar expressions for v, and v,. These are the Maxwell-Boltzmann distri-
bution functions for one component of velocity, and that for the x-component is
plotted in Fig. 12-8. The slice in Fig. 12-8 containing the largest number of
representative points is therefore the one at v, = 0, and the most probable velocity
component along any axis is zero.

The distribution represented by Eq. (12-24) and Fig. 12-8 is known as a
gaussian* distribution and is typical of many sorts of random distributions, not
just that of molecular velocity components. This is to be expected, since the treat-
ment that led to Eq. (12-24) is so very general.

We can now show that it is appropriate to use the classical distribution func-
tion to describe an ideal monatomic gas. It will be recalled that the Bose-Einstein
and Fermi-Dirac distribution function both reduce to the classical distribution

* J. Carl F. Gauss, German mathematician (1777-1855).
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-I |- An,

Fig. 12-8 Maxwell-Boltzmann veloc-
ity distribution function for a single
component of velocity.

function, provided the occupation numbers AA”, are much smaller than the number
of states A%, in the macrolevel j. In other words, the classical distribution func-

tion is applicable provided AA4",/A¥, & 1. According to Eq. (12-16), the general
expression for AA",JA%, in this case is

39~z ()
ag, z Par/)
and for an ideal gas,
. 2memk TV
z= ( . )

Therefore

AN, E(brmkr)-m (—t,)
ag, v\ w ) PUr)

Let us take as an example helium gas at standard conditions. In a Maxwell-
Boltzmann velocity distribution, the energies «; are grouped around the mean value
3kT(2. Then «/kT is of the order of unity and so is exp (—«,/kT). The number of
molecules per unit volume, NJV, is about 3 x 102 molecules m~2 and for helium,
m = 6.7 x 107* kg. Inserting the values of k, k, m, and T in the preceding equation,

AN
W"‘“Xlo_.

which is certainly much less than unity. (Only about four states in a million are
occupied!) However, as the temperature is lowered, the value of A#" /A%, increases,
and provided the gas can be cooled to very low temperatures without condensing,
the classical statistics may cease to be applicable Conversely, condensation may well
be adjusted Just when the classical statistics cease to be applicable, and this refiects
hanical nature of liquid helium.

)’1
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12-3 EXPERIMENTAL VERIFICATION OF THE MAXWELL-BOLTZMANN
SPEED DISTRIBUTION. MOLECULAR BEAMS

An important technique in atomic physics is the production of a collimated beam
of neutral particles in a so-called molecular beam. A beam of charged particles,
electrons or ions, can be accelerated and decelerated by an electric field, and guided
and focused by either an electric or a magnetic field, These methods cannot be
used if the particles are uncharged. Molecular beams can be produced by allowing
molecules of a gas to escape from a small opening in the walls of a container into a
region in which the pressure is kept low by continuous pumping. A series of
baffles, as in Fig. 12-9, limits the beam to a small cross section. Since one often
wishes to work with molecules of a material such as silver, which is a solid at room
temperature, the temperature in the container must be great enough to produce
a sufficiently high vapor pressure. Hence the container is often a small electric
furnace or oven.

We have shown in Section 9-3 that the number of molecules with speed v,
striking tlre surface of a container per unit area and per unit time, is

1
1 vAn, (12-25)
where An, is the number of molecules per unit volume with speed v.
If the molecules have a Maxwell-Boltzmann speed distribution, the number
per unit volume with a speed v is given by Eq. (12-18)

S Yy (_—mv‘.
o \/:r(m) dhad )A"’

If there is a hole in a wall of the oven, small enough so that leakage through
the hole does not appreciably affect the equilibrium state of the gas in the oven,
Eq. (12-25) gives the number with speed v escaping through the hole, per unit
area and per unit time. We wish to compute the rms speed of those that escape.
Following the standard method, the mean-square speed of the escaping molecules
is found by multiplying by v* the number that escapes with speed v, integrating
over all values of v, and dividing by the total number. The rms speed is the square

Zhlrtie ?
Dy
Oven Baffles

Fig. 12-9 Production of a beam of
peutral particles.

oo aT =r -

=
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root of the result. It is left as a problem to show that

N -1 (12-26)
m

The rms speed of the molecules in the oven is |
3kT

"l.ﬂ - e
m
so that those escaping have a somewhat higher speed than those in the oven.

The distribution in direction of the molecules escaping through the hole is
given by Eq. (9-14):

That is, the number per unit solid angle in the emerging beam is a maximum in the
direction of the normal to the plane of the opening and decreases to zero in the
tangential direction.

Direct measurements of the distribution of velocities in a molecular beam
have been made by a number of methods. Figure 12-10 is a diagram of the ap-
paratus used by Zartman and Ko in 1930-1934, a modification of a technique
developed by Stern in 1920, In Fig. 12~10, O is an oven and S, and S, are slits
defining a molecular beam; C is a cylinder that can be rotated at approximately
6000 rpm about the axis 4. If the cylinder is at rest, the molecular beam enters
the cylinder through a slit S, and strikes a curved glass plate G. The molecules

R

e
a

t
i

——— g ————

Fig. 12-10 Apparatus used by
Zartman and Ko in studying
distribution of velocities.
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stick to the glass plate, and the number arriving at any portion can be determined
by removing the plate and measuring with a recording microphotometer the
darkening that has resulted.

Now suppose the cylinder is rotated. Molecules can enter it only during the
short time intervals during which the slit § crosses the molecular beam. If the
rotation is clockwise, as indicated, the glass plate moves toward the right while
the molecules cross the diameter of the cylinder. They therefore strike the plate
at the left of the point of impact when the cylinder is at rest, and the more slowly
they travel, the farther to the left is this point of impact. The blackening of the
plate is therefore a measure of the “velocity spectrum™ of the molecular beam.

L P—

<

ol i
R

Fig. 12-11 Schematic diagram of apparatus of Estermann, Simpson,
and Stern.

A more precise experiment, making use of the free fall of the molecules in a
beam, was performed by Estermann, Simpson, and Stern in 1947. A simplified
diagram of the apparatus is given in Fig. 12-11. A molecular beam of cesium
emerges from the oven slot O, passes through the collimating slit §, and impinges
on a hot tungsten wire D, The pressure of the residual gas in the apparatus is of
the order of 10-® Torr. Both the slits and the detecting wire are horizontal, The
cesium atoms striking the tungsten wire become ionized, reevaporate, and are
collected by a negatively charged cylinder surrounding the wire but not shown in
the diagram. The ion current to the collecting cylinder then gives directly the
number of cesium atoms impinging on the wire per second.

In the absence of a gravitational field, only those atoms emerging in a hori-
zontal direction would pass through the slit $, and they would all strike the collector
in the position D regardless of their velocities. Actually, the path of each atom is
a parabola, and an atom emerging from the slit O in a horizontal direction, as

El R -
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indicated by the dot and dash line, (with the vertical scale greatly exaggerated)
would not pass through the slit S. The dashed line and the dotted line represent
the trajectories of two atoms that can pass through the slit S, the velocity along the
dashed trajectory being greater than that along the dotted one. Hence as the
detector is moved down from the position D, those atoms with velocities corre-
sponding to the dashed trajectories will be collected at D', those with the slower
velocity corresponding to the dotted trajectory will be collected at D”, etc. Measure-
ment of the ion current as a function of the vertical height of the collector then gives

the velocity distribution.

]

=

£

£
5
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0.2 0 10 L4 18

Reduced velocity (v, v,,)

Fig. 12-12 Experimental verification of the
Maxwell-Boltzmann speed distribution function,
This is Fig. 7 from R. C. Miller and P. Kusch,
“Velocity Distribution in Potassium and
Thallium Atomic Beams,” Physical Review 99
(1955): 1314, Reprinted by permission.

In 1955 Miller and Kusch reported a still more precise measurement of the
distribution of velocities in a beam of thallium atoms, Their data are shown in
Fig. 12-12. The oven, which was controlled to 0.25°C, was made from copper
to insure a uniform temperature distribution. The thallium atoms passed through
a slit whose dimension parallel to the beam was 0.003 cm to avoid scattering in
the neighborhood of the slit. The detector was similar to the previous experiment.
As the atoms came out of the slit they had to pass through one of 702 helical slits
milled along the surface of cylinder 20 cm in diameter, 25.4 cm in length. Each
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slit was 0.04 cm wide and 0.318 cm deep. As the cylinder was rotated, only those
atoms having an appropriate velocity would pass through the slit without being
scattered. With these precautions Miller and Kusch were able to show that the
velocity distribution of the thallium atoms agreed with the Maxwell-Boltzmann
velocity distribution to within 1% for 0.2 < x < 1.8, where x = vfv,,. This
agreement is seen on Fig. 12-12 where the points are the data for two different
experiments and the solid line is the theoretical curve computed from the Maxwell-
Boltzmann speed distribution.

12-4 IDEAL GAS IN A GRAVITATIONAL FIELD

In the prec&ding sections, the energy of a gas molecule was considered to be wholly
kinetic; that is, any gravitational potential energy of the molecule was ignored.
We now take this potential energy into account, so that the gas serves as an example
of a multivariable system.

Let us take as a system an ideal gas in a vertical cylinder of cross-sectional area
A, as in Fig. 12-13. The lower end of the cylinder is fixed and the upper end is

Fig. 12-13 An ideal gas in a
cylinder in a gravitational field.

provided with a movable piston. If the piston is at a height L above the bottom
of the cylinder, the volume ¥ occupied by the gas is ¥ = AL. The origin of space
coordinates is at the bottom of the cylinder, with the y-axis vertically upward.
The system is in a uniform gravitational field of intensity g, directed vertically
downward; but the value of g can be changed by, say, moving the system to another
location where g has a different value. The temperature T is assumed to be uniform.

The gas is therefore a multivariable system, described by three independent
variables T, L, and g, and it has a gravitational potential energy E, as well as an
internal energy U. The appropriate energy function is therefore the total energy
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given by
E=U+E,

d from Eq. (7-31),
TdS = dE + Y, dX, — X, d¥,.

1e extensive variable X, is the length L, and the intensive variable Y, is the
avitational field intensity g. Let us represent the variable ¥, by I, and the
riable X, by I'. Then

TdS = dE + ITdL - I'dg. (12-27)
‘e now use the methods of statistics to find the quantities IT and I". The first

:p is to determine the partition function Z.
A molecule whose vertical coordinate is y has a gravitational potential endrgy

gy in addition to its kinetic energy mv*/2, and its total energy « is
€= mv*[2 + mgy.

An energy interval between € and € + Ae includes a kinetic energy interval
srresponding to speeds between v and v 4 Ap, and a potential energy interval
srresponding to elevations between y and y + Ay, The degeneracy A9, of the
seed interval, since V' = AL, is given by Eq. (12-17),
4rm®AL

e v* Av. (12-28)

The potential energy is not quantized; a molecule may have any arbitrary
levation y and any potential energy mgy. The distribution in potential energy
i given by the same expression as that for quantized levels, however, if we set
ae degeneracy A%, of the potential energy interval equal to Ay/L:

A
% (12-29)

AY, = —,
A

For any one of the possible kinetic energy states, a molecule can have any
me of the possible potential energy states. The total number of possible states
A% in the energy interval is therefore the product of A¥, and A%,:

A9 =A9 A9,
The partition function Z is

Z=FATexp (k-_—;)

- [2:19, exp (:ﬂ')] [}:Ag, exp (_k"f”)]. (12-30)

A%, =

kT
If we designate the sums by Z, and Z,, respectively, then
Z=2Z, InZ=IZ +InZ,
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The first sum in Eq. (12-30) is to be evaluated over all values of » from 0 to
o, and the second over all values of y from 0 to L. When the expressions for
A, and A%, are inserted, and the sums replaced with integrals, we find

2 k 3/2
Z, AL( ”’;’, T) , (12-31)
kT —mgL)]
Z =—|] = . !
y mgl.[l cxp( T (12-32)

Therefore
InZ= gln T—Ing+In [l — exp (-:1'" )] + constant. (12-33)

The function F* is given by Eq. (11-75),
F*= —=NKT(InZ —In N + 1),

and F* is a function of N, T, g, and L.
If N is constant,

oF* a2in Z)
“ B e — =
(BL )z'.. NkT( oL Jr.,

ar*) (aln Z)
I'=|—) =-—-NkT|——) .
(Eg T.L 5 dg /r.L

On carrying out the differentiations, we find

and

Nmg
e ——m—mm, 12-34
exp (mgL/kT) — 1 { )

NkT NmL
=, 12-35
g exp (mgL/kT) — 1 ( )

Thus the system has two equations of state, one expressing Il as a function of
T, L, and g, and the other expressing I" as a function of these variables,

The physical significance of I' can be seen as follows., The gravitational
potential energy E, is

E, = YX, = gT,
and hence
E,

r=-,
g
Thus T is tre potential energy, per unit field intensity. The potential energy is
therefore
NmgL

exp (mgL/kT) — 1’ (12-36)

E, = gI' = NkT —
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The total energy E is

dln Z) 5 NmgL
- 2 - P LA e S— .
E NkT( e A L by e R G

nd since U = E — E,, it follows that

3
U 2 NEKT.

{ence the internal energy is the same as in the absence of a gravitational field and
epends only on the temperature,
The entropy can be calculated from

s-§+~k([nz—1n~+1).

We next calculate the pressure P as a function of elevation. The number of
10lecules AA”, in a macrolevel between y and y + Ay is, from Eq. (12-16),

N —mgy
A./V, = ZA g, exp (?)- (12_33)

‘he volume of a thin cross section is A Ay, so the number of molecules per unit

olume at a height y is
AN,

= AAy*
‘rom the ideal gas law, the pressure P, at this height is
P, = nkT.
It follows from the preceding three equations, after inserting the expressions
or A¥, and Z,, that

P NmE exp (—mgy/kT)
YA 1 —exp(—mgL/kT)’
\t the bottom of the container, y = 0, and the pressure P, is

Nmg 1
Pia— — o,
A 1 — exp(—mgL[kT)

“he pressure P, can therefore be written more compactly as
—mgy
=P, A -39
P, ,,exp( T ) (12-39)

nd the pressure decreases exponentially with elevation. Equation (12-39) is
:nown as the barometric equation or the law of atmospheres. It can also be derived
rom the principles of hydrostatics and the equation of state of an ideal gas.
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At the top of the container, y = L and

Therefore{
Il = PA, (12-40)

and the quantity IT is the force exerted against the piston at the top of the con-
tainer. The work when the piston is displaced upward by an-amount 4L is

dW = dL = Py A dL = Py dV,

and the product IT dL is the work when the gas expands.

In 1909 Perrin* used Eq. (12-39) in one of the earliest precision determinations
of Avogadro's number N,. Instead of gas molecules, he utilized particles of micro-
scopic size suspended in a liquid of slightly smaller density, thus reducing the
effective value of “g". The number of particles at different levels was counted with

a microscope.
If A", and A4, are the average numbers at heights y, and y,, then
M‘ = exp [_. M]_ (12_4”
s kT

All of the quantities in this equation can be measured experimentally with the
exception of the Boltzmann constant k, so that the equation can be solved for k.
Then N, can be found, since k equals the universal gas constant R divided by N,,
and R is known from other experiments. Perrin concluded that the value of N,
lay between 6.5 X 10* and 7.2 x 10%, compared with the present best experi-
mental value of 6.022 X 10% molecules kilomole*.

12-5 THE PRINCIPLE OF EQUIPARTITION OF ENERGY

It will be recalled that the principle of equipartition of energy was introduced in
Section 9-6 merely as an inference that might be drawn from some of the results
of the kinetic theory of an ideal gas. We now show how this principle follows from
the M-B or classical distribution function and what its limitations are.

The energy of a particle is in general a function of a number of different
parameters. These might be the velocity components, the vertical elevation of the
particles in a gravitational field, the angle that a molecular dipole makes with an
electric field, and so on. Each of these parameters is called a degree of freedom.
Let z represent any such parameter and e(z) the energy associated with that
parameter. If the energy can be expressed as a continuous function of the param-
eter, as in the preceding sections, the M-B and classical distribution function lead

* Jean Perrin, French physicist (1870-1942).
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to the result that the average number of particles within a range Az of the parameter
is given by an expression of the form

AN, = Aexp [-’:](:)

Jo

where A is a constant independent of z. As examples, see Eq. (12-24) for the case,
in which z represents one of the rectangular components of the velocity, or Eq.

(12-38) in which z represents the vertical coordinate y.
When the sum is replaced with an integral, the total number of particles, N,

is given by
N = Afexp[ (]:ld’z
kT

the limits of integration being over all values of z.
The total energy E(z) associated with the parameter z is

E(z) = | e(z) dA", -Aj:(z)cxp[ :;)] 2.

The mean energy #(z) of a single particle is
4 E@=)
W)=

Now if the energy (z) is a quadratic funetion of z, that is, if it has the form
e(z) = az?, where a is a constant, and if the limits of z are from 0 to o, or from

— 0 to + o0, then from Table 12-1,

faz' exp (—az*kT) dz 1

i) =Ly,
i exp(—azVkT)dz 2

That is, for every degree of freedom for which the conditions above are fulfilled,
the mean energy per particle, in an assembly in equilibrium at the temperature T,
is kT/2. This is the general statement of the equipartition principle.

The conditions above are fulfilled for the translational velumty components
v, 0, and v,, since the energy associated with each is mv2/2, mv¥/2, or mu}2
and the range of each is from —eo to +co. They are also fulfilled for the displace-
ment x of a harmonic oscillator, since the potential energy associated with x is
Kx*2, K being the force constant.

The conditions are not fulfilled for the vertical coordinate y of a gas in a
gravitational field, where the potential energy is mgy; the mean gravitational
potential energy is not kT/2. Neither are they fulfilled for the energy associated
with molecular rotation, vibration, and electronic excitation, because of the

(12-42)



a2 APPLICATIONS OF STATISTICS TO GASES 12-8

quantized character of these energies, which can take on only certain discrete
values and cannot be expressed as a continuous function of some coordinate. The
energy associated with them is not a simple linear function of the temperature.

12-6 THE QUANTIZED LINEAR OSCILLATOR

We consider next an assembly of N identical linear oscillators, assumed distin-
guishable so that we can use Maxwell-Boltzmann statistics. The properties of such
an assembly form the basis of the theory of the specific heat capacity of polyatomic
gases and of solids.

A linear oscillator is a particle constrained to move along a straight line and
acted on by a restoring force F = —Kx, proportional to its displacement x from
some fixed point and oppositely directed. The equation of motion of the particle is

d’x
= — -
F=m at Kx,
where m is the mass of the particle. If displaced from its equilibrium position and
released, the particle oscillates with simple harmonic motion of frequency », given
by
1
v=—K/m.
27
The frequency depends only on K and m, and is independent of the amplitude x,,.

The energy e of the oscillator is the sum of its kinetic energy »w*2 and its
potential energy Kx%2. Since the total energy is constant, and the kinetic energy
is zero when the displacement has its maximum value x,,, the potential energy at
this displacement is equal to the total energy € and hence

€= %Kx:,.

Thus the total energy is proportional to the square of the amplitude, x,,.

If the oscillators were completely independent, there could be no interchange
of energy b¢tween them, and any given microstate of the assembly would continue
indefinitely, We therefore assume that the interactions between the particles are
large enough so that there can be sufficient exchanges of energy for the assembly
to assome all possible microstates consistent with a given total energy, but small
enough so that each particle can oscillate nearly independently of the others.

In classical mechanics, a particle can oscillate with any amplitude and energy.
The principles of quantum mechanics, however, restrict the energy to some one
of the set of values

o= (n, ¥ i)hv. (12-43)



26 THE QUANTIZED LINEAR OSCILLATOR 7

theren; = 0, 1,2, ..., and & is Planck's constant. An unexpected result is that
1e oscillator can never be in a state of zero energy, but that in the lowest level the
nergy is hv/2, in the next level it is 3A»(2, and so on. The levels are nondegenerate;
1ere is only one energy state in each level; and g; = 1 in each level.

The quantum condition that the energy can have only some one of the set of
alues [(n, + 1/2)h»] is equivalent to the condition that the amplitude can have only

ome one of the set of values such that
xt = (n, + 1) E\/lll(m.
2=
Using Eq. (12-43), the partition function of the assembly is
—€ 1\ hy
£ 3en(F) - 3o [ 2]

;"p(kT Zew|=(m+3) T

fo evaluate the sum, let z = hv[kT for brevity. Writing out the first few terms,

ve have , 12 5
Z= — i __z.)
w(-3) +ow(-3) +aw(-3) +

- HP(— g){l +exp(—2) + [exp(=2)]* + -}
The sum in the preceding equation has the form of the infinite geometric series
L+p+p' 4+,

which equals 1/(1 — p) as is readily verified by expanding the product (I — p) x
(1 +p+p*+ ). Therefore
1

Z =exp ( - E)—-— ’
2/1 — exp(=2)
* exp (—hv/[2kT)
X, - Ny,
fE—————a—, 12-44
1 = exp (—hv/kT) ( )
The temperature at which k7" = hr is called the characteristic temperature of
the assembly and is represented by 0. Thus

K=k, or 0=l (12-45)
It follows that w_o
kT T’
and in terms of @ the partition function is
—0/2
pa M (12—46)

T l—exp(=0T)’
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12-8

The value of the partition function at any temperature therefore depends, for
a given assembly, on the ratio of the actual temperature T to the characteristic
temperature 6, which thus provides a reference temperature for the assembly.
The greater the natural frequency » of the oscillators, the higher the characteristic
temperature, Thus if the natural frequency is of the order of frequencies in the
infrared region of the electromagnetic spectrum, say 10° Hz,* then

gy _662x 107% Js x 105!
k 1.38 x 1072 JK™*
An actual temperature T of 50 K is then approximately equal to 6/10, and a
temperature of 5000 K is approximately equal to 10 6.

The average fractional number of oscillators in the jth energy level, from Egs.
(12-16) and (12-43) is

~ 500 K.

1
b L
L _(”‘;z)”
Nz xkr) = z°F kT )
Substituting Eq. (12-46) for Z and Eq. (12-45) for 0,
N -6 [/
Bofi-an()]er(-nl) o

At any temperature T, the occupation number decreases exponentially with the
quantum number n,;, and decreases more rapidly, the lower the temperature,

At the temperature at which T = 6,

@m =1, [l - ﬂp(_?p)] = 0632,

% = 0.632 exp (—n).

and

Thus for the four lowest energy levels, in which n; = 0, 1, 2, and 3, we have
Ny

M N i)
N =062, 1 =023, =008, 3 =005

About 63% of the oscillators are in the lowest energy level, about 23% in the next
level, etc. Together, the four lowest levels account for about 98 % of the oscillators.
1t is left to the reader to show that when T = 0/2,
No B A

Ny
N - 0.865, e 0.117, N - 0.016, = 0.002.

* Heinrich R, Hertz, German physicist (1857-1894),

Tt
tel
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At this temperature, about 877 of the oscillators are in the lowest level, about 12
in the next level, etc. and almost all the particles are in the first four levels.
At a temperature T = 20,
s i W N
N 0.394, N 0.239, N 0.145, N 0.088.
The first four levels then account for only about 86 3 of the oscillators, the remainder

being distributed among the higher energy levels.
The lengths of the vertical lines in Fig. 12-14 represent the average fractional

occupation numbers at the temperatures T = 6/2, T = 6, and T = 20.

1o

081

—i
I 01 213 01 2

= 2
T= g T=0 T=20 |

Fig. 12-14 The dependence on 6/T of the average
fractional occupation number of the first four lévels
of a linear oscillator.

The total energy of the assembly, which in this case is its internal energy U, is

v = NeTedlnZ
dT

1 1
ka[e—-———xp Ty P i] (12-48)

Thus for a given assembly of linear oscillators the internal energy is a function of
temperature only. The heat capacity Cp of the assembly is

C i
vear

0\ exp(6/T)
w(z) fexp (O/T) — 1 N
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Fig. 12-15 The internal energy
and heat capacity of an assembly
of linear oscillators.

The curves in Fig. 12-15 are graphs of the internal energy U and of the heat
capacity Cp (both divided by Nk) as functions of T/0. The ordinate of the latter
is proportional to the slope of the former.

As Tapproaches 0 K, very nearly all of the oscillators are in their lowest energy
level with energy /Av/2 and the total energy U approaches the zeropoint energy
Nh|2, or, U[Nk — 0.5. The internal energy changes only slightly with changing
temperature and the heat capacity approaches zero. The entropy of an assembly
of linear Ilrst:illatcmt also approaches zero as T approaches zero.

When' T3> 0, 8]T « |, exp (8/T) — | = 0/T, the term 1/2 is negligible com-
pared with Tj6, and U approaches NkT. The mean energy per particle, U/N,
approaches kT which is the value predicted by equipartition for an oscillator with
two degrees of freedom (its position and its velocity). The internal energy increases
nearly linearly with temperature and Cp approaches the constant value Nk.

12-7 SPECIFIC HEAT CAPACITY OF A DIATOMIC GAS

It was shown in Section 12-1 how the equation of state of a monatomic ideal gas,
and its energy equation, could be derived by the methods of statistical thermo-
dynamics. Consider next a gas whose molecules are polyatomic. If the energy
of a molecule does not depend on the space coordinates x, y, and z of its center of
mass, and if there is no mutual potential energy between molecules, the partition
function will be directly proportional to the volume ¥, as in Eq. (12-6) for a
monatomic gas. The Helmholtz function F = —NkT(InZ — In N + 1) then
has the same dependence on ¥ as for a monatomic gas and the gas has the same
equation of state, PV = nRT.
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The specific heat capacity, however, will differ from that of a monatomic gas
because a polyatomic molecule can have an “internal energy™ of its own, made up
of energy of rotation, vibration, and electronic excitation.

According to the classical equipartition principle, each degree of freedom
associated with rotation and vibration shares equally with the three translational
degrees of freedom, the mean energy of each being k7/2. The molal specific heat
capacity at constant volume should equal R/2 for each degree of freedom and for
a molecule with f degrees of freedom we should have ¢, = fR/2, which should be
constant independent of temperature.

This prediction is in good agreement with experiment for monatomic gases,
for which there are three translational degrees of freedom only and for which ¢, is
very nearly equal to 3R/2. At room temperature, however, the heat capacities of
diatomic gases are nearly equal to 5R/2, as if the molecules had an additional two
degrees of freedom. Furthermore, the heat capacities are not constant, but vary
with temperature and do not correspond to integral values of f.

A diatomic molecule can be considered to have the dumbbell-like structure of
Fig. 9-5. In addition to the kinetic energy of translation of its center of mass, it
may have energy of rotation about its center of mass and, since it is not a completely
rigid structure, its atoms may oscillate along the line joining them. The rotational
and vibrational energy are both quantized; and with each form of energy, as for
an harmonic oscillator, there can be associated a characteristic temperature, 8,,,
for rotation and 8., for vibration. The extent to which the rotational and vibra-
tional energy levels are populated is determined by the ratio of the actual tem-
perature T to the corresponding characteristic temperature. That is, the internal
energies of rotation and vibration, and the corresponding specific heat capacities
Ceor and ¢y, are functions of the ratios T/6,,, and T/8,,. We shall not give the .
precise form of this dependence, but simply state that the graphs of the specific
heat capacities ¢,,, and ¢,;, have the same general form as the graph of ¢, for an
harmonic oscillator shown in Fig. 12-15. At very low temperatures, both heat
capacities approach zero; at temperatures large compared to the characteristic
temperatures, both approach the classical value Nk. Thus at sufficiently high
temperatures the corresponding molal heat capacities approach the classical value
R, as for a particle with two degrees of freedom.

What constitutes a “sufficiently” high temperature? This depends on the
characteristic temperatures 6,,, and 8,,,. Table 12-2 lists some values of 6.
This temperature is inversely proportional to the moment of inertia of the molecule:
the greater the moment of inertia, the lower the value of 8,,,. The highest value,
about 86 K, is that for hydrogen, H,, since its moment of inertia is smaller than
for any other diatomic molecule. Molecules with one hydrogen atom form another
group with values of 6,,, of approximately 20 K. For all others, the characteristic
temperature is of the order of a few degrees or less. Thus “room temperature,”
say 300 K, is much greater than the characteristic temperature for rotation, and
the molal specific heat capacity for rotation approaches the value R.
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Table 12-2 Characleristic temperatures
for rotation and vibration of diatomic

molecules
Substance | By, (K) | Oy, (K)

H, 85.5 6140
OH 215 5360
HCI 153 4300
CH 20.7 4100
co 277 3120
NO 247 2740
0, 2.09 2260

Cly 0.347 810

Bry 0.117 470

Na, 0.224 230

Ky 0.081 140

Table 12-2 also lists the characteristic temperatures 8,;, for the same molecules.
These are all very much higher than the characteristic temperatures for rotation,
which means that at room temperature, where T < 8.y, practically all molecules
are in their lowest vibrational energy level and the specific heat capacity for vibra-
tion is practically zero, Only at much higher temperatures do the higher vibrational
energy levels begin to be populated.

Thus at room temperature the specific heat capacities of most diatomic
molecules have a contribution 3R/2 for translation, plus R for rotation, making
a total of 5R/2 as is actually observed.

Figure 12-16 is a graph of experimental values of ¢,/R for hydrogen, plotted
as a function of temperature. (Hydrogen is the only diatomic gas that remains a
gas down to low temperatures, of the order of 25 K.) At very low temperatures,
¢,/R is equal to 3/2, the value for a monatomic gas. As the temperature is increased,
¢, increases, and over a considerable range near room temperature ¢,/R is about
5/2, which is the value (according to equipartition) if two degrees of freedom of
rotation or vibration, but not both, are added to the translational degrees of
freedom. Only at very high temperature does ¢,/R approach 7/2, the value pre-
dicted by equipartition.

S ® A e e o

e
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We can now understand in a general way the features of this graph. The
characteristic temperatures for rotation and vibration, for hydrogen, are 6,,, =
855K and 6y, = 6140 K. Below about 50 K, the temperature 7 is very much
less than either characteristic temperature, and practically all molecules remain
in their lowest energy states of rotation and vibration. The specific heat capacity
is therefore the same as that of a monatomic gas, 3R/2.

In the range from about 50 K to about 250 K, the temperature T is of the
order of magnitude of fl,,, and the rotational states of higher energy begin to be
populated. Above about 250 K, the molecules behave like classical rotators and
make a contribution R to the specific heat capacity, which in this range equals
5R/2. Starting at about 500 K, some molecules move to states of higher vibrational
energy and ¢, approaches the limiting classical value of 7R/2.

4
” T
3 ~
— = /
/R 2 //

10 25 50 75100 250 500750 1000 2
‘Temperature (k) !
8‘

Fig. 12-16 Experimental values of ¢,/R for hydrogen as a
function of temperature plotted on a logarithmic scale.

Many important features of the general theory have been ignored in the
(relatively) simple treatment of the problem given here. Some of these are: (a) the
difference between the behavior of molecules such as H,, whose atoms are alike,
and those, such as NO, composed of unlike atoms; (b) the degeneracy of the rota-
tional energy levels as a result of space quantization; (c) the energy associated with
electronic excitation at high temperatures; (d) the coupling between rotational
and vibrational states; and (e) the fact that the vibrations are not precisely simple
harmonic. However, the exact theory is apparently so firmly established that
specific heat capacities of gases can be computed theoretically, from optical
measurements, more accurately than they can be measured experimentally by the

technique of calorimetry.
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PROBLEMS

12-1 In Section 12-1 the properties of a monatomic ideal gas were calculated using the
classical distribution function. (2) Derive the equation of state and specific heat capacity
of an ideal gas using, instead, the M-B distribution function. (b) Show that the M-B
distribution function leads to an expression for the entropy of an ideal gas which is not
extensive.

12-2 In a two-dimensional gas the molecules can move freely on a plane, but are con-
fined within an area 4. (a) Show that the partition function for a two-dimensional
monatomic gas of N particles is given by

A2nmkT
I

(b) Find the equation of state of the gas from its Helmholtz function.

12-3 Use the partition function of the previous problem to derive the heat capacity
and entropy of a two-di ional ic gas.

12-4 InFig. 12-3,letv, = v, = v, = v, and let Ay, = Av, = Ap, = 00lp,. If N =
Avogadro’s number, 6.02 x 10% molecules, compule the average number of particles
in each of the following elements of velocity space: (a) the slice of thickness 4up,, (b) the
rectangular parallelepiped common to two slices, (c) the volume element Av; Av, Av,,
(d) the spherical shell of radius V3 v,, and thickness 0.01v,,.

12-5 (a) What is the “distance” v, in Fig. 12-3, of a slice at right angles to the v -axis, if
the slice contains one-half of the number of particles as a parallel slice of the same thick-
ness at the origin. Expr:ss your answer in terms of v,,. (b) At what radial “distance™ v
from the origin in velocity space is the density p, one-half as great as the origin,

12-6 Find the fractional number of molecules of a gas having (a) velocities with x-
components between v, and 1.01z,,, (b) speeds between v, and 1.0lv,,, (c) velocities
with x-, y-, and z-components between v, and 1.0lv,,.

12-7 Show that v,, = V2kT|m.

12-8 (a) Compute to three significant figures the rms, average, and most probable
speeds of an oxygen molecule at 300 K. (b) Compute the most probable spccd of an
oxygen molecule at the following temperatures: 100 K, 1000 K, 10,000 K.

12-9 Show that (E’) — (£)* > 0. This difference plays an important part in I:heory of
fluctuations, and is the mean square deviation of the velocity from the average velocity.
12-10 Show that the average reciprocal speed (1/0) is given by 2/ Vv, = Y2m[nkT.
12-11 (a) Express Eq. (12-18) in terms of the kinetic energy (= mu*/2) of the molecules.
(b) Find the most probable and average energy of molecules having a distribution of
speeds given by Eq, (12-18) and compare the results to muf,/2 and mé?/2, respectively.
12-12 Show that the number of molecules with positive x-components of velocity less

N
than some arbitrary value 2 is A .z = 3 erf (x), where x = ¢fv,, and erf (x) is the error
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function defined as
2 =
erf (x) = ‘/—;J:r”'dx.

(b) Show that the number of molecules with positive x-components of velocity larger
N .
than the value v is A e, = 5 [l = erf(x)]. Compute the fraction of molecules with

x-components of velocity between (c) 0 and vy, (d) v,, and o, (e) 0 and o, () —v,, and
+2,,. The value of erf (1) = 0.8427. (g) lllustrate your answers graphically in terms of
the velocity distribution function.

12-13 Show that the number of molecules with speeds less than some arbitrarv value v

is given by
N oz =N[erl'(x) —-‘%_'xr":l.

where x and erf (x) are defined in the previous problem. (b) Show that the number of
molecules with speeds greater than the arbitrary value is given by

N = N[l —erf (x) + ‘,ii xr"].

Compute the fraction of molecules with speeds between (c) 0 and v,,, (d) v,, and oo, and
(e) 0 and co. () lllustrate your answers graphically in terms of the speed distribution
function.

12-14 Show that v, for particles leaving a small hole in a furnace is given by V' 4kT]m.
12-15 Show that the number of molecules colliding with a surface of unit area per unit
time, with components of velocity at right angles to the surface greater than some arbitrary
value v = xv,,, is [nv, exp (=x)]2V7.

12-16 The oven in Fig. 12-10 contains bismuth at a temperature of 830 K, the drum
is 10 cm in diameter and rotates at 6000 rpm. Find the distance between the points of
impact of the molecules Bi and Bi, on the glass plate, G. Assume that all the molecules
of each species escape the oven with the rms speed appropriate to that species.

12-17 A spherical bulb 10 ¢m in radius is maintained at a temperature of 27°C, except
for one square centimeter, which is kept at a very low temperature. The bulb contains
water vapor originally at a pressure of 10 Torr. Assuming that every water molecule
striking the cold area condenses and sticks to the surface, how long a time is required for
the pressure to decrease to 10~ Torr?

12-18 A spherical bulb 10 cm in radius is pumped conti ly to a high . In
the bulb is a small vessel, closed except for a circular hole 0.2 mm in diameter located at
the center of the bulb. The vessel contains mercury at 100°C, at which temperature its
vapor pressure is 0.28 Torr. (a) Compute the average speed T of the molecules of mercury
vapor in the small vessel. (b) Compute the rate of efflux of mercury through the hole, in
milligrams hr=%. (c) How long a time is required for | microgram of mercury to be
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Figure 12-17

deposited on a square centimeter of the inner surface of the bulb, in a direction making
an angle of 45° with the normal to the hole? (See Fig. 12-17.)

12-19 In a molecular beam experiment, the source is a tube containing hydrogen at a
pressure P, = 0.15 Torr and at a temperature T = 400 K. In the tube wall is a slit
30 mm x 0.025 mm, opening into a highly evacuated region. Opposite the source slit
and 1 meter away from it is a second detector slit parallel to the first and of the same size.
This slit is in the wall of a small enclosure in which the p Py can be d. When
the steady state has been reached: (a) What is the discharge rate of the source slit in micro-
grams s~1? (b) What is the rate of arrival of hydrogen at the detector slit, in micro-
grams s~!, and in molecules 57?7 (c) How many molecules that will eventually
reach the detector slit are in the space between source and detector at any instant? (d)
What is the equilibrium pressure P, in the detector chamber ?

12-20 The distances OS and SD in the apparatus of Estermann, Simpson, and Stern in
Fig. 12-11, are each | meter. Calculate the distance of the detector below the central
position D, for cesium atoms having a speed equal to the rms speed in a beam emerging
from an oven at a temperature of 460 K. Calculate also the “angle of elevation” of the
trajectory. The atomic weight of cesium is 133,

12-21 The neutron flux across an area at the center of the Brookhaven reactor is about
4 x 10" neutrons m~?s~%, Assume that the neutrons have a Maxwell-Boltzmann
velocity distribution corresponding to a temperature of 300 K (“thermal” neutrons),
(a) Find the number of neutrons per cubic meter. (b) Find the “partial pressure” of the
neutron gas.

12-22 Derive Eq. (12-27) from Eq. (7-31) assuming E, = Tg, ¥; = M and X; = L.
12-23 (a) Obtain the expressions for Z, and Z, given in Egs. (12-31) and (12-32). (b)
Obtain the expressions for IT and T given in Eqs. (12-34) and (12-35).

12-24 For the gas in a cylinder in a gravitational field, discussed in Section 12-4, show
that as g — 0, the ber of molecules per unit volume approaches the constant value
N/V, and hence is the same at all elevations. In other words, in the absence of a gravita-
tional field the molecules of a gas are distributed uniformly throughout the volume of a

container.
12-25 Show that the net downward force exerted on the container by the gas, in Section
12-4, equals the weight of the gas in the container.




PROBLEMS 383

12-26 If the height of the atmosphere is very large, show that (a) I =0, (b)) ' =
5
NkTlg, (c) E = ENkT' (d) dS = Nk[(5/2)4T|T) — (dg/g)], and (e) that states at

constant entropy are related by T5%g = constant.

12-27 (a) Calculate the fraction of hydrogen atoms which can be thermally ionized at

room temperature. (b) At what temperature will e~ of the atoms be ionized?

12-28 When a gas is whirled in a centrifuge, its molecules can be considered to be acted

on by a radially outward centrifugal force of magnitude mw?r. Show that the density

of the gas as a function of r varies as exp (me®*/2kT).

12-29 Find the mean gravitational potential energy per molecule in an infinitely high
. isothermal atmosphere.

12-30 (a) Use the principle of equipartition of energy to find the total energy, the energy

per particle, and the heat capacity of a system of N distinguishable harmonic oscillators in

equlllbnum with a bath at a temperature T. The kinetic energy of each oscillator is

m(v; + v + v2)/2 and the potential energy is K(x® + y® + z%)/2 where x, y, and z are the

displacements from an equilibrium position. (b) Show that the expansivity of this system

is zero because £ = § = 2 = 0.

12-31 A molecule consists of four atoms at the corners of a tetrahedron, (a) What is the

number of translational, rotational, and vibrational degrees of freedom for this molecule?

(b) On the basis of the eqmpar:mon principle, what are the values of ¢, and y for a gas

d of these mol

12-32 Using Eq. (11-62) derive (a) Eq. (12-48) and (b) Eq. (12-49). (c) Show that when

T 6, Cy approaches Nk; and when T & 0, Cy approaches zero as ¢*/7,

12-33 Calculate the average fractional number of oscillators in the jth energy level N,/N

for the four lowest energy levels when (a) 7' = 6/2 and (b) T = 26.

12-34 Make sketches of the average fractional number of oscillators in (a) the ground

state, and (b) the first excited state, and (c) in the second excited state as a function of

12-35 Making use of Eq. (11-66), show that the entropy of an assembly of quantized
linear oscillators is

Uk
exp (0/T) — 1
where 6 = hv/k. (b) Show that § approaches zero as T approaches zero. (c) Why should
Eq. (11-66) be used rather than Eq. (11-63)?
12-36 Consider 1000 diatomic molecules at a temperature 8,,,/2. (a) Find !I’ie number
in each of the three lowest vibrational states. (b) Find the vibrational energy of the
system,

§ = Nk =In[l —exp (-SIT)I}.
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13-1 THE EINSTEIN THEORY OF THE SPECIFIC HEAT
CAPACITY OF A SOLID

In Section 9-8 and Fig. 3-10 it was shown that the specific heat capacity of many
solids, at constant volume, approaches the Dulong-Petit value of 3R at high tem-
peratures, but decreases to zero at very low temperatures. The first satisfactory
explanation of this behavior was given by Einstein, who proposed that the atoms
of a solid be considered in the first approximation as an assembly of quantized
oscillators all vibrating with the same frequency ». The principles of quantum
mechanics had not been completely developed at the time this suggestion was made,
and Einstein’s original article assumed that the energy of an oscillator was given by

€ = n;hy,

The additional factor 1/2, which we introduced in Eq. (12-43), does not
affect the method and we shall make use of the expressions already derived in
Section 12-6. We must make one change, however. The atoms of a solid are free
to move in three dimensions, not just one, so that an assembly of N atoms is
equivalent to 3N linear oscillators. Then from Eq. (12-48), the internal energy U
of a solid consisting of N atoms is

1 1
U = 3Nkfg| ————— + =, 13-
p P e R $H
where the Einstein temperature Oy is defined as
b = B (13-2)

k
The mean energy of an atom is

u 1 1
=Y [—_ l]
B A YT
and the specific heat capacity at constant volume is

t
(b) xp@ulT) 133
T/ [exp (0/T) — 1]

Figure 13-1 shows graphs of the dimensionless ratios €/kfg and ¢ /R, plotted
as functions of T/fg. The ordinate of the latter curve, at any temperature, is pro-
portional to the slope of the former. The general shape of the graph of ¢, is in
agreement with the experimental curve shown in Fig. 3-10. The value of fg (and
hence of #) for a particular substance is chosen so as to get the best fit between
theoretical and experimental curves, However, it is not possible to find a value
of 6 that gives good agreement at both low and high temperatures.

When T 3> 0, 0/T is small and ¢, approaches the Dulong-Petit value,

¢, = 3R,

€, =13
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Fig. 13-1 Internal energy and specific
heat capacity of a harmonic oscillator.

When T & 65, the exponential term is large, we can neglect the | in the de-
nominator, and

¢, = SR(%?)’exp (—0g/T).

(See Prob. 12-32.)

When T approaches zero the exponential term goes to zero more rapidly than
1/T? goes to infinity, and ¢, approaches zero in agreement with experiment and
the third law. However, because of the rapid decrease of the exponential term, the
theoretical values of ¢,, at very low temperatures, decrease much more rapidly
than the experimental values. Thus the Einstein theory, while it seems to indicate
the correct approach to the problem, is evidently not the whole story.

13-2 THE DEBYE THEORY OF THE SPECIFIC HEAT
CAPACITY OF A SOLID

The simple Einstein theory assumes that all atoms of a solid oscillate at the same
frequency. Nernst and Lindemann* found empirically that the agreement between
theory and experiment could be improved by assuming two groups of atoms, one
oscillating at a frequency » and the other at a frequency 2». This idea was extended
by Born,t von Karman,} and Debye, who considered the atoms, not as isolated
oscillators all vibrating at the same frequency, but as a system of coupled oscillators
having a continuous spectrum of natural frequencies.

* Frederick A. Lindemann, First Viscount Cherwell, British physicist (1886-1957).
t Max Born, German physicist (1882-1970).
1 Theodor von Karmén, Hungarian engineer (1881-1963).
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As a simple example of coupled oscillators, suppose we have two identical
particles connected by identical springs, as in Fig. 13-2. I both particles are given
equal initial velocities in the same direction, as indicated by the upper arrows, the
particles will oscillate in phase with a certain frequency »,. If the initial velocities
are equal and opposite, as indicated by the lower arrows, the particles will oscillate
out of phase but with a different frequency »,. If the initial velocities have arbitrary
values, the resultant motion is a superposition of two oscillations of frequencies
» and #,. The system is said to have two natural frequencies.

Fig. 13-2 Coupled oscillators.

Now suppose that the number of particles (and springs) is increased. It is no
great task to calculate the natural frequencies when the number is small, but as
the number is increased there are too many simultaneous equations to be solved.
It turns out, however, that if there are N particles in the chain, the system will have
N natural frequencies, whatever the value of N

Now extend these ideas to three dimensions. A simple model of a crystal
consists of a three-dimensional array of particles connected by springs, and such
an array has 3N natural frequencies. Because of the impossibility of calculating
these frequencies when N is as large as the number of molecules in a macroscopic
crystal, Debye assumed that the natural frequencies of the atoms of a crystal would
be the same as the frequencies of the possible stationary waves in a crystal if the
crystal were a continuous elastic solid. This is a standard problem in the theory of
elasticity, and we shall outline its solution without giving details. The procedure
is closely analogous to that described in Section 11-2, except that we are now
dealing with real elastic waves and not with the mathematical waves of wave
mechanics,

As explained in Section 11-2, an elastic string of length L fixed at both ends,
can oscillate in a steady state in any mode for which the wavelength 1 is given by

am2L
n
wheren=1,2,3,...,etc.
The fundamental equation of any sort of wave motion states that the speed of

propagation ¢ equals the product of the frequency » and the wavelength 1:

¢ =yl
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It follows that for any frequency », the number n is

2L
n==—yv

and

The theory of elasticity leads to the result that the natural frequencies of
stationary waves in an elastic solid in the form of a cube of side length L are given
by the same equation except that the possible values of n* are

n®=n 4 n + n,
where n,, n,, and n, are positive integers that can have the values 1, 2, 3, . | . g 8te,

To find the number of waves in any frequency interval, or the frequency
spectrum, we proceed in the same way as in Section 12-1 and Fig. 12-1. Let the
numbers n,, n,, and n, be laid off on three mutually perpendicular axes. Each
triad of values determines a point in n-space, with corresponding values of n and
of . Let & represent the total number of possible frequencies, up to and including
that corresponding to some given #. This is equal to the number of points within
an octant of a sphere of radius n, the volume of which is (=/6) n%, and since n =
(2L/e)r, s
gL,

3.
But L? is the volume ¥ of the cube, and it can be shown that regardless of the
shape of the solid we can replace L* with V. Then

g=122¥, (13-4)
e
However, three types of elastic waves can propagate in an elastic solid: a
longitudinal or compressional wave (a sound wave) traveling with speed ¢,, and
two transverse or shear waves polarized in mutually perpendicular directions and
traveling with a different speed ¢,. The total number of possible stationary waves
having frequencies up to and including some frequency » is therefore

g=2y(%+ 2 (13-5)
3 L

According to the Debye theory Eq. (13-5) can also be interpreted as de-
scribing the number of linear oscillators having frequencies up to and including the
frequency . Thus, to be consistent with the notation of Section 12-2, ¢ in Eq.

(13-5) should be replaced by 4" and

Hw “?” V(;l-: + ZZ:)”' (13-;
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If there were no upper limit to the frequency, the total number of oscillators
would be infinite. But a crystal containing N atoms constitutes an assembly of
3N linear oscillators. Hence we assume that the frequency spectrum cuts off at a
maximum frequency ¥, such that the total number of linear oscillators equals 3N,
Then setting #” = 3N and » = »,,,

4m (1 2
AIN=—V|= —)’. 13-
Tv(5+3)n (137

The wave speeds ¢, and ¢, can be calculated from a knowledge of the elastic
properties of a given material and hence »,, can be calculated from this equation.
In a material like lead, which is easily deformed, the wave speeds are relatively
small, while in a rigid material like diamond, the speeds are relatively large. Hence
the value of »,, for lead is much smaller than it is for diamond.

That there should be a maximum frequency of the stationary waves that can
exist in a real solid can be seen as follows. For a single set of waves of speed ¢,
the maximum frequency »,, corresponds to a minimum wavelength 4., = ¢/»,,,
and Eq. (13-7) can be written

4m\13 e
= (5) ()" “oe
But (V/N) is the average volume per atom and the cube root of this, (V/N)'4, is
of the order of the average interatomic spacing. Hence the structure of a real
crystal (which is not a continuous medium) sets a limit to the minimum wave-
length which is of the order of the interatomic spacing, as would be expected since
shorter wavelengths do not lead to new modes of atomic motion. It follows from
Eqgs. (13-6) and (13-7) that
3N
A =
2

The number of linear oscillators having frequencies between v and » + Ay is
then
ok, =24, (13-9)

and the number per unit range of frequency is

ol T LT 13-10
——,
TRk ) (13-10)
Figure 13-3 is a graph of AA4",/Av, plotted as a function of ». The actual
number of oscillators of frequency between » and » + Av is represented by

the area of the shaded vertical strip, since the height of the strip is AA#",/Av and
its width is Av. This is in contrast to the Einstein model, in which all oscillators
have the same frequency. The total area under the curve corresponds to the total
number of linear oscillators, 3N.
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The oscillators of any frequency » constitute a subassembly of linear oscillators
all having the same frequency, as in the Einstein model. Then from Eq. (12-48)
the internal energy AU, of the subassembly, replacing 3N with A4",, is

Ay m My, (13-11)
+3, exp (hv[kT) — 1
‘We omit the constant zero-point energy since this has no effect on the heat capacity.

The point of view thus far, in this section and in the preceding one, has been
to consider the atoms of a crystal as distinguishable particles obeying the M-B
statistics. An alternative approach is to consider the elastic waves themselves as
the “particles” of an assembly. Each wave can also be considered as a particle
called a phonon, and the assembly described as a phonon gas. Since the waves or
phonons are indistinguishable, and there is no restriction on the number permitted
per energy state, the assembly obeys the Bose-Einstein statistics.

We must, however, make one modification in the expression previously
derived for the distribution function in this statistics, This is because the number
N of waves, or phonons, in contrast to the number of atoms of a gas in a container
of specified volume, cannot be considered one of the independent variables speci-
fying the state of the assembly. If the assembly is a gas, we can arbitrarily fix both
the volume ¥ and the temperature T of a container, and still can introduce any
arbitrary number N of molecules of gas into the container. But when the volume
and temperature of a crystal are specified, the crystal itself, so to speak, deter-
mines the number of different waves, or phonons, that are equivalent to the oscilla-
tions of its molecules. Thus the crystal cannot be considered an open system for
which N is an independent variable and the term u dN does not appear in Eq.
(11-22). This is equivalent to setting x = 0 and hence exp (u/kT) = 1. The
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number of “particles™ in a macrolevel between e and € + Ae is therefore

Ay

AN = ——— 13-12

| exp (¢/kT) = 1 ( )

According to the principles of quantum mechanics, the energy of a wave (or
phonon) of frequency » is

€= hy,

where h is Planck’s constant. Unlike a linear oscillator of frequency », which can

have any one of the energies (n, + §)hv, where n, = 0,1,2,...,etc., a wave of

frequency » can have only the energy hv. Thus if a large amount of energy is

associated with a given frequency, this simply means that a large number of waves,

or phonons, all of the same energy, are present in an assembly.
An energy interval between € and € + Ae therefore corresponds to a frequency

interval between v and » + Av. Thus the number of phonons with frequencies
between v and » + dv is
A,
Ny — 13-13
" exp(hy/kT) — 1" ( )
where A%, is the number of states having frequencies between » + ¥ + dv.
The energy AU, of the waves in this frequency interval is
hvA¥,
exp (hy/kT) = 1"
and comparison with Eq. (13-11) shows that

AG, = 3—,:' ¥ Ar, (13-14)

AU, = AN, =

which is the same as the expression for the number of distinguishable oscillators
in this frequency interval. That is, the degeneracy A%, of a macrolevel is equal to
the number of distinguishable oscillators in the same interval. Equation (13-13)
can therefore be written
9N » Ay
T T TR 13-15
Y= exp (k) — 1 i

There appears at first sight to be a discrepancy between the expression for
A, in the preceding equation and that in Eq. (13-9). However, the symbol
A", does not represent the same thing in the two equations. In Eq. (13-15),
A, is the number of indistinguishable waves (or phonons) having frequencies
between » and » + Av, in a system obeying the B-E statistics. In Eq. (13-9),
A, is the number of distinguishable oscillators having frequencies in the same
range, in a system obeying M-B statistics.
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The total energy U of the assembly is now obtained by summing the expression
for AU, over all values of » from zero to ¥, and after replacing the sum with an

integral, we have
N[ h?
Umes | ———————iily, 13-1
2 expkT) =1 (13-16)
The Debye temperature Oy is defined as
oo = 2=, (13-17)
k
and 0y, is proportional to the cut-off frequency v,. Some values are given in Table

Table 13-1 Debye temperatures of
some materials

Substance 0p(K)
Lead B8
Thallium 96
Mercury 97
lIodine 106
Cadmium 168
Sodium 172
Potassium bromide 177
Silver 215
Calcium 226
Sylvine (KCI) 230
Zinc 235
Rocksalt (NaCl) 281
Copper s
Aluminum 398
Iron 453
Fluorspar (CaFy) 474
Iron pyrites (FeSy) 645
Diamond 1860

For convenience, we introduce the dimensionless quantities

S hy & hy, Op
Tkt ™ kT T
Then
9 Tm 3
Uis DNRT(I) f R (13-18)
Op/Jo exp(x) =1
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This corresponds to Eq. (13-1) for the energy U according to the Einstein theory.
Consider first the high temperature limit, at which x = hy/kT is small. Then
[exp (x) — 1] = x and the integral becomes
il 2 6}
Vdx = =2 =L,
J: * 33T
Then at high temperatures,

U =3NKT, ¢, =3R,

in agreement with the Einstein theory and the Dulong-Petit law.

At intermediate and low temperatures, the value of the integral can be expressed
only as an infinite series. To a good approximation, the upper limit of the integral
when T is very small can be taken as infinity instead of x,, since the integrand is
small for values of x greater than x,,. The definite integral then equals #4/15, and

hence at low temperatures,
U=2 w‘NkT(-{)';
5 0

and by differentiation, o

1274 ( T
€= ——R{——). 13-19
* =5 "o, ( )
Equation (13-19) is known as the Debye T? law. According to this law, the
heat capacity near absolute zero d with the cube of the temperature,

instead of exponentially as in the Einstein theory. The decrease is therefore less
rapid and the agreement with experiment is much better. Although the Debye
theory is based on an analysis of elastic waves in a homogeneous, isotropic, con-
tinuous medium, experimental values of the specific heat capacity of many
crystalline sclids are in good agreement with the Debye theory at temperatures
below /50, or when T/, < 0.02. As the temperature is increased, the specific
heat capacity increases somewhat faster than the theory would predict. There is
recent experimental evidence that amorphous materials do not appear to follow
the Debye 7[* law even at temperatures below 05/100, or when T/8;, < 0.01.

The heat capacity at any temperature can be calculated by evaluating the inte-
gral in Eq. (13-18), which gives the internal energy as a function of T, and differen-
tiating the result with respect to T As in the Einstein theory, the result is a function
of T]y only, and hence a single graph represents the temperature variation of ¢,
for all substances. The curve in Fig. 13-4 (what can be seen of it) is a graph of
c,[R, plotted as a function of T/6p, and the points are experimental values for a
variety of materials.

It will be seen from Fig. 13-4 that roughly speaking, when T/0, is greater than
1, or when the actual temperature exceeds the Debye temperature, the system
behaves “classically” and ¢, is nearly equal to the “classical” or “non-quantum”
value 3R. When the actual temperature is less than the Debye temperature,
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Fig. 13-4 Specific heat capacities of various solids as functions of T/f.

quantum effects become significant and c, decreases to zero. Thus for lead, with a
Debye temperature of only 88 K, *“room temperature” is well above the Debye
temperature, while diamond, with a Debye temperature of 1860 K, is a “‘quantum
solid™ even at room temperature.

At intermediate temperatures there is good agreement between values of the
specific heat capacity calculated by the Einstein and by the Debye theories. This
agreement might be expected, since the Dulong-Petit theory is a first approximation
that works at high temperatures. The Einstein theory is a second approximation
which works for high and intermediate temperatures. The Debye theory is a third
approximation that works at low temperatures when other effects do not dominate.

13-3 BLACKBODY RADIATION

The thermodynamics of blackbody radiation was discussed in Section 8-7 and
we now consider the statistical aspects of the problem. The radiant energy in an
evacuated enclosure whose walls are at a temperature T is a mixture of electro-
magnetic waves of all possible frequencies from zero to infinity, and it was the
search for a theoretical explanation of the observed energy distribution among
these waves that led Planck to the postulates of quantum theory.

To apply the methods of statistics to a batch of radiant energy, we consider
the waves themselves as the *“particles” of an assembly. Each wave can be con-
sidered a particle called a photon and the assembly can be described as a photon
gas. Because the photons are indistinguishable and there is no restriction on the
number per energy state, the assembly obeys the Bose-Einstein statistics.
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The problem is very similar to that of a phonon gas discussed in the preceding
section. The number of photons in the enclosure cannot be considered an inde-
pendent variable and the B-E distribution function reduces to the simpler form,

_ A,
" exp(hkT) = 1"

There is, however, a difference in the expression for the degeneracy AY,.
As we showed in the preceding section, the degeneracy of a macrolevel, in an

assembly of waves (or photons) is equal to the possible number A%, of stationary
waves in the frequency interval from » to » + Av. Let us return to Eq. (13-5),

v

where & is the number of stationary waves with frequencies up to and including ».
Electromagnetic waves are purely transverse and there can be fwo sets of waves,
polarized in mutually perpendicular planes and both traveling with the speed of
light ¢. Also, since empty space has no structure, there is no upper limit to the
maximum possible frequency. Then interpreting & as the total number of possible
energy states of all frequencies up to and including », we have
oLy e

=35

The degeneracy A%, is therefore

AY, = -az—vv’ﬁv,

and the number of waves (or photons) having frequencies between » and » + Ay
is

8wV »*
AN, = —— —————— Ay, 13-20
Y exp(hr/kT) — 1 ! ( )
The energy of each wave is kv, and after dividing by the volume ¥, we have
for the energy per unit volume, in the frequency range from » to » + A, or the
spectral energy density Au,,
Au, =

8wh »
e Ay
¢ exp(hv/kT) — 1

This equation has the same form as the experimental law (Planck's law) given in

Section 8-7, and we now see that the experimental constants ¢, and c; in Eq.
(8-50) are related to the fundamental constants 4, ¢, and k, by the equations

8xh h

o a=1 (13-22)

(13-21)
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When numerical values of &, ¢, and & are inserted in these equations, the cal-
culated values of ¢, and ¢, agree exactly with their experimental values, within the
limits of experimental error.

At a given temperature T, and at high frequencies for which kv 3> kT, the
exponential term is large; we can neglect the 1; and

Au, ~ % »* exp (—hv/kT) Av. (13-23)

An equation of this form had been derived by Wien* before the advent of quantum
theory and it is known as Wien's law. It is in good agreement with experiment at
high frequencies but in very poor agreement at low frequencies.

However, at low frequencies for which hy & kT, [exp (hv[kT) — 1] is very
nearly equal to hv/kT and

Ay, =~ 8’:# » Av. (13-24)
This equation had been derived by Rayleight and Jeans,} also before the quantum
theory, and had been found to agree with experiment at low, but not at high, fre-
quencies. That it cannot be correct in general can be seen by noting that as the
frequency becomes very high, the predicted energy density approaches infinity.
(This result is sometimes referred to as the “ultraviolet catastrophe.”)

It is interesting to note that Planck’s first approach to the problem was purely
empirical. He looked for an equation having a mathematical form such that it
would reduce to the Wien equation when hv/kT was large, and to the Rayleigh-
Jeans equation when Av/kT'was small. He found that Eq. (13-21) had this property,
and his search for a theoretical explanation of the equation led to the development

of quantum theory.

Figure 13-5 sh hs of the dimension] it A"'( e ) fotted

igure shows graphs of the dimensionless quantity =\ ===, plotte

as a function of the dimensionless quantity /iv/kT. The solid curve is a graph of
Planck’s law, and the dotted curves are, respectively, graphs of the Rayleigh-
Jeans law, applicable when hv <C kT, and of Wien's law, applicable when
hv 3 kT.

The total energy density u,, including all frequencies, can now be found by
summing Au, over all values of » from zero to infinity, since there is no limit to the
maximum value of », Replacing the sum with an integral, we have

_ 8nh

[ st
u, = ——y;
" Jo exp (fkT) — 1

* Wilhelm Wien, German physicist (1864-1928).
t John W. Strutt, Lord Rayleigh, English physicist (1842-1919),
1 Sir James H. Jeans, English mathematician (1877-1946).
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Fig. 13-5 Graphs of Planck’s law, Wien’s law, and the
Rayleigh-Jeans law.

or, if we define a dimensionless variable x = lw/kT,

4 - a
i 8k T.I x*dx
0

= exp(x) — 1~

The value of the definite integral is /15, so

S
=, :‘T’:,—’;-, T* = oT, (13-25)
where
s Ek-l
G- (13-26)

Equation (13-25) is the same as Stefan's law (Eq. (8-54)); and when the values of
k, ¢, and h are inserted in Eq. (13-26), the calculated and experimental values of ¢
agree exactly, within the limits of experimental error.

Thus quantum theory and the methods of statistics provide a theoretical basis
for the form of Planck’s law, and relate the experimental constants ¢,, ¢, and ¢
to the fundamental constants /, ¢, and k. Expressions for the internal energy, the
entropy, and the Helmholtz and Gibbs functions of blackbody radiant energy were
derived by the principles of thermodynamics in Section 8-7 and need not be
repeated here. It will be recalled that the Gibbs function G = 0, which might also
have been taken as a justification for setting 4 = 0 in the B-E distribution function.

L T
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13-4 PARAMAGNETISM

We now consider the statistics of a paramagnetic crystal. The properties of such
crystals are chiefly of interest in the region of extremely low temperatures, of the
order of a few kelvins or less. A number of simplifying assumptions will be made,
but the procedure is the same as in more complicated cases.

A typical paramagnetic crystal is chromium potassium sulfate, Cr,(50,)y
K,80,-24H,0. Its paramagnetic properties are due solely to the chromium atoms,
which exist in the crystal as ions, Cr*+*, Every electron in an atom has not only an
electric charge but also a magnetic moment uy, of 1 Bohr* magneton, equal (in
MKS units) to 9.27 x 10-2 A m?, as if the electron were a tiny sphere of electric
charge spinning about an axis. In most atoms, the resultant magnetic moment of
the electrons is zero, but the chromium ion Cr*++ has three uncompensated electron
spins and a magnetic moment of 3up.

For every chromium ion there are 2 sulfur atoms, | potassium atom, 20
oxygen atoms, and 24 hydrogen atoms, making a total of 47 other particles which
are nonmagnetic. The magnetic ions are therefore so widely separated that there
is only a small magnetic interaction between them.

It was shown in Section 8-8 that the thermodynamic properties of a para-
magnetic crystal could be calculated from a knowledge of the quantity F* =
E — TS. Using the methods of statistics, the expression for F* can be derived in
terms of the temperature 7 and the parameters that determine the energy levels of
the atoms in the crystal. Because the atoms can be labeled according to the
positions they occupy in the crystal lattice, the system obeys M-B statistics, and as
usual the first step is to calculate the partition function Z, defined as

Z=SA%, exp——L,
; 18P T pr

Because of their oscillatory motion, the molecules have the same set of vibra-
tional energy levels as those of any solid, and the total vibrational energy con-
stitutes the internal energy U,,,. In addition, the small interaction between the
magnetic ions, and their interactions with the electric field set up by the remainder
of the lattice, gives rise to an additional internal energy (of the ions only) which we
write as Uy,,. Finally, if there is a magnetic field in the crystal, set up by some
external source, the ions have a magnetic potential energy which, like the gravita-
tional potential energy of particles in a gravitational field, is a joint property of
the ions and the source of the field and cannot be considered an internal energy.
The total magnetic potential energy is E,.

The vibrational energy levels, the levels associated with internal magnetic and
electrical interactions, and the potential energy levels are all independent. The
partition function Z, as in the case of a gas in a gravitational field, can be expressed

* Niels H. D. Bohr, Danish physicist (1885-1962).



400 APPLICATIONS OF QUANTUM STATISTICS TO OTHER SYSTEMS 13-4

as the product of independent partition functions which we write as Z,;,,, Z;,, and
Zy. Thus

Z = ZeinZintZ -

The magnetic ions constitute a subassembly, characterized by the partition
functions Z,,,, and Z, only, and they can be considered independently of the
remainder of the lattice, which can be thought of simply as a container of the sub-
assembly. Although the energy U, and the partition function Z;,, play important
roles in the complete theory, we shall neglect them and consider that the total
energy of the subassembly is its potential energy E, only. Thus we consider only
the partition function Z .

As shown in Appendix E, the potential energy of an ion in a magnetic field of
intensity 5 is —p# cos 0, where u is the magnetic moment of the ion and 6 the
angle between its (vector) magnetic moment and the direction of the field. For
simplicity, we consider only a subassembly of ions having 2 magnetic moment of
1 Bohr magneton up. The principles of quantum mechanics restrict the possible
values of 8, for such an ion, to either zero or 180°, so that the magnetic moment is
either parallel or antiparallel to the field. (Other angles are permitted if the
magnetic moment is greater than uyg). The corresponding values of cos 8 are then
+1 and —1, and the possible energy levels are —up o and +ups#. The energy

levels are nondegenerate; there is only one state in each level, but there is no
restriction on the number of ions per state, The partition function Z, therefore
reduces also to the sum of two terms:

- #af) (—-:un-’f") _ i
Zy exp( T + exp T 2 cosh T’ (13-27)

since by definition the hyperbolic cosine is given by
cosh x = }[exp (x) + exp (—)).
Let N, and N, represent respectively the number of ions whose moments are
aligned paraliel and antiparallel to the field #”. The corresponding energies are

€ = —uys#t’ and €; = upd’. The average occupation numbers in the two
directions are then

N — N €
Me=—exp—t, N =—ep—.
1=z %% V=2 Py

The excess of those ions in the parallel, over those in the antiparallel alignment,

is
N €4 € N_  upst
Ny= N = E[cxp (-—- ﬁ) -~ exp (H)] =3 2sinh =,
which reduces to

Ni= N = Ntanh“%. (13-28)
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The net magnetic moment M of the crystal is the product of the magnetic
moment uy of each ion and the excess number of ions aligned parallel to the field.
Then

M = (Nt — Fpy = Nﬂ,.tanhg;-:—;—-r. (13-29)

This is the magnetic equation of state of the crystal, expressing the magnetic

moment M as a function of #” and 7. Note that M depends only on the ratio
xn’;‘hc equation of state can also be derived as follows. The function F* is

F*= —NkTInZ = —NkT In [2 cosh "‘:ﬂ (13-30)

}he: magnetic moment M, which in this case corresponds to the extensive variable

, s

aF* unt
M=-(—)=~ HoX 13-31
2oty Newtanh = L

In strong fields and at low temperatures, where up3# > kT, tanh (ug3#°/kT)
approaches 1 and the magnetic moment approaches the value
M = Nyy. (13-32)

But this is simply the saturation magnetic moment M, which would result if all

ionic magnets were parallel to the field.
At the other extreme of weak fields and high temperatures, up” « kT,

tanh (upo#’ |k T) approaches uy,#’(kT, and Eq. (13-31) becomes
N,uﬁ,).;t"
M= (m e 13-33

t /T (13-33)
But this is just the experimentally observed Curie law, stating that in weak fields
and at high temperatures the magnetic moment is directly proportional to (3/T),
or [
Mo G2, (13-34)

T

where Cg is the Curie constant. The methods of statistics therefore not only lead
to the Curie law, but they also provide a theoretical value of the Curie constant,

namely,
o= Nk
Pk

(13-35)

Workers in the field of paramagnetism customarily use cgs units. The unit of

magnetic intensity is | oersted* [(1 Oe) equal to 10~* A m®] The Bohr magneton is
up = 0927 x 107%erg Oe™?,

* Hans C. Oersted, Danish physicist (1777-1851).
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and the Boltzmann constant is

k =138 x 1070 erg K-,
If the number of particles is Avogadro’s number N, equal to 6.02 x 10% cgs units,
the Curie constant as given by Eq. (13-33) is

N 2 '
Co = 22 _ 0376 cm® K mole-L,

The complete theory leads 1o the result that for chromium ions CrH+, of magnetic
moment 3uy, the value of Cy, is 5 times as great, or
Cy =5 x 0,376 = 1.88 cm® K mole™,
The experimentally measured value is
Cg = 1.84 cm® K mole™!

in good agr with the predictions of quantum theory.
The ratio M| M, is
H
LA (13-36)
aat kT

Figure 13-6is a graph of the magnetization curve of the system, in which the ratio
MM, is pJ:Jltcd as a function of pgs#’[kT. The magnetization curve represents
the balance struck by the system between the ordering effect of the external field
#, which is to align all ionic magnets in the direction of the field, and the dis-
ordering effect of thermal agitation, which increases with temperature. In weak

1.0, r
08+
0.6
M
M
" D.4|-
0.2
[l 1 ) 1 J
1 2 k] 4
g ¥
kT

Fig. 13-6 Magnetizalion curve of a para-
magnetic crystal,
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fields the values of the two energy levels are nearly equal, both are nearly equally
populated, and the resultant magnetic moment is very small. In strong s, the
difference between the energy levels is large, the ordering effect predominates, and
nearly all magnets line up in the lower energy level where they have the same
direction as #”.
It will be seen from Fig. 13-6 that saturation, as predicted by quantum theory,
is very nearly attained when py#°/kT = 3, or when
oL 45k0e K™,
T s
Hence, if T = 300 K, 2 field of 13.5 x 10® Oe would be required for saturation.
On the other hand, if the temperature is as low as | K, a field of 4.5 x 10¢ Oe
would produce saturation, and at a temperature of 0,1 K, a field of only 4.5 x 10*
Oe would be required. (Modern superconducting electromagnets can produce
magnetic intensities up to 1.5 x 10° Oe.)
We now calculate the other thermodynamic properties of the system. The
total energy E, which in this case is the potential energy E,,, is

dln Zy
2
E=E, = Nkr,( = )’
Hnt upt
= —Nk(~——-)t h ' 3-
P an T (13-37)
Comparison with Eq. (13-29) shows that the potential energy is
E, = —#'M. (13-38)

The potential energy is negative because of our choice of reference level; that
is, the potential energy of a magnetic dipole is set equal to zero when the dipole is
at right angles to the field.

The heat capacity at constant 3¢ is

ce = (are

N g

Nk( T sech ek (13-39)

Figure 13-7 shows graphs of E,, and C,., (both divided by Nk) as functions of

kT[up#. The curves differ from the corresponding curves for the internal energy

and heat capacity of an assembly of harmonic oscillators because there are only

two permitted energy levels and the energy of the subassembly cannot increase
indefinitely with increasing temperature.
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Fig. 13-7 The specific potential energy and specific
heat capacity at constant magnetic intensity, both
divided by Nk, for a paramagnetic crystal as a
function of kT[upH.

Let us compare the heat capacity C,p of the magnetic ion subassembly with the
heat capacity Cy of the entire crystal. Let T = 1 K and # = 10* Oc. Then
kT ¥
Bl P PP
ot 1.5, sech’ AT =~ 0.81,
and by Eq. (13-39),
Cor == Nk(1.5)* x 0.81 == 0.36 Nk,

Assuming there are 50 nonmagnetic particles for every magnetic ion, and laking a
Debye temperature of 300 K as a typical value, we have from the Debye T° law,

120 1 \2
Cy = Nk(50) x —5-(3—)

0.5 x 105 Nk,

At this temperature, then, the heat capacity of the magnetic ions is about 100,000
times as great as the vibrational heat capacity of the crystal lattice. Much more
energy is required to orient the ionic magnets than lo increase the vibrational energy
of the molecules of the lattice. It is this energy of orientation which allows the cooling
of the lattice during the process of adiabatic demagnetization described in Section 8-8.

The entropy of the subassembly can now be calculated from the equation
F* = E — TS. From Eqs. (13-30) and (13-37) we have

- F* A H
SaE TF = Nk[ln (2coshF::—T) ——;"Ttanh’%]. (13-40)

R
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Fig. 13-8 The entropy of a paramagnetic
crystal, '

Figure 13-8 is a graph of S/Nk, plotted as a function of kT/u, /. At a given
value of 2, S approaches zero as T approaches zero. At this temperature, all
dipoles are in their lower energy state; there is only one possible microstate; and
S=kinQ=1FkInl =0. At the other limit, when kT » pps#,

cosh (upH#[kT) — |, (upH[kT)— 0, tanh (u, J[kT) — 1,

and § — Nk In 2. The entropy is also a function of (3#/T)only. In a reversible
adiabatic demagnetization, S and hence (J#/T) remains constant, Thus as #
is decreased, T must decrease also in agreement with the thermodynamic result.

13-5 NEGATIVE TEMPERATURES

Consider again a system with just two possible magnetic energy levels, in which the
magnetic moment gy of a particle can be either parallel or antiparallel to a mag-
netic intensity . The energy of the lower level, in which sy, is parallel to 4, is
€ = —ppH’; and that of the upper level, in which u), is opposite to 5, is
€ = +upd’. In the equilibrium state at a temperature T, the average occ‘)pation
numbers of the levels are

N, = N exp (‘_")l

A kT
N (_52)
A z o7 )
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The ratio N,/N, is

R-en(257)

7, KT
or
T= l[lﬁ._ (1341)
klin ¥, — In N, J°

and we can consider this as the equation defining T, in terms of ¢, €, N, and N,
If &, > ¢ and N, > N,, the right side of the equation is positive and T'is positive.
The situation can be represented graphically as in Fig. 13-9(a), in which the
lengths of the heavy lines correspond to the average occupation numbers N, and
N;. |

A Iir

€= =g o=+ igH 6==ug¥ €=+ ug¥

(a) (b)

Fig. 13-9 (a) In the state of stable equilibrium the occupation
number N, of the level of lower energy is larger than the
occupation number N, of the level of higher energy.
(b) Population inversion immediately after the magnetic
intensity o has been reversed.

Now suppose the direction of the magnetic intensity is suddenly reversed.
Those magnetic moments that were parallel to the original field, and in the state
of lower energy e,, are opposite to the new field and are now in the higher-energy
state, while those that were opposite to the original field, and in the higher-energy
state €,, are parallel to the new field and are now in the lower-energy state. Even-
tually, the moments in the higher-energy state will flop over to the new lower-
energy state, but immediately after the field has been reversed, and before any
changes in occupation numbers have taken place, the situation will be that de-
picted in Fig. 13-9(b). The average occupation number 7 of the new upper state
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is the same as the number N, in the original lower state, and the occupation number
i of the new lower state is the same as the number N, in the original upper state.
We say there has been a population inversion. Then if we consider that the tem-
perature of the system is defined by Eq. (13-41), and if T' is the temperature
corresponding to Fig. 13-9(b),

' 1 € = €
&=, 2
o k[]n Ni—In N;] iuH )

Since Nj is greater than Nj, the denominator on the right side of the equation is
negative and T" is negative.

Negative temperatures can be looked at from another viewpoint. At a tem-
perature T = 0, all magnets are in their lower-energy states. As the temperature is
increased, more and more magnets move to the state of higher energy and when
T = 4, both states are equally populated. Then one might say that if the
number in the higher state is even greater than that in the lower state, as it is when
there is a population inversion, the temperature must be hotter than infinity.
We thus have the paradoxical result that a system at a negative temperature is
even hotter than at an infinite temperature,

In paramagnetic substances, the interactions between the ionic magnets and
the lattice are so great that the substance cannot exist in a state of population in-
version for an appreciable time. However, it was found by Pound, Purcell, and
Ramsey, in 1951, that the nuclear magnetic moments of the lithium atoms in LiF
interact so slowly with the lattice that a time interval of several minutes is required
for equilibrium with the lattice to be attained, a time long enough for experiments
to be made showing that a population inversion actually existed.

13-6 THE ELECTRON GAS

The most important example of an assembly obeying the Fermi-Dirac statistics
is that of the free electrons in a metallic conductor. We assume that each atom in
the crystal lattice parts with some (integral) number of its outer valence electrons
and that these electrons can move freely throughout the metal. There is, of course,
an electric field within the metal due to the positive ions and which varies widely
from point to point, On the average, however, the effect of this field cancels out
except at the surface of the metal where there is a strong localized field (or potential
barrier) that draws an electron back into the metal if it chances to make a small
excursion outside the surface. The free electrons are therefore confined to the
interior of the metal in much the same way that gas molecules are confined to the
interior of a container. We speak of the electrons as an eleetron gas.

The degeneracies of the energy levels are the same as those of free particles
in a box, with one exception. There are two sets of electrons in a metal, identical
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except that they have oppositely directed spins. The Pauli exclusion principle,
instead of asserting that there can be no more than one particle per state, now
permits fwo electrons per state provided they have oppositely directed spins. This
is equivalent to doubling the number of states in a macrolevel, or the degeneracy
A% of the macrolevel, and permitting only one electron per state. Hence, instead
of Eq. (12-17) we have
3
Ag, =Y ap,
h

It will be more useful to express the degeneracy in terms of the kinetic energy

€ = {mv®. Then since

12 1/2
= 2‘. V= (%) e Av= %(-—2-) 2 Ae,
m

it follows that
2m\"? 5
AY, = 4#V(-;'-.-) € Ae. (13-43)
If for brevity we set
32
dm 4frv(2h-'—;‘) : (13-44)
then

AY, = A Ae. (13-45)

The degeneracy therefore increases with the square root of the energy. Then from
the F-D distribution function, Eq. (11-40), the average number AA” of electrons

in a macrolevel is
e
AN = ag, - s Ae.  (13-46)
exp [(e — p)/kT] + 1 exp [(e — u)/kT] + 1
The chemical potential u can be evaluated from the requirement that ¥ AA” =
N, where N is the total number of electrons. Replacing the sum with an integral,
we have

y J“” £ d
i S iy
o exp [(e — w)/kT] + 1
The integral cannot be evaluated in closed form and the result can be expressed
only as an infinite series. The result, first obtained by Sommerfeld,* is

o

The quantity g is a constant for a given metal and is called the Fermi energy.
As we shall show, e is a function of the number of electrons per unit volume, N/¥,

* Arnold J. W, Sommerfeld, German physicist (1868-1951),
} phys
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so the preceding equation expresses u as a function of T'and N/V. When T = 0,
4° = €p. The distribution function at T = 0 is then

~ A9,
T expl(e — ep)kT) + 1°

The significance of the Fermi energy €, can be seen as follows. In all levels
for which € < ey, the difference (¢ — ¢y is a negative quantity, and at T = 0,

0 (13-48)

€ —€p
—_— =

—00,
kT
The exponential term in Eq. (13-48) is then zero and in all levels for which
< €p,
. AN = AT, = A Ae. (13-49)

That is, the average number of electrons in a macrolevel equals the number of
states in the level, and all levels with energies less than e are fully occupied with
their quota of one electron in each state.

Fig. 13-10 Graphs of the distribution function of the
free electrons in a metal, at T = 0 and at two higher
temperatures Ty and Ty,

In all levels for which € > ep, the term (¢ — €g) is positive. Henceat T' =0
the exponential term equals + oo and A" = 0. Thus there are no electrons in
these levels and the Fermi energy ep is the maximum energy of an electron at
absolute zero. The corresponding level is called the Fermi level.

The solid curve in Fig. 13-10 is a graph of the number of electrons per unit
energy interval, ANC/Ae = Ae2, at T = 0. The curve extends from e = 0 to
€ = €, and is zero at all energies greater than ep.

An expression for the Fermi energy can now be obtained from the requirement
that ¥ AA4™ = N. Replacing the sum with an integral, introducing the distri-
bution function at T = 0, and integrating over all levels from Zero to €5, we have

“r
N= AJ‘ de = gAs¥';
0 3 |
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or, after inserting the expression for A,

ha 3_1‘()“
iy Sm(er ) (13-50)

Thus as stated earlier, g is a function of the number of electrons per unit
volume, N/¥, but is independent of T.

As a numerical example, let the metal be silver, and since silver is monovalent we
assume one free electron per atom. The density of silver is 10.5 x 10° kg m™3, its
atomic weight is 107, and the number of free electrons per cubic meter, N/V, equals
the number of atoms per cubic meter which is 5.86 x 10%, The mass of an electron
is9.11 x 100 kgand & = 6.62 x 10"*Js. Then

€p =91 x 1077] =56eV.

The total energy U of the electrons is
U=3JeAAN, (13-51)

or, replacing the sum with an integral,
4 J‘“’ 32 4
= el = wikTT 1%

Again, the integral cannot be evaluated in closed form and must be expressed
as an infinite series. The result is

3 S5mt kT)’ ﬂ‘(k \ ]
==Neg|1 + (L) - Z(22 ool
5 "’[ 3 (sF P b g B30
When T'= 0,
V= %Nep. (13-53)

It is left as a problem to show that the same result is obtained if one inserts
in Eq. (13-51) the expression for the distribution function at " = 0, and integrates
frome =010 ¢ = ep.

The mean energy per electron at absolute zero is

o 0
€ = = 5 €p.
Hence for silver,

& = g X 5.6eV ~ 3.5¢€V.

The mean kinetic energy of a gas molecule at room temperature is only about
0.03 eV, and the temperature at which the mean kinetic energy of a gas molecule
is 3.5 eV is nearly 28,000 K. Hence the mean kinetic energy of the electrons in a
metal, even at absolute zero, is much greater than that of the molecules of an

ordinary gas at temperatures of many thousand kelvins.
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At a temperature of 300 K, and for silver for which ep = 9.1 x 107*7,

kT _ 1.38 x 107 x 300

€ 9.1 x 107**
Thus at this temperature the terms in powers of (kT]e), in the series expansion in
Eq. (13-47), are all very small and to a good approximation one can consider that
u = g at any temperature.

The dotted curves in Fig. 13-10 are graphs of the distribution function AA4"/Ae,
at higher temperatures Ty and Ty, where T; > T. It will be seen that the occupation
numbers change appreciably with increasing temperature, only in those levels near
the Fermi level. The reason for this is the following. Suppose the energy U of the
metal is gradually increased from its value U° at T = 0, thus gradually raising its
temperature. In order to accept a small amount of energy, an electron must move
from its energy level at T = 0 to a level of slightly higher energy. But except for
those electrons near the Fermi level, all states of higher energy are fully occupied
50 that only those electrons near the Fermi level can move to a higher level when
the temperature is increased. With increasing temperature, those levels just below
the Fermi level become gradually depleted, electrons at still lower levels can move
to those that have been vacated, and so on.

For the particular level at which € = g, the quantity (¢ — p) = 0, and at any
temperature above T = 0, the exponential term in the distribution function equals
1, and the occupation number is

= 4.58 x 107°

AN =31A9F,
If the temperature is not too great, then to a good approximation g = ep
and to this approximation we can say that at any temperature above T = 0, the

Fermi level is 509 occupied.
The heat capacity at constant volume, Cy, is given by

- a_U)
Cr = (aT v

and from Eq. (13-52),

2 2 2
= E("—T)Nk[a a ll(ﬂ)+ 2 ] (13-54)
2\ep 10 \ep

If the temperature is not too great, we can neglect terms in powers of (kT}eg)
higher than the first, and to this approximation
2
Cp = l(k—T)Nk. (13-55)
2 \ep
Replacing Nk with nR, where n is the number of moles, and dividing both
sides by n, we have for the molal specific heat capacity of the free electrons in a

metal, i
¢, = l(k—T)R, (13-56)
2 \ep
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which is zero at T = 0 and which increases linearly with the temperature T. For
silver at 300 K, using the value of (kT]ey) previously calculated,

¢, = 2.25 x 10~°R.

The molal specific heat capacity of a monatomic ideal gas, on the other hand,
is
3
€y = 5 R.

Thus although the mean kinetic energy of the electrons in a metal is very much
larger than that of the molecules of an ideal gas at the same temperature, the energy
changes only very slightly with changing temperature and the corresponding heat
capacity is extremely small, This result served to explain what had long been a
puzzle in the electron theory of metallic conduction. The observed molal specific
heat capacity of metallic conductors is not very different from that of noncon-
ductors, namely, according to the Dulong-Petit law, about 3R. But the free elec-
trons, if they behaved like the molecules of an ideal gas, should make an additional
contribution of 3R/2 to the specific heat capacity, resulting in a value much larger
than that actually observed. The fact that only those electrons having energies
near the Fermi level can increase their energies as the temperature is increased
leads to the result above, namely, that the electrons make only a negligible contri-
bution to the heat capacity.

To calculate the entropy of the electron gas, we make use of the fact that in a
reversible process at constant volume, the heat flow into the gas when its tempera-
ture increases by dT is

dQ, = Cp dT = T dS;

and hence at a temperature T the entropy is

T T ,
sefte ["Cur
o T o T

Inserting the expression for Cy- from Eq. (13-54) and carrying out the integration,

we obtain

2 2 2

S= Nk -”-(E) [1 - l’—("‘—T) + o ] (13-57)
2 \ey 10\ ey

Hence the entropy is zero at T'= 0, as it must be since there is only one
possible mi¢rostate at 7" = 0 and at this temperature Q = 1, § = kInQ = 0.
The Helmholtz function F is
F=U-TS,

and from the expressions derived above for U and S,

3 [ Srr“(kT)‘ ]

F==Nep|l = —|—| 4 ---|. 5
g e " (13-58)

€y
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The pressure P of the electron gas is given by
BF)
P=—|—]),
(3V T

h* SN)“”
= 8m(7 '

and since

it follows that
2 Nc;[ Sn’(kT)" ]
Pe==—14——}+ ] 13-59
5 ¥ L 12\ ep * ( )
This is the equation of state of the electron gas, expressing P as a function of ¥V

and T.
Comparison with Eq. (13-52) shows that the pressure is two-thirds of the

energy density
P=

| h
<=

For silver, N/V == 6 x 10 electrons per cubic meter and ¢p = 10 x 1071*J,
Hence at absolute zero,

P=2x6x10®x10x107" =24 x 10°Nm™
== 240,000 atm!

In spite of this tremendous pressure, the electrons do not all evaporate spontaneously
from the metal because of the potential barrier at its surface.

PROBLEMS

13-1 (a) Show that the entropy of an assembly of N Einstein oscillators is given by

0gIT
S = 3Nk {cxp B =1 In[l —exp (—B],J'T)]].
(b) Show that the entropy approaches zero as T approaches zero and (c) that the entropy
approaches 3Nk[l + In(7/0g)] when T is large. (d) Make a plot of SR versus T/0.
13-2 (a) From Fig. 3-10 find the characteristic Einstein temperature 8y, for copper such
that the Einstein equation for ¢, agrees with experiment at a temperature of 200 K. (b)
Using this value of 6y, calculate ¢, at 20 K and 1000 K and compare with the experimental
values. (¢) Make a sketch of 8, versus temperature so that the Einstein equation for ¢,
will yield the experimental values.

13-3 The characteristic Debye temperature for diamond is 1860 K and the characteristic
Einstein temperature is 1450 K. The experimental value of ¢, for diamond, at a tem-
perature of 207 K, is 2.68 x 10%J kilomole™* K1, Calculate ¢, at 207 K from the Einstein
and Debye equations and compare with experiment.
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13-4 (a) Show that the heat capacity of a one-dimensional array of N coupled linear *

oscillators is given by
= x%e*dx

" 1 bl i

Cyp Jka;,J; o

where x = hv/kT, and it is d that both longitudinal and tra waves can
propagate along the array. (b) Evaluate this expression for Cy in the low and high
temperature limits.
13-5 To show that the Debye specific heat capacity at low temperature can be deter-
mined from measurements of the velocity of sound, (a) show that
A he ( N )“'
v = \an ’

1 11 2\,

a=iatal
and (b) show that the specific heat per kilogram ¢, is

E’L‘ E 1.22 |0"
Cy 3 "’ ’ca = x pc’ -

where p is the density of the material. (c) Calculate the average value of the sound velocity
in copper. For copper, p is approximately 9000 kg m~?and ¢, = 0.15J kg"' K~1at S K.
(d) Calculate a value for 6 and for », for copper. (e) Calculate the value of 4,,;, and
compare to the interatomic spacing, assuming that copper has a cubic structure.
13-6 Calculate values (a) for ¢, and ¢, of Eq. (13-22) and (b) for the Stefan-Boltzmann
constant o.
13-7 (a) Show that for electromagnetic radiation the energy per unit volume in the wave-
length range between 4 and 4 + di is given by

8whe di

o = TF exp (he[%T) — 1"

(b) Show that the value of A for which Au, is a maximum is given by 1,,T = 2.9 x 10—

m K. This is known as Wien's displacement law. (c) Calculate 4,, for the earth, assuming

the earth to be a blackbody.

13-8 (a) Show that Wien's law can be derived by assuming that photons obey M-B

statistics. (b) Show that Wien's law results in a total energy density which is nearly the

same as that derived in Section 13-3.

13-9 If the magnetic moment -g.u,, of an atom is large enough there will be 2J + 1

possible angles 0 between the mag and the applied magnetic i ity 2
corresponding to magnetic levels havmg energies ¢y = myuX where m; has values

between —J and +J. (a) Show that Z, will be given by

(2J + Dpor
nh ——————

2kT
Z= ' (13-60)

" ux
sin| T
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[Hint: See the derivation of Eq. (12-44).] (b) Show that the net magnetic moment of the

system is given by
2+ 1) p ut
M-N,u[ 3 colh(U+l)2Tr—mlhzTT].

This is called the Brillouin* function. (c) Show that the net magnetic moment follows
Curie’s law in the limit of high temperatures and low fields. (d) In the limit of low tem-
perature and high fields, show that all the dipoles are aligned. (¢) Show that the expression
for the net magnetic moment derived in part (b) reduces to Eq. (13-29) when2J 4+ 1 =2
and g = 2.

13-10 Use Eq. (13-60) of the previous problem to calculate the entropy of N distin-
guishable magnetic dipoles. Evaluate the expression in the limit of high and low tem-
peratures and make a graph of the entropy as a function of T and .

13-11 A paramagnetic salt contains 10% magnetic ions per cubic meter, each with a
magnetic moment of | Bohr magneton. Calculate the difference between the number of
ions aligned parallel 1o the applied intensity of 10 kOe and that aligned antiparallel at
(a) 300 K, (b) 4 K, if the volume of the sample is 100 cm®. Calculate the magnetic moment
of the sample at these two temperatures.

13-12 Use the statistical definitions of work, total energy, and net magnetic moment
to show that the work of magnetization is given by dW = —a#dM. [Hint: See Section
3-13)

13-13 Derive expressions for the magnetic contribution to the entropy and the heat
capacity at constant magnetic intensity J for the system discussed in Section 13-4, Sketch
curves of these properties as a function of /T,

13-14 Calculate the mean speed, the root-mean-square speed and the mean-reciprocal
speed in terms of vy = (2ex/m)"/2 for an electron gas at 0 K.

13-15 (a) Show that the average number of electrons having speeds between v and
v + dv is given by

8V vt Av
K exp [(bm? — wkT] +1°

(b) Sketch A4 /Av as a function of v*at T = 0 K.

13-16 (a) Calculate ¢, for aluminum assuming 3 electrons per aluminum atom. (b)
Show that for aluminum at 1000 K, u differs from e, by less than 0.01%. (c) Calculate
the electronic contribution to the molal specific heat capacity of aluminum at room
temperature and compare it to JR. (The density of aluminum is 2.7 x 10° kg m™* and
its atomic weight is 27.)

13-17 The Fermi velocity is defined as vg = (2¢,/m)"’* and the Fermi temperature as
Ty = cglk. (a) Calculate values of the Fermi velocity, momentum, and temperature for
electrons in silver. (b) Determine the magnitude of the second term in Egs. (13-47),
(13-52), (13-54), (13-57), (13-58), and (13-59) at room temperature. (c) At what tem-
perature does the second term contribute approximately a 17 correction in the above
equations?

AN, =

* Leon N. Brillouin, French physicist (1889-1969).
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13-18 Find the mean energy per electron by substituting the expression for A4 into
Eq. (13-51).
13-19 Derive Egs. (13-57), (13-58), and (13-59).

13-20 In a one-dimensional electron gas A%, = %{—‘ VZm]< A< where L is the length of
2

HN
the sample of N clectrons, (a) Sketch A4°(<) as a function of «. (b) Show that e = iR

(c) Find the average energy per electron at 0 K.

13-21 (a) Use the data shown in Fig. 7-7 to determine the Fermi energy of liquid He?
which can also be considered as a gas of particles obeying Fermi-Dirac statistics. (b)
Determine the Fermi velocity and temperature for He?®, (See Problem 13-17).

13-22 The free electrons in silver can be considered an electron gas. Calculate the com-
pressibility and expansivity of this gas and compare them to the experimental values for
silver of 0.99 x 107" m* N~? and 56.7 x 107 K1, respectively.
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A
Selected differentials from a condensed

collection of thermodynamic formulas
by P. W. Bridgman

Any partial derivative of a state variable of a thermodynamic system, with respect
to any other state variable, a third variable being held constant [for example,
(9u/dv) 7] can be written, from Eq. (4-20), in the form

(Bu/8z)p

@[3z

where z is any arbitrary state function. Then if one tabulates the partial aerivatives
of all state variables with respect to an arbitrary function z, any partial derivative
can be obtained by dividing one tabulated quantity by another. For brevity,
derivatives of the form (Qu/dz)p are written in the table below in the symbolic
form (9u)p. Then, for example,

(_a_lj) (Bu)y _ T(90[dT)p + P@vjoP)r _ TH P
/e (Av)p —(3v/dP)p K ’
which agrees with Eq. (6-9). Ratios (not derivatives) such as d'gp/dvp can be
treated in the same way. For a further discussion, see A Condensed CoﬂeL-ﬁon of
Thermodynamics Formulas by P. W. Bridgman (Harvard University Press, 1925),
from which the table below is taken.

(Ou[dv)y =

P constant T constant

@Np=1 (0P)p = —1

(v)p = (B0/0T)p (0v)p = —(0v/oP)r

(@s)p = cp/T (@s)p = (GufoT)p

(99)p = cp (99)p = T(90/oT)p

(Bw)_,. = P(@v[aT)p (@w)p = —p(2v/oP)y

(@u)p = cp — P(30[3T)p (a_u),. = T(dw/oT), + P(80/OP)p
@h)p = ¢cp (Oh)p = —v + T(3v/dT),
(@g)p = —s (@8)r = —v

@f)p = —s —P(30[0T)p (3)p = P(3v[3P)y

419
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h constant

@P), = —cp

(@T), = v = T(P0/3T);

(O), = —cp(Fvf0P)y — T(A0/3T)}
+ v(2v/3T),

(@) = vep/T

(@gh = vep

@w)y = —Plep(@0)dP)y + T(0/6T)p
— wdv[dT)p)

s constant

(@P), = —cp|T

(@T), = —(2v/0T)p

@), = — % [cp(2/2P)7 + T(@ofoT)3]

(99), =0

(i), i r‘—:[c,(ao,rap), + T@RT)L]

(@u), = -; [e(2/aP)7 + (T 30joTY}]

(@h), = —vep/T
(@), = — %,[»c,, — ST(30j3T),]

@, = %[Pc,,(ao;ai’)r + PT@0foT)
+ sT(v[0T)p]

g constant
@), =s
(@T), = v
(@v), = v(@v[dT)p + s(3v[3P)p

(@), = 1 locp = ST@f2T)y)

(@9), = —sT(@v/dT)p + vep
(@w), = P[u(Gv/@T)p + s(v/dP)g]

v constant
(@P), = —(@v[0T)p
(@7), = (2vfaP)r

@), = 1{ [cA0/aP) ¢ + T(30/OT)%]

(3q), = cp(30[0P)7 + T(0/3T)5.

(@w), =0 )

(Qu), = ¢ (B0[dP)p + T(30/OT)}

(@h), = ¢; (03P + T(8v/0T)}
— W@u)aT),

(98), = —v(00[3T)p — s(20/2P)p

@), = —s(@v/aP)y



The Lagrange method of undetermined
multipliers

In an algebraic equation such as
ax + by =0, (B-1)

one is accustomed to consider one of the variables, say x, as the independent
variable and the other variable, y, as the dependent variable. The equation is then
considered as imposing a relation between the dependent and independent variables
in terms of the coefficients @ and b, namely, in this case, y = —(a/b)x.

Suppose, however, that both x and y are independent variables. Then y may
have any value regardless of the value of x, and we can no longer require that
y = —(afb)x. The equation ax + by = 0 can be satisfied for any pair of variables
xand yonlyifa=0,b=0.

Suppose next that x and y are not completely independent but must also
satisfy a condition equation, which we take, for example, as

Xx+2=0 (B-2)

What can we now say about the coefficients a and & in Eq. (B-1)? One procedure
is to consider Eq. (B-1) and the condition equation (B-2) as a pair of simultaneous
linear equations. We solve Eq. (B-2) for x and substitute in Eq. (B-1):

x = =2y

a(=2y) + by =0,
b = 2a, (B-3)

Then Eq. (B-I) is satisfied for any pair of values of @ and 4 that satisfy Eq. (B-3),
provided the values of x and y satisfy the condition equation (B-2).

If the number of independent variables and condition equations is small, the
procedure above is adequate. But when these numbers become very large, there
are too many simultaneous equations to solve. In this case, we use the Lagrange*
method of undetermined multipliers. Each condition equation is multiplied by an
undetermined constant 1. If there are k condition equations, there are k such

* Joseph L. Lagrange, French mathematician (1736-1813).
421



422 APPENDIX B

multipliers: 4y, 43, ..., 4. In our problem there is only one such equation and
one multiplier 2. Then from Eq. (B-2),

Ax 42y =0 (B-4)
Now add this to Eq. (B-1), giving
@+ )x+ 21+ b)y = 0. (B-5)
Now assign a value to A such that the coefficient of either x or y is zero. If we choose
%, thea @+)=0 i=-a (B-6)
Equation (B-5) then reduces to
24+ by =0, (B-7)

which contains only one of the variables. But since either one of the variables can
be considered independent, Eq. (B-7) is satisfied only if

QRL+5)=0; b= =24 (B-8)
Then from Eqs. (B-6) and (B-8) we have
b = 2a, (B-9)

which is the same as Eq. (B-3).

In effect, the use of Lagrange multipliers leads to an equation, Eq. (B-5),
which has the same property as if both x and y were independent, since the coeffi-
cient of each is zero.

We now use the Lagrange method of undetermined multipliers to explain how
Egs. (8-29), the equations of phase equilibrium, are a necessary consequence of
Eq. (8-27), which expresses the condition that the Gibbs function shall be a
minimum, subject to the condition equations (8-28). If the values of the dn{"
in Eq. (8-27) were completely independent, the equation could be satisfied for an
arbitrary set of the dn{"’s only if the coefficient of each were zero, The method of
undetermined multipliers takes the condition equations into account so as to
eliminate some of the terms in Eq. (8-27) to obtain an equation in which the re-
maining dn{"s are independent, so that the coefficient of each can be set equal to
zero. The procedure is as follows.

We multiply the first of the condition equations (8-28) by a constant 1, whose
value for the present is undetermined. The second equation is multiplied by a
second constant 4,, the next by a constant 4,, and so on. These equations are then

added to Eq. (8-27). The result is the equation
(x)

(ﬂ{“ + 4 d"{“ + (P‘{g) +. "l) d":” +ooHwm +A) d"i"
+ ) + ) dni + (P + A dn® o (@ + A dnf?

+ ) + W dnd + (@D + A dn® + o+ @ + A)dnl = 0. (B-10)



APPENDIX B 423

The total number of dn{s in this equation is &, one for each of the k con-
stituents in each of the = phases. For any constituent /, arbitrary values may be
assigned to the dn’s in all phases but one, making a total of (= — 1) arbitrary
values. The remaining dn, then takes up the slack, since

Jer

Fdn!" = 0.

i=1
Then since there are k constituents, the total number of dn{”’s which can be given
arbitrary values, or the number that are independent, is k(w — 1) = km — k.
Let us therefore assign values to the (as yet) undetermined multipliers, such that
for each constituent 7, in some one of the phases j, the sum (u{" 4 4,) = 0. For
example, let us select phase 1 and assign a value to 4, such that in phase |

(" + 4) =0, or  uft = —1,.

Then the product (s + 4,)dn{" is zero regardless of the value of dn{"
and this term drops out of the sum in Eq. (B-10). In the same way, we let

M4 a) =0 or =1,
and so on for each of the k constituents. This reduces the number of dn™"s in
Eq. (B-1) by &, leaving a total of k= — k. But since this is the number of dn{''s
that can be considered independent, it follows that the coefficient of each of the
remaining dn{""’s must be zero. Therefore for any constituent i in any phase j,

= =1,

Therefore the chemical potential of any constituent i has the same value —1;
in all phases, which leads to the equations of phase equilibrium, Eqs. (8-29).
Note that the values of the 1,'s themselves need not be known; the only significant
aspect is that the values of the chemical potentials of every phase are equal,
whatever these values may be.

One can consider that, in effect, the method of Lagrange multipliers makes all
the dn{’"s in Eq. (B-10) independent, since the coefficient of each is zero, but the
coefficients are zero for different reasons. In phase 1, the coefficients pre zero
because we assigned values to the 4's to make them zero. In the other phases, the
coefficients are zero because the remaining dn{’""s are independent.

The choice of phase 1 in the preceding argument was not essential; we could
equally well have started with any other phase and, in fact, could have selected
different phases for each constituent. In any case, we would eliminate the same
number k of dn{”’s from Eq. (B-10), and the remainder would be independent.



Cc

Properties of factorials

In the derivations of the distribution functions of particles obeying the various
statistics, many properties of the factorial are used. In this appendix we derive
these properties by investigating the gamma function I'(s),. Stirling’s approximation
for calculating factorials of large numbers is also developed.

The factorial of a positive integer n is written #! and defined as

nl=nn—Dn—2)-L (C-1)
From this definition it follows that
(n+ 1)l = (n + Dnl. (C-2)

Equation (C-2) can be used to determine 0! and (—n)!
If n = 0, Eq. (C-2) gives 1! = (0!) and

ol =1. (C-3)
If n = —1, Eq. (C-2) results in the expression 0! = 0(—1)!. Since 0! = 1,
we can take (—1)! to be oo, that is
(=)t = oo, (C4)
However, this involves division by zero which is undefined mathematically. The
gamma function is an expression for values of n which may not be integer,
which yields Eqgs. (C~1) to (C-3) for integer n. In the limit that » approaches —1,
the gamma function approaches co.
Integrals of the form

J() -=J:°a(l}e"' dt

are called Laplace® transforms. They are very useful in many branches of science
and engineering. The gamma function is a Laplace transform in which s = 1 and
a(t) = (* where n need not be an integer. Thus

M =Tn+1)= f fretdr. (C-5)

* Marquis de Pierre S. Laplace, French mathematician (1749-1827).
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For n > —1, integration by parts yields

a0 o a0 |
f et dt = -r"e"! + nf letde.
0 0 0

The first term on the right is zero at both limits since e~* approaches zero faste~
than ¢ approaches infinity at the upper limit, Then

0
J‘ e tdt = n ' e tar
o o

I'(n 4 1) = nI'(n). (C-6)
The gamma function can be successively integrated by parts so that

T(n+1)=nn—1)n—2)--1,

or

and if # is an integer
C(n + 1) = n!. (c-7

If n = 0, the gamma function can be integrated directly and

(1) =Jwe"d' =4
Since by Eq. (C-7), T(1) = 0!,

ol =1, (C-8)
in agreement with Eq. (C-3).
The integral of Eq. (C-5) diverges if n < —1, but by rewriting Eq. (C-6) as
n'T(n + 1) = I'(n), (C-9)

the definition of I'(n) can be extended to negative integers. If 0 < n < I, I'(n)
can be determined from Eq. (C-9). Using this recursion formula again, the values
of I'(n) for —1 < n < 0 can be found from the values for I'(n) when 0 < n < 1,
and so on. Thus I'(n) is determined for all noninteger values of n.

However, since I'(1) = | the method fails for n = 0, since division by zero

is undefined. Thus
limT(n) = limn™'T(n + 1) = L, (C-10)
n=0 n=0

Similar behavior is found for all negative integers.

For small values of » the factorial can be evaluated by direct computation.
However, it is often necessary to evaluate n! for large values of n. The factorial
of a large number can be found with sufficient precision by Stirling’s approxima-
tion which we now derive.

The natural logarithm of factorial n is

Inn)=In2+mIn3+:-+Inn.



426 APPENDIX C

e

Ins - ] : i
ind : = | H
In3 1 | o i i
ot N T T I A
1 ) 1] i 1 i1 [

| SN N (NN S S M-
Dl /I 2 1 4 5 6 71 8

Fig. C-1 A graph of In r as a function
of n.

This is exactly equal to the area under the step curve shown by dotted lines
in Fig. C-1, between n = 1 and n = n, since each rectangle is of unit width and
the height of the first is In 2, that of the second is In 3, etc. This area is approxi-
mately equal to the area under the smooth curve y = In n between the same limits,
provided n is large. For small values of n the step curve differs appreciably from
the smooth curve, but the latter becomes more and more nearly horizontal as n
increases. Hence approximately, for large n,

In(n!) v=J“ln ndn.
Integration by parts gives
In(n)=nlan—n+1,
and il n is large we may neglect the 1, so finally
In(n!)) =nlnn — n. (C-11)

This is Stirling's approximation,
An exact analysis leads to the following infinite series.

W 1 1 139
nl = Zmn E)[1+——-+ - :l C-12
" (e T2 T 2880  Sisdon® T =43
If all terms in the series except the first are neglected, we obtain
In(r) =4In27+4lnn+nlnn - n (C-13)

If n is very large compared with unity, the first two terms of this expression are
negligible also, and we get Eq. (C-11).



D

An alternative derivation of distribution
functions

At the end of Section 11-5, it was noted that when the number of particles in an
assembly becomes large, the occupation numbers of the levels in the most probable
macrostate are very nearly the same as the average occupation numbers for the
assembly. This is not only true for particles obeying B-E statistics, but it holds
equally well for the other statistics. Thus when the system is in equilibrium, the
distribution of particles among levels can also be determined from the occupation
numbers of the macrostate with the maximum thermodynamic probability, sub-
ject to the constraints that the total energy and the total number of particles of the
assembly is constant,

When one looks at a large number of identical assemblies, one macrostate
occurs the most often. The assumption is that this macrostate is the distribution of
particles among levels for the system in equilibrium. Therefore the properties of
the system are determined by the distribution of particles among levels that has
the maximum thermodynamic probability. In the text we assume that the prop-
erties of the system are determined by the average occupation numbers of the
levels. In the limits of large numbers of particles both methods lead to the same
distribution functions, as we shall show.

We now describe the conventional procedure for calculating occupation
numbers in the most probable macrostate, or, the most probable occupation
numbers, If we let % * represent the thermodynamic probability of the most
probable macrostate, the entropy S is set proportional to the logarithm of #°*,
that is,

S =kgln %™
]

To find the most probable macrostate, we use the usual criterion for thel maxi-
mum value of a function, namely, that its first variation is equal to zero. (Strictly
speaking, it should also be shown that this leads to a maximum value and not to a
minimum.) We shall illustrate by considering the Maxwell-Boltzmann statistics,
although the same procedure can be followed in the other statistics as well.

427
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In the M-B statistics, the thermodynamic probability of a macrostate is given
by Eq. (11-21),

g
'#/u_g = N!H—l‘ (D"l)
i Nyl

Instead of maximizing %, it is simpler to maximize In %", since if %" is a
maximum, its logarithm is a maximum also. Then considering the thermo-
dynamic probability of the most probable macrostate,

ln‘#"‘:lnN!+;N,lng,—zEnN,!. (D-2)
i
We assume that ¥ 3> 1, and that in any level j, N, 3> 1, so that we can use the
Stirling ap*roxima!ion (see Appendix C), and
InN!'=NIaN — N,

hen InNj2=N,InN, - N,.
In#*=NInN—-N+3IN;Ing;,—3IN,InN, + I N,
] ] T

But 3 N, = N, s0
In%*=NIhN+3IN/ng,—3N,InN, = NtnN—ZN,tn—:—'. (D-3)
1 i 1 i

Now compare this macrostate with a neighboring macrostate in which the
occupation numbers are slightly different. Let the occupation number of any level
j differ from its most probable value by 6N;. Since 0N, & N,, we can use the
methods of differential calculus, considering 6N, as a mathematical differential.
The differential of In %* is then, since N and g, are constants,

81n#* = Tlng, N, — TN, — Tin N, N, (D-4)

Since the total number of particles is the same in the two macrostates, any
increases in the occupation numbers of some levels must be balanced by decreases
in the occupation numbers of other levels, and hence ¥, 6N, = 0. Since In #*
is to be a maximum, we set  In %#* = 0. Then

;m % 8N, = 0,
i
or

& L2
(1;. N.) N, + (ln N’) Ny + -+ =0, (D-5)

If the N,'s were independent, then as explained in Appendix B, this equation
could be satisfied only if the coefficient of each éN; were zero. But the 6N)'s are
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not independent. We have shown above that
SN =3 ON,=0; (D-6)
]

and since the total energy U = 3, ¢,N, is the same in both macrostates, any in-

crease in energy resulting from an increase in the occupation number of a level

must be balanced by a decrease in the energy of other levels and a second condition

equation is )

U =3 e;6N; =0 | (D-7)
i

We therefore use the Lagrange method of undetermined multipliers described
in Appendix B, Multiply the first condition equation, Eq. (D-6), by a constant
which for later convenience we write as In a, multiply the second by a constant
—p, and add these products to Eq. (D-5), obtaining

Z(lni—*—+lna-—ﬁc,)d~,=0.
' i

In effect, the N,'s are now independent and the coefficient of each must be
zero. Hence for any level /,
In%+lnu—ﬂe,-0, (D-8)

i
or

Ny = ag;exp (—fe)), (D-9)
which is the distribution function for the most probable cccupation numbers,
expressed in terms of the constants & and §.

Now sum the preceding equation over all j's, and let

Z= ;8; exp (—fe;)

where Z is the single particle partition function described in Section [1-14. Then
since 3; N; = ¥, it follows that

w zﬂ (D-10)
and from Eq. (D-9),
N, N
— = — exp(—pfe). (D-11)
g Z ’

To evaluate the constant f, we insert in Eq. (D-3) the expression for In (g,/N,)
from Eq. (D-11), and set § = kg In %"*, giving

S= k,,[mn N—3NaN+3INhZ+ ﬁEe,N,],
J i ) i
" S = NkglnZ + fkgU. (D-12)
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If the energy levels are functions of the volume ¥ (or some other extensive
parameter), then Z is a function of § and ¥ and has the same value in two equi-
librium states in which the values of # and ¥ are the same. The entropy difference
& between the states, since In Z is a constant, is

AS = Bky AU. (D-13)

From the principles of thermodynamics, the entropy difference between two
equilibrium states at the same temperature and volume is

As = 9—7[1
It follows that fkg = 1/T, or
pm-L. (D-14)
kT
Hence Eq. (D-12) can be written
S=Nginz + 2, (D-15)
and
F=U=TS = —NkgTInZ. (D-16)
The chemical potential y is
oF )
—] = —kgThZ, D-1
= (BN .V i (B-17)
and hence
—p 1 u
hZ=—, == —_—
n T Z ex ko (D-18)
The distribution function, from Eq. (D-11), can now be written as
Ny f adimil..
— = Nexp——. (D-19
& kT )

Comparison with Eq. (11-44) shows that the distribution function for the most
probable occupation numbers is given by the same expression as that for the
average occupation numbers.

One objection to the conventional procedure is that if an J is calculated from
the preceding equation, the value obtained is not necessarily an integer, while the
actual occupation number of a level is necessarily integral. If we consider the right
side of Eq. (D~19) does give the correct values of the average occupation numbers,
this equation can be interpreted to mean that the occupation numbers in the most
probable macrostate are the nearest integer to their values averaged over all
macrostates| Since the occupation numbers are all very large, the “nearest integer™
will differ by only a relatively small amount from the average.



APPENDIX D 4

A more serious objection is the following. One of the terms in the expression
for the thermodynamic probability of a macrostate in the Fermi-Dirac statistics
is (g; — N))!. IfIn (g, — N;)!is evaluated by the Stirling approximation, and the
procedure above is followed, one does obtain the same expression for the most
probable occupation numbers as that for their average values. But in the F-D
statistics, the difference (g, — M) is not necessarily a large number and may in
fact be zero if a level is fully occupied. The use of the Stirling approximation to
evaluate In (g, — N,)! is therefore questionable, even if it leads to the right answer.
The procedure followed in Section 11-10, however, does not require the use of
Stirling’s approximation and is valid provided only that the N,'s themselves are
large numbers,
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Magnetic potential energy

Each magnetic ion in a paramagnetic crystal is a small permanent magnet and is
equivalent to a tiny current loop as in Fig. E-1. The ion has a magnetic moment
#, which if the ion actually did consist of a current [ in a loop of area A4, would
equal (in the system of units we are using) the product /4. The moment can be
represented by a vector perpendicular to the plane of the loop.

If the moment vector makes an angle 6 with the direction of an external
magnetic field of intensity 5, a torque = of magnitude u# sin 6 is exerted on the
loop, in such a direction as to align the magnetic moment in the same direction as
. In Fig. E-1, this torque is clockwise. In the usual sign convention, the angle
6 is considered positive when measured counterclockwise from the direction of 6,

s0 we should write
7= —pu sinf. (E-1)

If the loop is given a small counterclockwise displacement, so that the angle 6
increases by df, the work of this torque is

dW = 1df = —pi# sin 0 db.

The increase in magnetic potential energy of the loop, de,, is defined as the
negative of this work, just as the increase in gravitational potential energy of a
body of mass m, when it is lifted vertically in a gravitational field of intensity g,
is the negative of the work of the downward gravitational force —mg exerted on it,
Hence

de, = p# sin 6 do. (E-2)

The total change in potential energy when the angle 6 is increased from 6,

to 0, is

3,y
€, — €, -,u-?t"L sin 8 df = ui'(cos 6, — cos 0,).
1

Let us take the reference level of potential energy as that at which the moment
is at right angles to the field, where 0 = 90° and cos 0 = 0. Hence if we set

432
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‘O\ t P
NI

Fig. E-1 A magnetic jon of magnetic
moment s is equivalent to a small
current loop.

8, = 90°and ¢, = 0, and let ¢, and 0, refer to any arbitrary angle 6,
€, — 0 = u#(0 — cos 0), I

and :
€, = —pt cos b, (E-3)

When the angle 8 is less than 90°, as in Fig. E-1, cos @ is positive and the
potential energy «, is negative, That is, the potential energy is less than that in the
reference level. When 0 is greater than 90°, cos 8 is negative and e, is positive.

Let AA47, be the number of atomic magnets whose moments make angles with
the field between 6 and 6 + A6, Each of these has a component moment in the
direction of the field of u cos @, and the moment due to these is

AM = ANy pcos 6.
The total moment M of the entire crystal is
M= 3 AN pcosh. (E-4)
In the same way, the total potential energy E,, of the crystal is
E,= =3 ANy uit cosb.
It follows from the two preceding equations that
E,==HM. (E-5)
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Answers to Problems

Chapter 1

1-1 (a) no; (d) yes.

1-2  (a) extensive; (d) intensive.

1-3 (a) 10°kgm™3; (b) 109 m? kg™; () 18 x 10-* m?® kilomole™®; (d) 1.29 kg m3,
0.775 m* kg3, 22.4 m® kilomole™,

1-4  About 100 Torr.

1-5 (b) 1.01 x 10* Nm™,

1-6 (2)4.

1-7 (c) decrease.

1-8 153K, 185K, 193K, I97K.

1-9 (a) 328 K; (b) 6.84 cm; (c) no.

1-10 (a)a = 1.55 x 1073, b = ~115; (b) 112 degrees; (c) 5.97 cm.

1-11 (a) 73.3; (b) 26.7 degrees.

1-12 (a) 672; (b) 180 degrees. )

1-13 (a) A =3.66 x 10~"atm K=, B = 321 degrees, C = 3.66 x 107 K™; (b) 130
degrees; (c) 0.12 atm; (d) — .

#°C) -100 | 0 200 | 400 500
1-14 (a) -
&£(mV) —-60 0 60 40 0

(b)a = 2.5 degreesm V™1, b = 0;
1°C) -100 0 200 400 500
1*(deg) -150 0 150 100

()

(=}

1-15 (a) —195.80°C; (b) 139.23 R; (c) —320.44°F.

1-16 (a) 14.20 kelvins; (b) 14.20 deg C; (c) 25.56 rankines; (d) 25.56 deg F.

1-17 (a) no; (b) yes.

1-21 (a) reversible isobaric process; (b) quasistatic isothermal process; (c) irreversible
(adiabatic) compression; (d) irreversible isochoric process; (e) reversible isothermal

process; (f) irreversible adiabatic process.
Chapter 2

2-2 (a) 5.7 x 10~* m? kilomole™?; (b) 8.8 kilomoles; (c) 5.3 kilomoles.
2-3 (a) A = P}YRT;; (c) 800 K.

2-4 (a) 0.25 m; (b) 500 Torr.
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25 (a) US6K.

2-6 0.18m.

2-7 8.66d.

2-9 (a) 300 K; (b) 6.24 m* kilomole™; (c) 750 K, 120 K; (d) 10 m?; (e) 8 kg.
2-10 (a) 0.308 kilomoles; (b) 9.86 kg; (c) 3.96 x 10° N m™?; (d) 0.277 kilomoles.
2-11 (a) | m?; (b) 150 K; (c) 200 K, 0.67 m?; (d) 225 K, 0.75 m®.

2-13 (b) 0.06, 0.22, 0.51.

2-14 (a)4.87 x 107 Nm™?%; (b) 5.10 x 10" Nm~%; (c) 8.31 x 10 and 8.70 x 10°J kilo~
mole™ K1,

2-19 6.5 x 10" Nm™2,

2-23 (a) f = (v = b)/vT, k = (v — b)*RTv.

2-25 v = vyexp (aT%/P), afb = §.

2-26 () Lg=; (b) Ly(YA)?; (c) —~AF[aYA.

2-27 (a) 2.88 x 10°N; (b) 6 m.

2-29 (a) 0.03] m?® kilomole™; (b) 0.042 m® kilomole™?,

2-30 (b) 0.270.

2-32 [(v — b)(wRT + @))/Tla(v — b) — v*RT].

2-33 (a) R/(v — b); (b) R/(v — b); (c) [exp (—a/eRT))v — YR + afvT).
2-35 (b) 107%(6.4 + 3.3 x 107°T)m* N7 () =33 x 107" m®* N1 K™1;

(d) 5.2 x 1075,

Chapter 3

3-1 1.69 x 10°J,

3-2 191 x 10°).

33 —3nRTy8.

2.03J.

1.13 1.

(b) Work on the gas; (c) 8.15 x 10%J, 0.434 J; (d) 0.4 m?, 1.44 x 10~* m®.
(a) W = RTIn [(v; = b)/(v; = B)] + al(lfea) = (1/v,)]; (b)4.26 x 10*);
(©)4.3 x 10°),

3-8 (b)d'W = nRdT + nRT dP|P.

39 (a) d'W=-—FLdF|YA +udl); MW= —-FLAT, - T)); (OWp =
—L(F} — Fhi2vA.

3-10 (a) d'W = —C# d|T + Co*dTIT?;,  (D)W,e = —Co YT, — 1/T));
) Wg = —(Cl2TY3#} — #7).

311 =3V + CoITIH2.

3-13 -2.03 x 10°].

3-14 (a) =3.11 x 10°]; (b) —4.32 x 10°J; (c) 150 K; (d) 1.25 x 10N m™®,
3-16 W, =0, W, =112 x 10°), W, = —8.08 x 10°), W,,., = 3.12 x 10°).

LS 4B §
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3-17 (a) 6 x 10%J; (b) clockwise.
3-18 (a) 2.51 x 1078 J; (b) counterclockwise,
3-19 C.H#YT.
3-22 28 x 10*J.
3-26 (a) 60J; (b) 70 J are liberated; (c) @p.g = 507, Qp.a = 101J.
3-27 (a) AUpp = Qo = 100, AUy =900), =AU, =1000), Wop = Qca =
Aucycfc -0, Qoreln = Weyele = —500J.
3-28 (a) Q = n[a(T, — Ty) + (TS — TH) + (1T, — 1TYL:
(b) ép = a 4 b(T, + Ty) — ¢/TyTy; (c) 24.0 x 10° and 26.0 x 103 J kilomole™ K1,
3-29 (a) 0.589 J kilomole™? K-1; (b) 73.6 J kilomele™ K™; (c) 1850 J; (d) 37.3 ] kilo-
mole~! K-,
3-30 (a) 118J;(b) 124 J; (c) 118 J.

dt
331 @ C= 9;"5...
3-32 (b) 1.39 x 10%).
3-33 (a) 1.24 x 10°J; (b) 4000 J; (c) 1.16 x 10°],
3-35 (a) —5.35 x 10°J; (b) W, = —5.25 x 10*]; (c) Wy = —0.98 x 10%].
3-36 (a) —3.6 x 10°Tkg™; (b) —4.22 x 10° Y kg2,

Chapter 4 |

4-2 (a)a.

4-3  (b) 5/[3(Ty + TYI.

4-4 (a) a =24.0J kilomole™ K™, b = 6.9 x 1072 J kilomole™ K~%; (b} 2.03 x 104]
kilomole™™.

4T (a) 27 x 10%: 4,02 x 107%; (b) §R:R; (c) 0.60; (d) almost all.

4-8 (b)a + R.

4-11 (a) go.cr =19 RTY2, goap = 17 RTy/2, o =9 RTy; (b) 3 R.

4-16 AT = (nyny — 0% — npafc,Ving + np)2.

4-18 (a) af(c,p®); (b) ¢,T — 2afv — RTol(v — b);

(©) [2av(v = b)* — RTVb)cp[RTY® — 2a(v — b)*).

4-21 (a) ne,Tof2; (b) 3Tyf2; (€) 5.25 Ty; (d) 4.75 ne, T,

4-22 885 K.

4-23 (a) Wp = —3.46 x 105], Wg = —2.5 x 10°); (b) Wp = —3.46 x 10°); Wg =
—4.43 x 10°).

Process | V(m?) | T/(K) W) o) AU(J)
a 32 400 | 673 x 10° | 6.73 x 10° 0
4-24
b 139 | 174 | 2.74 x 10° 0 —2.74 % 108
¢ 32 400 0 0 0
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4-25 (b)
Process AT(K) | A¥(m?®) | AP(atm) w) o)
T = const 0 24 | 05 1.57 x 10° 1.57 x 108
P = const 273 448 [} 227 x 108 5.68 x 10%
V = const ~438 0 —0.401 0 —5.45 x 10%
2=0 165 | —67.2 0.901 —2.04 x 10° 1]
Cycle [} 0 0 1.8 x 10¢ 1.8 x 10*
Process AUQ) AHQ)

T = const 0 0

P = const 341 x 100 5.68 x 100

V = const ~5.45 x 10% -9.09 x 10°

Q=0 2.04 x 10° 341 x 108

Cycle 0 0

4-26 (a) T(v — b)*'® = constant, (P + afe)(v — b)"** /% = constant,

(b) W = c(T; — Ty) + (alvy — alv,).

4-30 (a) 900 Calories; (b) 1600 Calories; (c) 300 and 400 Calories.
4-31 (b) lower Ty,

432 nc = T,T,.

4-33 3K, 30K

4-34 (a) 0.25, 3; (b) 0.167, 5.

4-36 (a) 2.34 x 10° watts; (b) 5.5; (c) 1.52 x 10°J; (d) 6.06 x 107J,
4-37 13.6

4-38 3.1 watts, about 0.3 (.

Chapter 6
5-1 833K and 1666 K.

5-3 (a) 122JK; (b) 6.06 x 10°J K1,

54 (a) Qup = 2192J, Qpe = 10,966 J, Qg = ~6576J, Oy, = —5480J;

(b) 0.996 x 1°Nm2; (¢) Spp =554 JK™, Sy = 1L0JK™, S,y = —5.54 JK2,
Sia= —110JK,

5-5 (a)0;(b) 0.167J K1,

rmotR R R R I th LA
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56 293JK-.

5-7 (a) 1200 J absorbed at 300 K, 200 J given up at 200K; (b) —3J K™, ~1 JK1,
4JK1; () 0.

5-8 (a)777JK;(b) =777 JK-L.

59 (@O0.171JK™; (b) —0.171 JKL

5-10 (a) am In(Ty/Ty) + bm(Ty — Ty); (b) 2.47 x 10°J kilomolet K-,

5-13 (a) engine; (b) 250R J, —100R J; (c) 0.6; (d) 0.667.

515 ASyoa, UK | AS, 0K [AS,(0KY
(@) 6.93 -50 1.93
(b) 11.0 ~6.67 41
© -6.93 200 13.1

5-16 (a) ASy, 5 = 1300J K™, AS, = —1120J K-, AS, = 180J K*; (b) ASyo =
1300 J K, AS,,, = —1210J K™, S, =90J KL,

5-17 290K, 190 J K1,

5-20 (c) Ty of part (b).

522 —0.555RT, <w; £0,0 £ Au £0.555 RT;, 0 £ AS <0693 R.

§-27 No.

Chapter 6

6-1 (a) Pxv — Tfo; (c) 0.

6-2 (a) 3360 J kilomole™* K~1; (b) 0.135,
63 (a) R; (b) R In ofv,.

64 (a)AS =3alT + %_j'PdV + constant; (¢) x(T).

67 (a) —(7B = 1)/x; (c) 0.

6-17 568 J K-,

6-18 (b) (cy + RUT — T}) + by cpT — Ty) + hy.

6-19 (a)a + 6T — R; (b) s = aIn(TITy) + B(T = Ty) = RIn P[Py + 55,
h=a(T = Tp) + b(T'% = THI2 + hy: ©) (@ = R)T = Ty) + b(T? = THI2 + up.

6-20 () 3.73 x 105J; (b) 1.15 x 10*J K™,

6-22 (a) —4.6Jkg™; (b) —155 T kg™; (d) 0.394 K.
6-25 (a) ~ =0.22K; (b) 0; (c) ~35K.

626 (a) —253J; (b) =253 J; (c) =91 J.

6-28 (a)n =0, = =blcp; () n = =bfe,, u =0.
629 -21K.
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6-30 (a) AT = 0,As = 1.91 x 10* J kilomole™* K~; (b) AT = =146 K, As = 6.1 x 107
J kilomole™ K.
6-32 19.3 atm.
6-33 (a) 0.02 K atm™; (b) 0.098 K atm™*; (¢) —0.27K, 123 K.
6-34 353 K.
6-38 (V[aM)s T = MV/CnR
Chapter 7
7-6 (a)Plv + A) = RT,s = =RIn(PPy) + A'P;(b) h = P(A'T — A),
u=TAP—R), [=RTIn(PIP)=1l; & ecp=PAT, ¢, =24'P +ATP -
P4t RT ; ; ;
——— R;(d) « -m,ﬂ = (R = A'P)/(RT — AP); (e}t = (A = A'T)[PA'T.
7-22 (b) —10°J, =SOJK™, —1.5 x 10°J, —1.48 x 10*J, —800J, 3.6 J K™,
7-23 (a) —1.35 x 10" Nm~2 K~%; (b) 268 atm; (c) 1.31 x 10®° N m~* K~1; (d) 24.6 atm.
7-25 (a) 200 K, 1.0 atm; (b) /;; = 0.492 J kilomole™", ly = 0.328 J kilomole™®, /;; =
0.164 J kilomole™.
7-27 (a) —0.15K.
Chapter 8
8-1 (a)(ng + np)RIn 2.
82 @4 LML latm;(c) =15+ 107);(d) +5 x 10°J K,
85 (a)2;PandT.
8-6 (c) K is not a function of £ and X = ¢~AC"IRT
8-7 2
88 (A)d —T,%Cd;B—T,C~T,%CdiD —0,E—T, %Cd; (c) k =22,000K
kg kilomole™.
8-10 (a) 1.28 x 10~ Torr; (b) 76.3 atm.
8-12 (2) 0.146 J m~2; (b) 4 = 0.085 J m™, ¢y = 6.82 x 10° Jm* K, s = 2.28 x
104 I m K () 2.5 K.
8-13 (a) do(dy = Ay); (b) A(Ay ~ Ay).
5 (a) Cx =0 -fﬁl'”x o = l(ﬂ_f) K = _[(3_1’) 1 (b) exle; = xfx,
! I\er/s' Hogpp' b
8-17 (a) 4.2 x 1072 J K% (b) 12,6 J; () 203 J; (d) -7.7J.
8-18 (¢) AG = =203J, AH = —=7.714 ).
8-19 —228 x 10°J,

8-

-

du 4
8-20 (b) ?(Vs - V) (f-‘)iu(ys =¥

8-22 (a) 378K;(b) 2.04 x 10%and 5.14 x 10 Nm2,

8-24 (a) b |T.
8-25 (a) —0.815J;(b) =1.63J, =1.63J, 0, ~0.815 J; (c) 100 O¢; (d) 7.93 x 107,
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8-28 (g) 8.00 x 10°J; (h) —2.02 x 10°J, —3.96; (i) 5.98 x 10°J; (j) 0.300; (k) 5.48 x
10 J, 0.275.

8-29 (a) 220 Btu Ibm™*; (b) 70 Btu Ibm™,

8-30 (c)c =87

Chapter 9

9-1 (a) 3.2 x 10" molecules; (b) 3.2 x 10'* molecules,

9-2 3300 A,

9-3  (a) 6.9 x 107¢; (b) same as (a).

9-4 (a) 1.7 x 107%; (b) 2.8 x 10°%.

9-5 (a) 0.01; (b) 1.7 x 1077, 2.8 x 107%; (c) 1.64 x 10'® p, molecules m2s71, 94 x
10*® molecules m—2 572,

9-6 (a) 20ms~t, 20ms~; (b) 125ms™, 14.6ms?; (c) 10ms?, 122ms™); (d)
10ms™, 141 ms™; (e) 11.5ms™, 12.7ms™,

9-7  (c) 2 1y/3; (d) 0.707 »,.

9-8 (b) 3.4 x 10% y, molecules m~2577; (c) 4.5 x 10* v, molecules m=2s~1,

9-10 Force per unit length = n'mi?/2.

9-11 (a) 1360 m s~1; (b) 2400 K; (c) 0.31 eV.

9-12 (a) 2.9 x 10® impacts s7%; (b) 120 m.

9-13 (a) 7.2; (b) 1.22 x 10~ atm,

9-14 (a) 2 x 10" molecules cm™2; (b) 3.3 x 10* impacts s72; () same as (b); (d) mean
energy is about 0.1 of heat of vaporization per molecule.

9-15 (a) 9.4 x 107% g cm™%s7}; (b) about the same.

9-16 2.77 V[TA.

9-17 (a) 10" molecules; (b) 1.6 x 10~* Torr.

9-18 P; = ? [1 + exp(—5Ar/2V)].

9-20 (b) v, < PY5.
9-21 (a) 3 translational, 3 rotational, and 2(3N ~ 6) vibrational; (b) 9R, 1.11.
9-23 (a) 1.5 x 10%J;(b) 1.36 x 10°ms~%,

Chapter 10

10-3 (2)3.2 x 107 m?; (b) 5.2 x 1078 m; (¢) 9.6 x 10°s7L,

104 |cPlzeP,

10-5 (a) § x 10719 m; (b) 7.9 x 107" m?; (c) 7.9 x 105 m™; (d) 7.9 x 10° m™; (e)
0.45; (f) 0.88 x 107*m; (g) 1.3 x 107%m.

10-6 4.4 x 107%s,

10-7 (a) 3.2; (b) 0.05.

10-8 (a) 3.7 x 10% (b) 1.35 x 10%; (c) 1.8 x 10%; (d) 1.8 x 10% (e) 7.4 x 10%
(M 1.5 x 105 (g) = 0.
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10-9 (a) 6; (b) 6; (c) 6.

10-10 1.2 x 107 m,

10-11 (a) 10 cm; (b) 61 pA.

10-12 (a) 4.9 x 1019 m; (b) 160; (c) 2.7 m s72; (d) 160; (e) 48.

10-13 (a) 7.2 x 107 5; (b) 7.78 x 10~* m, 34 atomic distances; (c) 0.2; (d) 632,
10-15 4 x 1074,

10-16 (a) 9/, Tovg = 9.6 x 100" Nsm2 K-1/2; (b) 4.2 x 109 m; (c) 2.8 x 10710 m,
2.1 x 107 m,

10-17 (a) 1 o« TVZ; (b) 0.058 J K- 1m2s72,

10-18 (a) 2.52 x 10~ m?s%, 1.03 x 10~ m?®s™; (b) D o T¥%m'/2P1,

10-19 (a) —1.22 x 10% (molecules m™%) m™*; (b) (2.32 x 10 + 4.75 x 10'%) molecules
s71; (c) (2.32 x 10¥ — 4,75 x 10%) molecules 57%; (d) 9.50 x 10" molecules s~2,
0.70 ug 572,

10-20 (a) 1.26 x 10 Nsm™2; (b) 0.98 x 10 m?*s%; (c) 9.1 x 1073 m1s~1 K1,
Chapter 11 ‘

11-3 108

114 (b) 45, 50, 120, 75, 60, 100.

11-5 (a)5;(b) 5,4,3,2,1;(c) 16, 32, 24, 8, 4; (d) 15, 84.

11-6 (a) 6.55 x 10%; (b) 1.52 x 10°%; (c) 2..

11-8  (b) 2427; (c) 3.68, 1.79, 0.838, 0,394, 0,189, 0.078, 0.035; (d) 7.00,

119 (a) (14 macrostates; (d) 2.584, 1.585, 0.877, 0.485, 0.250, 0.135, 0.058, 0.027.
11-10 (b) 6; (c) 36.

11-12 (a) 8 macrostates; (d) 2.278, 1.722, 1.056, 0.667, 0.222, 0.056.

11-13 (d) 2.500, 1.591, 0.955, 0.530, 0.265, 0.114, 0.0378, 0.0075.

11-14 (a) 6N, = 8N, = 1; (b) 5.55 x 102, 4.13 x 1012

1115 (a) 729; (b) 60; (c} 6¢; (d) 126.

Macrostates 1 2 3 4 5 6
B-E 45 50 120 75 60 100
11-16 %' F-D 0 1] 60 1] 12 6
M-B 4,500 | 2,400 | 10,800 400 | 3,840 | 4,320
J 4 3 2 1
B-E 0.744 1.333 2.100 0.822

N, FD 0.769 1:385 1.923 0.923
M-B 0.861 1.362 1.694 1.083

11-17 0.423 kg, 0.797 kg, 0.539 kp.
11-18 (b) 0.395 k.
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11-19 (b) 3; (c) 195; (d) 2.923, 1,385, 0.462, 0.231; (f) —2.06 k5.

1121 (b) 12; (c) 2.75, 1.50, 0.75; (e) —1.81 kp.

11-27 (b) 8505; (c) 2.86, 1.43, 0.571, 0.143; (d) —3.4 kg.

11-29 (a) 4 x 107%&V, 6.51 ky; (b) 127K; (¢) 2 + exp (—23.2/T); (d) 4 x 107%¢V,
4.43 kg, 144K, 1 + 2exp (-23.2/T).

11-34 (a) | + exp (—efkpT); (b) [1 + exp (—e/kpT)] %, [1 + exp (/kpT)IY;

(c) Ne[l + exp (e/kpT)1™; (d) Nkg In[1 + exp(—e/kpT)] + Ne(TTl + exp (e/kpTI™;
(€) Nkp(elknTYexp (e/kpTI + exp (fkuT)I

11-35 (a) E = —pd N6, M = Np[3; (b) AE = HN[12, AM = 0; (c) AM = uNJ3.
11-36 (b) U =0, S = N@3#/2T) tanh (u3#[kyT) + Nkg In 2 cosh (uif[kpT), F*=
—NkgTIn 2 cosh (ui#[kyT), M = —N(u/2) tanh (u3#°[2kpT); (c) N tanh (uot’|2kgT),
N[I — tanh (ui(2kgT)].

Chapter 12
2mmk
12-1 S=Nk|lnV+3InT+2}In 7= +3)

12-2  (b) & = NKTJA.
123 (@) Cp=Ni;(b)S = Nk[z +hn AZ;;';k A

12-4 (a) 1.25 x 10* molecules; (b) 2.6 x 10% molecules, (c) 5.4 x 10'® molecules;
(d) 2.0 x 10* molecules.

12-5  (a) 0.83 p,,; (b) 0.83 v,

12-6 (a) 2.08 x 1072; (b) 8.3 x 107%; (c) 9 x 1072,

12-8 (a) v, = 3% ms™; 0 =445 ms™, v, =482ms7'; (b) 22T ms™, 719ms™,
2270 ms™1,

12-11 (b) ey, = kT2, € = 3kT)2.

12-12 (c) 0.421; (d) 0.079; (e) 0.500; (f) 0.843.

12-13 (c) 0.573; (d) 0.427; (e) 1.00.

12-16 3.6 x 1073 m.

12-17 3.26s.

12-18 (a) 198 ms~1; (b) 13.5 mg hr?; () 118 s.

12-19 (a) 5.81 pgs™; (b) 3.49 x 10" molecules s7%; 1.17 upg s™; () 1.36 x 10° mole-
cules; (d) 3.26 x 10~® Torr

12-20 0.086 mm, 2.5 x 10~* deg.

12-21 (a) 6.34 x 10 neutrons m-3; (b) 2.63 x 10-" Nm2,

12-27 (a) 10722; (b) 1.57 x 10*K.

12-29 kT.

12-30 (a) 3kT.

12-31 (a) 12; (b) 9T, L.11.

12-36 (a) 865, 117, 16; (b) 149 k0,
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Chapter 13

13-2  (a) 246 K; (b) 172 ] kilomole™ K7, 24.9 x 10% J kilomole~? K1,

13-3  1.12 x 10%J kilomole™ K-1, 2.66 x 1072 J kilomole™* K1,

134 Cyp = (6Nk¥hv,)T, Cy = 3Nk.

13-5 (c) 224 X 10°ms™¥; (d) 292K, 6.1 x 10 Hz; (¢) 3.69 x 107%m, 2.27 x
1071 m,

13-6 (a)6.17 x 1074 Js* m, 4.8 x 1009 K s; (b) 7.62 x 107" J m~2 K4,

137 (c) 10%m,

I'J-ll.(a) 2.24 x 10'® atoms; (b) 1.66 x 10*° atoms; (c) 2.08 x 10~? Qecm?, 1.54
Oe cm®,

13-13 § = Nuyof tanh (upot/kT)|T = Nk In 2 cosh (upiJkT), Cy = Nk(up ' [kT)*
tanh (uy°/kT).

13-14 0.75 vy, 0.77 vy, 1.5 03"

13-16 18.7 x 107 J; (c) 1.09 x 10~*R.

13-17 (a)14 x 10°ms1,1.3 x 10¥kgms1,6.5 x 10°K;(b)8.9 x 107%,6.4 x 1075,
2.1 x 1075 8.9 x 1075 8.9 x 10~%; (c) 3200 K.

13-20 (c) «5/3.

13-21 (a) 2.13 x 10~%eV; (b) 246 K, 116 ms™,

1322 2.81 x 1078 m? N-}; 3.4 x 107K,



Index

Absolute temperature, 13, 124, 166
Absolute zero, 127
entropy at, 196, 325
third law, 196
unattainability of, 199
Adiabatic, boundary, 7, 75
compressibility, 157
demagnetization, 231, 404
expansion, 325
first law, 72
inaccessibility, 172
isentropic, 130
processes, 72, 100, 108, 130, 231
work, 72, 110, 262
Answers to problems, 435
Arithmetic mean speed, 256
Assembly, 307
Atmospheres, law of, 369
Average speed, 256
Avogadro’s number, 370

Barometric equation, 369
Bernoulli's equation, 89
Blackbody radiation, 225, 395
Bohr magneton, 399
Boiling, 38, 243
Boltzmann constant, 261, 339
Boltzmann statistics, 320
Bose-Einstein statistics, 312
Bose-Einstein distribution function, 327
applied to phonons, 391
applied to photons, 395
Boundary, 3
adiabatic, 7, 75
diathermal, 7
Boyle's law, 27, 167
Bridgman method, 419
Brillouin function, 415
British thermal unit, 78

Calorie, 78
Calorimetry, 81
Carathéodory principle, 172

Carnot cycle, 111
with ideal gas, 112
with phase transition, 235
with radiant energy, 244
with surface film, 243
temperature-entropy diagram, 132
arld4 dlhen-nndynamic temperature, 124,
1
for three-variable system, 171
Carnot engine, 113, 140, 145
Carnot refrigerator, 115
Celsius temperature, 13
Céntigrade temperature, 13
Characteristic equation, 183, 337
Characteristic temperature, 373
Debye, 393
Einstein, 386
for linear oscillator, 373
for rotation, 377, 378
for vibration, 377, 378
Characteristic variables, 182
Charge flow, 41, 67, 223, 285
Chemical equilibrium, 16, 196, 214
Chemical potential, 207, 209, 214
and statistics, 330, 336
Classical, distribution function, 333
Classical statistics, 345, 350
Classical theory of specific heat capacity,
of gases, 267
of solids, 271
Clausius-Clapeyron equation, 193 |
Clausius inequality, 144
Clausius statement of second law, 138
Closed system, 3, 137
Coefficient of expansion, 45, 46 (see
Expansion coefficient)
of performance, 115
of self-diffusion, 294
of thermal conductivity, 292
of viscosity, 266
Collision cross section, 279
macroscopic, 280
microscopic, 280
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Collision frequency, 284
Collisions, with moving wall, 262
with wall, 254
Compressibility, adiabatic, 157
of copper, 46
of electron gas, 416
of helium, 151
of ideal gas, 47
isothermal, 46, 47
of mercury, 46
of van der Waals gas, 59
Condition equation, 213, 421
Conductivity, electrical, 285
thermal, 292
Configuration work, 70
Conservation of energy, 87
Constant volume gas thermometer, 9
Constituents, 210
Conversion factors, back cover
Cooling, magnetic, 231
Copper, compressibility, 46
Debye temperature, 393
sﬁfc heat capacity, 82, 16+
t al expansion, 46
Corresponding states, 51
Critical constants, table, 36
van der Waals gas, 49
Critical pressure, 35
Critical point, 36
Critical temperature, 35
Critical volume, 35, 278
Cross section, 291
Curie constant, 401
Curie's law, 41, 230
statistical derivation, 401
Cycle, Carnot, 111, 235
Rankine, 239
Cyclic process, 54, 69, 77

Dalton’s law of partial pressures, 57, 264
Daniell cell, 223
Debye temperature, 393
Dem th:apr:-r:)r specific heat capacity, 387
Degeneracy of a macrolevel, 350

of a state, 306
Degrees of freedom, 266, 370

rotational, 266

translational, 266

vibrational, 266
Demagnetization, adiabatic, 231, 404
Density, 4

reduced, 150

Derivatives, partial, 42
second-order partial, 53
Dewar flask, 8
Diathermal boundary, 7
Diatomic gas, 57, 269, 376
Dielectric work, 65
Dieterici equation of state, 60
Difference between specific heat capacities,
99, 151
Differentials, exact, 53
inexact, 69, 77
Diffusion, 294
Disorder, 324
Dissipative work, 71, 78
Distinguishable particles, 308, 320, 334,
391, 399
Distribution function, Bose-Einstein, 327
classical, 333
Fermi-Dirac, 331
Gaussian, 360
Maxwell-Boltzmann, 334, 430
speed, 355, 362
velocity, 359
Drude theory, 285
DulLong-Petit Law, 81, 271, 394

Efficiency, 113, 140, 145, 239
Einstein theory of specific heat capacity,
386

Elastic waves, 388
Electrolytic cell, 223

equation of state, 41

work, 67
Electron gas, distribution function, 331

thermodynamic properties, 407
Electron-volt, 262
Electronic conduction, 285
Electronic mean free path, 283
Empirical temperature, 9, 124, 166
Energy, free, 179, 180

internal, 73, 98, 270

kinetic, 86, 261, 266, 270

levels, 305

potential, 86, 184, 228, 266, 366, 403

states, 305

total, 86, 228, 403
Energy equation, 98

for ideal gas, 105

surface, 98, 105

for van der Waals gas, 115
Energy, equipartition of, 264, 370



Engine, Carnot, 113
steam, 233
Engineering applications, 233
Ensemble, 307
average, 311
Enthalpy, 84, 100
characteristic equation, 183
and heat flow, 100
heats of transformation, 84
Joule experiment, 107
statistical expression, 340
thermodynamic potential, 181
third law, 196
Enthalpy of ideal gas, 159
pure substance, 157
solid, 174
water, 100, 234, 235
van der Waals gas, 174
Entropy, 127
at absolute zero, 198
disorder, 324
increase of, 123, 135
irreversibility, 135
Nernst heat theorem, 198
principle of increase of, 123, 135
reversibility, 136
second law, 123
statistical interpretation, 323, 427
thermodynamic stability, 178, 188
third law, 196
Entropy diagrams, /i-s-P, 234
Mollier, 235
7-5, 132
Entropy of Einstein oscillators, 413
electron gas, 412
ideal gas, 159, 354
mixing, 208
multivariable systems, 170
open systems, 209
paramagnet, 229
pure substances, 157
solids, 163
van der Waals gas, 161
Equations of state, 24
Curie's law, 41
aielectric, 41
electrolytic cell, 42
liquid, 48, 163
multivariable systems, 184
paramagnet, 41, 401
radiant energy, 227
solid, 48, 16
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surface, 41
Equations of state of gases, Dieterici, 60
Hirn, 277
ideal gas, 25, 251,258,353 |
kinetic theory, 251, 258, 277
statistical thermodynamics, 353
van der Waals, 28, 277
virial, 30
Equilibrium, chemical, 16
mechanical, 16
metastable, 186
stable, 124, 186, 427
thermal, 16
thermodynamic, 17
unstable, 186
Equipartition of energy, 264, 370
Error function, 380
Escaping tendency, 214 .
Estermann, Simpson, and Stern, experi-
ment, 242
Exact differential, 53, 170
Exclusion principle, 317, 408
Expansion coefficient, 45
of copper, 46
of electron gas, 416
of helium, 150
of ideal gas, 45.
linear, 46
of mercury, 46
of solid, 173
of van der Waals gas, 59
volume, 45
Expansion, free, 70, 325
Extensive variable, 3

Factorials, 424
Fahrenheit temperature, 14
Fermi energy, 408
Fermi temperature, 415
Fermi velocity, 415
Fermi-Dirac distribution function, 331
408
Fermi-Dirac statistics, 317
First law of thermodynamics, 73
analytic form, 76
combined with second law, 148
general form, 86
First-order phase transitions, 192
Fixed points, 15
table, 16
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Flow processes, Joule-Thomson experi-
ment, 105
nozzle, 89
steady flow, 87
turbine, 89
Free energy, 179, 180
Free expansion, 70, 104, 325
Freezing, 38, 84, 188, 194
Fundamental constants, back cover
Fusion, heat of, 84

Gamma function, 424
Gas constant, universal, 25, 260
Gases, electron, 407
ideal, 25, 159, 258
photon, 395
van der Waals, 28, 160, 276
vapor, 36
Gaussian distribution, 360
Gay-Lussac-Joule experiment, 103
Generalized Helmholtz function, 184, 229,
341, 368, 401
Gibbs-Duhem equation, 241
Gibbs function, 180 .
characteristic variables, 183
chemical potential, 206
open systems, 210
and partition function, 339
phase transitions, 190
stable equilibrium, 180, 189
statistics expression, 339
third law, 197 -
Gibbs function of ideal gas, 180, 33¢
radiant energy, 228, 398
Gibbs-Helmholtz equations, 183
Gibbs paradox, 241
Gibbs phase rule, no chemical reactions,
214
chemical reactions, 216
Grand partition function, 347
Gravitational field, 366

Heat (see Heat flow) latent, 83, 191
mechanical equivalent of, 77
of transformation, 83, 191
Heat capacity, 80 (see Specific heat
capacity)
Heat engine, 113, 233
Heat flow, 74
and absolute temperature, 124
and enthalpy, 100
ind entropy, 128

inexact differential, 77, 149
irreversible, 133
reversible, 131
statistical interpretation, 326
and third law, 196
Heat reservoir, 83
Heat of transformation, 83, 191
fusion, 84 -
lambda, 192
sublimation, 84
of a surface film, 219
vaporization, 84, 192
of water, 85, 130
Helium, critical constants, 36
density, 151
lambda transition, 33, 192
P-u-T surface for, 39
specific heat capacity of, 151
thermodynamic properties of, 150
three, 194, 202, 416
van der Waals constants of, 28
Helmholtz function, 178
characteristic variables, 183
generalized, 184, 341
open systems, 210
and partition function, 337
stable equilibrium, 179, 138
statistics expressions, 337
Helmholtz function of electron gas, 412
ideal gas, 181
paramagnet, 229
radiant energy, 228
surface film, 220
van der Waals gas, 181
Hill and Lounasmaa data, 150
h-s-P surfaces, 234
Hydrostatic pressure, 4, 163

Ice, phase diagram, 35
point, 12, 195

Ideal gas, 25
adiabatic processes, 108, 262
and Boltzmann constant, 260, 339
and Carnot cycle, 112
compressibility, 47
diatomic, 267, 376
energy equation, 105
enthalpy of, 108, 159
entropy of, 159, 354
equation of state, 25, 258, 353
expansivity, 45



Ideal gas (contd.)

Gibbs function of, 180

in gravitational field, 366

Helmholtz function of, 181

internal energy of, 105, 261, 353

isothermal work, 64

Joule coefficient, 104

Joule-Thomson coefficient, 108

kinetic theory, 251

monatomic, 269

partial pressure, 207, 264

P-v-T surface for, 26

Sackur-Tetrode equation, 354

specific heat capacity, 267, 354, 376

statistical thermodynamics, 339, 350

temperature, 113, 127, 167
Increase of entropy, 123, 135
[nequality of Clausius, 144
Inexact differential, 69, 77
Inflection point, 49
Integrating denominator, 169
[ntensive variable, 3
‘ntermolecular forces, 276, 278
‘nternal energy, 74

chemical potential, 209

energy equation, 98

isolated system, 188

kinetic theory, 262, 267

open systems, 209

and partition function, 338

and specific heat capacity, 99

statistical interpretation, 326, 338

surface, 105

thermodynamic potential, 181

and total energy, 88, 184

nternal energy of blackbody radiation,

276, 396
Debye solid, 386
Einstein solid, 386
electrolytic cell, 224
slectron gas, 410
ideal gas, 104, 353
linear oscillators, 375
paramagnet, 239
surface film, 219
van der Waals gas, 115, 161
water, 84

nternational practical temperature scale,
15

nternational steam table calorie, 79
nvariant systems, 215
nversion curve, 107, 165

INDEX

Inversion puint. 107
Inversion population, 407
Inversion temperature, 165
Irreversible process, 18
dissipative work, 71
entropy changes, 133
entropy production, 136
and Gibbs function, 180, 189
and Helmholtz function, 179, 188
Rankine cycle, 240
throttling, 106
Isentropic process, 100, 108, 155
isothermal, 170
on multivariable systems, 170
on paramagnets, 230
second law, 130
third law, 199
Isobaric process, 18, 26, 101
entropy change in, 131
expansivity, 43
phases transitions, 37, 187
work, 64
Isochoric process, 18, 26, 99
entropy change in, 130
work, 64
Isolated system, 3, 136, 188
Isothermal compressibility, 47
Isothermal process, 18, 26
compressibility, 47
entropy change, 130
isentropic, 170
phase transitions, 188
work, 65
Isovolumic processes, 18

Joule coefficient, 104, 164
experiment, 104

Joule-Thomson coefficient, 107, 164, 200

experiment, 106

Kelvin absolute temperature, 13
Kelvin-Joule experiment, 107, 164

Kelvin-Planck statement of second law,

139
Kelvin temperature scale, 13, 126
Kilomole, 4
Kinetic energy of systems, 86 |
of particles, 261, 355
and thermal conductivity, 292

Kinetic theory (see Chapters 9 and 10),

assumptions, 251
heat capacity, 267, 271
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Kinetic theory (contd.)
ideal gas, 258 2
tran coefficients, 286, 292, 294
van der Waals gas, 276

Lagrange method of undetermined multi-
pliers, 421
Lambda point, 40, 192
Latent heat, 83, 191 (see Heat of trans-
formation)
Law of atmospheres, 369
conservation of energy, 87
corresponding states, 51
Laws of thérmodynamics, first, 73
second, 123, 138, 139, 172
third, 198, 199
zeroth, 6
Linear expansivity, 46
Linear oscillator, 372
Liquid, 163
drop, 221
saturated, 34, 188, 238

Macrolevel, 350
Macrescopic property, 2, 302
Macrostate, 307 v
most probable, 427
Magnetic moment, 399, 432
saturation, 401
Magnetism, equation of state, 41
statistical thermodynamics of, 399
thermodynamics of, 228
work, 65
Magnetic potential energy, 228, 432
Maxwell-Boltzmann distribution function,
334
Maxwell-Boltzmann speed distribution
function, 355, 362
Maxwell-Boltzmann statistics, 320
Maxwell-Boltzmann velocity distribution
function, 359
Maxwell-Boltzmann distribution function,
applied to Debye solid, 387
applied to Einstein solid, 386
applied to linear oscillator, 372
applied to paramagnetism, 399
Maxwell relations, 185, 230
Mean free path, 281
electronic, 283
table, 290
in transport properties, 288
Mean free time, 284

Mean square speed, 259
Mechanical equilibrium, 16
Mechanical equivalent of heat, 77
Mercury, compressibility, 46
expansivity, 46
specific heat capacity, 82
van der Waals constants, 28
Metallurgical limit, 238
Microscopic property, 2, 302
Microstate, 307
Miller and Kusch experiment, 365
Mixing, entropy of, 208
Molal specific value, 4
Mole fraction, 206
Molecular beam, 362
Molecular diameter, 278, 290
Molecular flux, 254, 289
Molecular weight, 4, 243, 293
Mollier diagram, 234
Monatomic ideal gas, 267, 350
Monovariant systems, 215
Most probable speed, 357
Multivariable system, 169, 184, 341

Negative temperatures, 405
Nernst heat theorem, 198
Neutral equilibrium, 192
Nozzle, flow through, 89

Occupation number, 307
average, 311
most probable, 430
Ohm's law, 286
Open systems, 3, 206
chemical potential, 208
phase equilibrium. 210
and statistical mechanics, 323, 327
Oscillators, 266, 372, 386

Paramagnetism, adiabatic demagnetization,
230

Brillouin function, 415
Curie's law, 41
equation of state, 41
potential energy, 433
statistical thermodynamics, 399
thermodynamics, 228
work, 65
Partial derivatives, 47
mixed second-order, 53, 150
relations between, 51, 102
Partial pressure, 57, 264



Particles, distinguishable, 307, 320

indistinguishable, 307, 312, 317, 333

Partition function, 336
grand, 347
ideal gas in gravitational field, 367
linear oscillator, 373 )
magnetic, 400, 414
monatomic ideal gas, 350
Path function, 70, 77
Pauli exclusion principle, 317, 408
Performance, coefficient of, 115

Phase diagram, cadmium-bismuth system,
24,

helium, 39

substance contracting upon freezing, 31
substance expanding upon freezing, 32

water, 35

Phase equilibria, Clausius-Clapeyron equa-

tion, 193
many phases, 210
two phases, 190
Phase rule; chemical reactions, 216
no reactions, 215
Phase transitions, 30, 190
order of, 192
Phonon gas, 391
Photon gas, 395
Planck, constant, 304
Kelvin-statement of second law, 139
radiation law, 226, 396
third law, 198
Platinum resistance thermometer, 7, 15
Population inversion, 407
Porous plug experiment, 105
Potential energy, 86, 184, 342
gravitational, 366
magnetic, 288, 403, 432
oscillator, 266
Pressure, 4
critical, 35, 49
kinetic interpretation, 259
partial, 57, 264
radiation, 226
reduced, 35
statistical interpretation, 326, 338
vapor, 34, 216, 221
Probability, thermodynamic, 310
Process, 17
adiabatic, 18, 72, 130, 231
cyclic, 54, 69, 77
irreversible, 18, 133, 136
isentropic, 130, 170, 230

INDEX

isobaric, 18, 37, 101, 130
isochoric, 18, 99, 130
isothermal, 18, 170
reversible, 18, 130
quasistatic, 17, 18
Property, thermodynamic, 3, 54
Pure substance, 157
P-v-T surface, helium, 39
ideal gas, 26
liquid, 42
solid, 42

451

substance contracting upon l'reeiing, 31
substance expanding upon freezing, 32

van der Waals gas, 29
water, 35

Quantum theory, 302
of electron gas, 407
of linear oscillators, 372
of paramagnetism, 399, 432

of specific heat capacities, 376, 386, 387

Quasistatic process, 17, 18

Radiation, blackbody, 225, 395
thermometry, 15
Rankine cycle, 239
Rankine temperature, 14
Ratio of specific heat capacities, 108
Rayleigh-Jeans law, 397
Reactions, chemical, 16, 138, 196, 216
Reduced variables, density, 150
pressure, 50
temperature, 50
volume, 50
Refrigerator, Carnot, 115, 140
magnetic, 230, 404
Reservoir, heat, 83
Resistance thermometer, germanium, 8
platinum, 7, 15
Reversible engine, 113, 233
Reversible processes, 18 136, 148
adiabatic, 108
cycles, 111, 233
entropy change in, 130
heat gnw in, 130, 326
work in, 63, 72, 326
Root mean square speed 261, 358

Sackur-Tetrode equation, 354
Saturated liquid, 34, 188, 238
Saturated vapor, 34, 187
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Second law of thermodynamics, Cara-
théodory principle, 172
Clausius statement, 138
and first law, 148
increase of entropy, 123
Kelvin-Planck statement, 139
Second-order mixed partial derivatives, 53,
150

Second-order phase-transitions, 192
Self-diffusion coefficient, 294
Shaft work, 87
Solid, 163
specific heat capacity, 271, 386, 387
Specific heat capacity, 80
ciassical theory, 267
at constant pressure, 80, 101, 154
at constant volume, 80, 99, 152, 161
of copper, 82
Debygl,ags‘?
of diatomic gas, 376
differences, 108, 151
Dulong-Petit law, 81
Einstein, 386
of electron gas, 411
of gases, 108, 267
of helium, 151
. of mercury, 82
molecular, 293
of a monatomic gas, 267
of a paramagnet, 229, 404
ratio, 108
of a solid, 271
of a surface film, 220
of water, 134
Specific value of an extensive variable, 3
Speed, average, 358
distribution function, 355, 362
mean square, 259
most probable, 357
root mean square, 261, 358
Sponlaneous process, 196
Stable equilibrium, 212
and entropy, 188
and Gibbs function, 189
and Helmholiz function, 188
and spontaneous process, 188
Standard form for  thermodynamic
formulas, 149
State variable, 3
exlensive] 3
intensive, 3

Statistical thermodynamics, 2, 250, 302,
3

Statistics, Bose-Einstein, 312
classical, 345
Fermi-Dirac, 317
Maxwell-Boltzmann, 320

Steady flow, 87
Bernoulli’s equation, 89
nozzle, 89

orous plug, 106
Furhine,P”g

Steam cycle, 235

Steam point, 11

Stefan’s law, 227, 398

Stefan-Boltzmann law, 227, 398

Stirling’s approximation, 313, 425

Stretched wire, 40, 65

Sublimation, 39, 194

Sum over states, 336

Superconductor, 245

Supercooled, 187

Superheated, 188
steam, 238

Surface film, equation of state, 41
tension, 218
thermodynamics of, 218
work, 68

Surroundings, 3

Survival equation, 281, 283

System, 3, 307
closed, 3
isolated, 3
open, 3

T ds equations, 155
Temperature, §
absolute, 13
absolute zero, 127, 196
Celsius, 13
centigrade, 13
characteristic, 373, 377
critical, 35
Debye, 393
Einstein, 386
empirical, 9, 166
Fahrenheit, 14
Fermi, 415
fixed points, 16
ice point, 12, 195
International Practical Scale, 15
Kelvin, I3
negative, 405



Temperature (contd.)
Rankine, 14
reduced, 50
reference, 15
steam point, 12
thermodynamic, 13, 124, 166
triple point, 13, 33, 195
Thermal conductivity, 292
Thermal efficiency, 140
Thermal equilibrium, 6
Thermal expansion, 45
Thermocouple, 8
Thermodynamic equilibrium, 16
Thermodynamic formulas, 419
Thermodynamic laws, 6, 73, 123, 138, 139,
172,198, 199
Thermodynamic potentials, 181
Thermodynamic probability, 312, 315, 319,
2

Thermodynamic system, 3
Thermodynamic temperalture, 13, 15, 124,
166
Thermodynamics, classical, 2
statistical, 302
Thermometer, constant volume gas, 9
germanium, 8
platinum, 7, 15
thermocouple, 8
Thermometry, Carnot cycle, 124
constant volume gus, 9
ideal gas, 11, 127
radiation, 15
resistance, 10, 15
thermocouple, 8, 15
Thermomolecular pressure ratio, 273
Thermoscope, 7
Third law of thermodynamics, 196
and magnetism, 230, 404
Nernst heat theorem, 198
Planck statement, 198
statistical interpretation, 324
unattainability statement, 199, 232
Transformation, heat of, 83, 191
Transport phenomena, diffusion, 294
thermal conductivity, 292
viscosity, 286
Triple point, cell, 10
and enthalpy, 85
and Gibbs function, 191
heats of transformation at, 85
phase equilibria, 215
table, 33
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of water, 10, 195
T-s diagrams, 132
Turbine, 89

Ultraviolet catastrophe, 397
Unattainability statement of third law,
199, 232
Universal gas constant, 25
per molecule, 261

Van der Waals gas, constants, 28
critical constants, 49
energy equation, 161
equation of state, 28, 30, 276
Helmholiz function, 181
Joule and Joule-Thomson coefficients,
165
kinetic theory, 276
law of corresponding states, 51
P-p-T surface, 29
thermodynamic properties, 160
Vapor, 36
Vapor pressure, 36, 195
liquid drop, 221
pressure dependence, 216
saturated, 36
supercooled, 187
superhealed, 36
Vaporization, heat of, 84, 192
Variable, extensive, 3
intensive, 3
specific, 3
state, 3
Variance, 214
invariant systems, 215
monovariant systems, 215
Velocity, distribution of molecular, 354
Fermi, 415
fluid, 87
Maxwell-Boltzmann distribution, 359
space, 356
Vinal coefficients, 30
Viscosity, coefficient of, 286
table, 290, 293
Voltaic cell (see Electrolytic cell)
Volume, critical, 35, 278
molecular, 278
reduced, 50
specific, 4

Water, critical constants, 3 -
density, 20, 174

Y
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Water, critical constants (contd.)
heat of fusion, 141
heat of vaporization, 84, 85, 130
ice point, 12
P-p-T diagram, 32, 35
specific heat capacity, 134
steam point, 12
surface tension, 219
triple point, 10, 13, 195
van der/Waals constants, 28
vapor pressure, 218

Wien's law, 397

Wire, equation of state, 40
work, 65

Work, adiabatic, 72, 110
configuration, 70
depends on path, 69
dielectric, 67
dissipative, 71, 78
electrolytic cell, 67
-energy theorem, 62
external, 63

free expansion, 70
inexact differential, 69
irreversible, 71, 137
isentropic, 110
isobaric, 64
isochoric, 64
isothermal, 65

tic, 65
maximum, 179
in a phase change, 84
shaft, 87
statistical interpretation, 326
surface film, 6
van der Waals gas, 163

Young’s modulus, 41

Zartman and Ko experiment, 363
Zero, absolute, 127, 196, 199
Zeroth law of thermodynamics, 6
Zustandssumme, 336




